
In Proc. of the 16th IEEE International Conference on Emerging Technologies And Factory
Automation (ETFA), Toulouse, France, September 2011.

Revised version.

Resolving State Inconsistency in Distributed
Fault-Tolerant Real-Time Dynamic TDMA Architectures

Akramul Azim and Sebastian Fischmeister
Department of Electrical and Computer Engineering

University of Waterloo, Canada
{aazim,sfischme}@uwaterloo.ca

Abstract

State consistency in safety-critical distributed systems
is mandatory for synchronizing distributed decisions as
found in dynamic time division multiple access (TDMA)
schedules in the presence of faults. A TDMA schedule
that supports networked systems making decisions at run
time is sensitive to transient faults, because stations can
make incorrect local decisions at run time and cause
state inconsistency and collisions. We refer to this type
of TDMA schedule as a dynamic TDMA schedule. Faulty
decisions are especially undesirable for safety-critical
systems with hard real-time constraints. Hence, real-time
communication schedules must have the capability of
detecting state inconsistency within a fixed amount of
time. In this paper, we show through experimentation that
state inconsistency is a real problem, and we propose
a solution for resolving state inconsistency in TDMA
schedules.

I. Introduction

The application of real-time systems ranges from daily
activities (e.g., automotive brake-by-wire systems) to
nuclear power plants. In the last thirty years, safety-
critical real-time applications such as aircraft, ground
transportation, ships, and medical equipments have be-
come essential to people. Most such systems require a
reliable network connection to transmit sensitive data.
However, these systems are subject to faults and the
consequences of faults can be dangerous depending on
the criticality of the applications. Thus handling faults
in networked real-time systems is an important problem
when building state-of-the-art safety-critical systems.

Faults on the communication line can cause a net-
worked system with multiple stations to enter into an
inconsistent state. For example, stations may disagree on
the state of a schedule. Such an inconsistent state can lead
to permanent or transient service failures. Transient faults
can occur for a variety of reasons such as weak commu-
nication links, and hardware or software glitches [4]. In
our work, we mainly consider transient faults, because
they occur more frequently than permanent faults [13].

TDMA schedules usually employ fault detection schemes
such as checksums and CRC [9], however, schedules that
facilitate dynamic execution at run time might encounter
a special type of state consistency problem which is the
result of faulty decisions. In our work, faulty decision
is an incorrect decision at any branching points of the
schedule.

State inconsistency can occur in a number of ways
in real-time systems. States refer to a certain configura-
tion of the system having well-defined behaviours. In a
distributed system, states may differ, for instance, due
to communication channel faults, measurement faults,
clock synchronization faults, and sampling rate mismatch
among devices. An interesting survey on CRC [14] states
that it may fail to detect some combinations of errors
in the communication of industrial embedded networks.
For example, CCITT-16 0x8810 fails to detect 84 of all
possible 4-bit errors and 2 430 of all possible 6-bit errors,
CAN 0x62CC fails to detect 4 314 of all possible 6-bit
errors. Therefore, state inconsistency may occur even in
systems with CRC due to CRC’s inability of detecting
specific communication faults. In this paper, we assume
sensor measurements are correct, because we are only
concerned with the communication faults.

Different stations may disagree on making decisions
in a dynamic schedule. This type of decisions are defined
as faulty decisions. For example, consider that station
1 makes a correct decision after sending a message to
station 2. Assume station 2 never receives this message—
or receives a corrupted message—and makes the wrong
decision. Three important problems can occur because
of such a faulty decision: (1) an incorrect output, (2)
desynchronization, and (3) the domino effect. An in-
correct output is an execution output that differs from
the desired output. Desynchronization occurs when sta-
tions disagree after evaluation of conditions locally. The
consequence for which a fault or faulty decision in any
slot that may affect the subsequent slots is defined as
the domino effect. All such problems can occur, for in-
stance, in clocked graphs and tree schedules. The clocked
graph [11] is a type of condition-based synchronous
schedule. In clocked graphs, stations and the shared
communication medium have individual condition-based
schedules. Faulty decisions in the clocked graphs may



lead to a different output following the disagreement
and affect subsequent behaviour. The tree schedule [8]
describes a dynamic TDMA schedule that can make
decisions at run time by executing guard expressions
during every communication cycle. Unfortunately, this
scheduling mechanism is unfit for systems with transient
faults, because the scheme assumes that all participants
always make the correct decisions at run time.

Dynamic TDMA [8], [20] is a state-of-the-art TDMA
scheduling concept in the area of real-time systems,
however, a number of challenges remain concerning
its efficiency and efficacy. Dynamic TDMA schemes,
are capable of making flexible decisions at run time.
However, these schemes may suffer from faults more
frequently than the conventional static TDMA because of
faulty decisions. Transient faults that occur due to making
on-the-fly decisions may degrade the system perfor-
mance. Therefore, examining performance factors such
as resolving state inconsistency due to faulty decisions
can significantly improve the applicability of dynamic
TDMA for different types of real-time applications.

Fault tolerance is required to provide safety guarantees
in the presence of faults and several types of tolerance
techniques are available. The basic principle of fault-
tolerance is to enable computing systems, which can
perform in a satisfactory fashion in the presence of
faults. A widely used fault tolerance technique is the
triple modular redundancy (TMR) technique [17] which
has been used for its fault masking and quick response
characteristics, consequently increasing the availability of
systems. TMR is applicable to various safety-critical sys-
tems because it enables them to tolerate a certain number
of faults but at the same time keeps fast-responses to
continue operations. In this paper, we aim to use the
dynamic TDMA scheduling scheme by demonstrating
an application with TMR to show the advantages, chal-
lenges, and possible solutions for making the dynamic
TDMA scheme applicable for real-time systems.

A common mechanism used to detect faults relies
on standard fault detection schemes such as CRC and
checksum, but state inconsistency may arise even in the
presence of these schemes due to limitations in detecting
transient faults [9]. In addition, the schemes will incur
more overhead than the conventional procedures due
to their strong but expensive error detection capabili-
ties. Increased computational complexity for better fault
detection will cause longer delays at the source and
destination for encoding and decoding. This results in
poor goodput [23]. Our work addresses several problems
that can occur at the branching points in the dynamic
TDMA scheme:

• Scheduler states may differ in different stations
when they try to send or receive samples (i.e.,
data) in a distributed system over an unreliable
communication medium because of packet drops or
CRC failures.

• Clock synchronization error may lead to state in-
consistencies.

• Sampling frequencies of different system architec-

tures may differ due to their difference of internal
clocks which may create state inconsistencies.

• Communication latency may cause states of the
participating stations to become inconsistent.

• Stations experience jitter which varies among sys-
tems and may create state inconsistencies.

In the paper we contribute the following to the state-
of-the-art for dynamic TDMA for hard real-time systems:

• We analyze the prevalence of state inconsistency
for dynamic TDMA schemes with an TMR-enabled
application.

• We propose a clock synchronization method which
significantly decreases the occurrence of state in-
consistencies.

• We propose a sampling rate drift management
scheme to decrease the number of state inconsis-
tencies.

• We propose a fault recovery method for resolving
state inconsistencies.

The rest of the paper is structured as follows: We
address the related work in Section II. The fault model
and the system model are in Section III and Section IV.
We describe decreasing the number of state inconsis-
tency and resolving state inconsistency in Section V and
Section VI. Experimental results in a real-life domain
are presented in Section VII. The paper ends with a
conclusion in Section VIII.

II. Related Work

Fischmeister et al. [8] proposed a static TDMA
scheduling framework, called tree scheduling frame-
work that can make dynamic decisions at run time.
We can call this as dynamism in static environments
having high-confidence real-time software characteristics
such as deterministic behaviour, meeting deadlines, and
formal verification. This scheduling scheme has been
successfully implemented in a networked medical device
case study [3]. Potop-Butucaru et al. [20] extend the
work of Girault et al. [11] for time triggered systems
by introducing clock schedules. This work has been
merged with the results of [8] to build a time triggered
system [19] from specification to the hardware level.
However, the system lacks state consistency checking
required to operate correctly and timely over unreliable
communication channels.

Kopetz et al. [15] propose the C-State based CRC
method that checks for state consistency due to faults
between senders and receivers using C-State–based CRC
along with temporal redundancy to handle station fail-
ures. The C-State based CRC [15] method can de-
tect state inconsistencies by using the controller state’s
information such as TDMA slot information, current
mode, global time, and membership information. If the
possibility of detecting faults using CRC is high, the
performance of the C-State based approach will improve.
CRC bits can detect faults, however, it needs a high
number of bits and thus has significant communication



overhead. Their application area is static TDMA and can
be extended to dynamic TDMA to detect state incon-
sistencies. The authors provide only simulation results
to show the inconsistencies based on the number of
arrival of faults. A number of redundant fault tolerant
units are running in parallel which come into effect
when state inconsistencies occur. Paxos [6] is a consensus
protocol for checking state consistency using four types
of message transmissions. The messages are: prepare,
promise, accept, and accepted. This scheme, like the two
phase commit (2PC) scheme or the three phase commit
(3PC) scheme, has more communication overhead than
the C-State based method due to a significant number of
message transmissions required by each station to check
state consistency.

Sorel et al. [11] proposed a fault-tolerant sched-
ule. This fault-tolerant schedule contains fault handling
syntax within the schedule. This type of synchronous
software schedule is deterministic and verifiable, and
it can be applied to real-life domains such as avionics
software [5]. Sorel et al. propose backup stations for
system recovery. However, frequently-occurring transient
faults might lead to a significant amount of switching
overhead between primary and backup stations. There-
fore, a reliable method for state consistency checking
and resolving strategies can improve the level of fault
tolerance of this scheduling technique.

III. Fault Model

Due to the higher frequency of transient faults than
permanent faults, our focus in this paper is on transient
faults. We assume to have a redundant system which can
reliably continue the system operation upon encountering
permanent faults. Transient faults can occur for a number
of reasons and exhibit random behaviour in the system.
For example, sending wrong and contradictory infor-
mation from sensors to the controller may corrupt the
system. On the other hand, correct data may be altered
or dropped during transmission. In this work, we assume
sensors are not faulty and always send correct informa-
tion to the controller, but we assume that the samples
(i.e., data) may get corrupted during transmission.

In this paper, we avoid simulating the fault model or
replicating a previously described fault model. We use a
real-life communication environment for a heterogeneous
architecture to observe the number of communication
faults that can occur in the system. The characteristics of
faults include communication CRC faults, packet drops,
clock synchronization faults, and sampling frequency
drifts.

IV. System Model & Terminology

Our model assumes a distributed hard real-time sys-
tem that executes a set of periodic tasks. Tasks com-
municate via messages which are transmitted through
a shared medium in predefined timed slots. Our model
permits dynamic decisions over the conventional TDMA

and allows the system to make decisions about which
message to sent next. These schedules for the commu-
nication bus are generated offline. We assume that input
variables for decisions at run time remain static within
a communication cycle. All tasks of a communication
cycle in our system are known a priori so that we
can predict future communications. Since we know the
schedule beforehand, we can plan the fault-tolerant mea-
sures in the schedule following a high-level specification
of criticality and importance.

The requirements for fault-tolerant networked systems
vary with the application performance requirements and
tolerance on state consistencies. In this paper, we assume
that the number of state inconsistencies that may lead to
failure never exceeds the specified limit of maximum tol-
erance. To give an idea of how demanding safety critical
systems are, we discuss some critical systems and their
tolerance of failure rates. A commercial transport fly-by-
wire Airbus A-320 can tolerate a maximum probability
of 10−10 failures per hour [16] of the flight. Military
aircraft, unmanned launch vehicles, and autonomous un-
derwater vehicles can tolerate 10−6 to 10−7 failures per
hour. Online transaction processors for banks and stock
exchanges demand high availability rather than focusing
exclusively on reliability. Another requirement of such
real-time applications is the response time which has to
be met otherwise the system will fail. In this regard, we
design the system in such a way that the actual execution
time is less than the allocated time. Therefore, the system
never misses the deadline.

V. Overview of Dynamic Schedules

An important fault-tolerant mechanism for real-time
systems is TMR. Depending on the type of application,
one of two approaches of voting mechanism is commonly
used: approximate consensus and exact consensus. In the
approximate consensus approach, it is not mandatory to
have the values of all the samples equal. Instead, the
output of redundant samples needs to be less than or
equal to a threshold. The threshold varies among appli-
cations and domains. The system may either use a math-
ematical definition of a threshold, which is dependent on
the applications or may employ an empirically derived
heuristic. However, the validation of such empirically
derived heuristics is tedious. In the exact consensus,
all stations in a system must agree bit-by-bit with no
fault conditions. Though exact consensus is favorable to
approximate consensus, it is difficult to achieve because
of the assumed unreliable communication medium. In the
exact consensus approach, two components of a system
will produce identical results, if they have: (1) identical
initial states, (2) identical input, and (3) identical op-
eration. Two components will be in identical states, if
the redundant copies of the hardware are initialized to
the same state. Identical input means that each hardware
copy must be provided with the identical sequence of
data from sensors and events. Identical operation means
that each channel must execute the same sequence of
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Fig. 1. An example of the dynamic schedule

operations on the same input.
Our approach focuses on checking and resolving state

consistency in dynamic schedules. We base our notion of
dynamic schedules on the work of Fischmeister et al. [7].
Their original work applies to media with a reliable
atomic broadcast mechanism. In our work, we apply our
state consistency checking mechanism to the system and
thus make the original approach applicable for unreliable
communication media such as wireless communication.

Stations that use a dynamic TDMA schedule may
suffer from faulty decisions which will make the states
inconsistent. Stations decide state transitions through
satisfying guard expressions. However, stations can make
wrong decisions because of undetected faults. Some
stations may also make faulty decisions, because received
data may be altered before making decisions at run
time. This can happen, because of hardware or software
glitches such as memory bit flipping [24].

Definition 1 (Dynamic Schedule): A dynamic sched-
ule is a DAG defined by the tuple (V , v0, VF , sl, κ, E)
where

• V is a set of states,
• v0 ∈ V denotes the initial state,
• VF ⊆ V denotes the set of final states,
• sl labels states V with broadcast communications,
• κ is a set of clocks with |κ| ≥ 1, and
• E is a set of tuples (vs, gx, λ, vd) representing

transitions from state vs to state vd. The guard gx
is an enabling condition and λ is a set of updates
on clock values. The set of transitions must be free
of cycles.

Example 1: This example illustrates a dynamic
TDMA schedule. We assume a distributed fire alarm
using triple modular redundancy. If two of the three
temperature sensor stations (n1 to n3) report a temper-
ature beyond the set threshold (vthr), the system will
sound an alarm. In every cycle, the controller receives the
temperature readings and makes the decision by voting
on the results. In the dynamic TDMA implementation,
if the first two readings are both below or beyond
the threshold, then the third station will not report its
readings, because the voting is already decisive. Figure 1
shows the resulting dynamic schedule for this example.

Suppose, each station spends t time units to send data
to the controller. Therefore, station n1 sends its data in
[0, t), station n2 sends data in [t, 2t), and station n3 sends
data in [2t, 3t). If n1 and n2 send more or less than the
threshold temperature value, then n3 will not transmit
data. Instead of sending data, the system can use this
slot for best-effort traffic.

If we consider the above example in a noisy envi-
ronment, then data may be changed during transmission.
Therefore, faulty decisions may occur at branching points
which will create state inconsistency. If the controller can
detect the corrupted message or the state inconsistency,
then the system will initiate a fault recovery routine and
prevent a service failure by resolving state inconsistency.

Example 2: Continuing from Example 1. Suppose, n1
reports a value below the threshold and n2’s reported
value below the threshold is corrupted by noise during
transmission to the controller. If the controller fails to
detect the fault, station n3 will try to transmit data.
However, station n2 assumes that it has sent the correct
data, and therefore the system’s state will be inconsistent.

VI. Resolving State Inconsistency

Dynamic TDMA is vulnerable to state mismatches
at branching points and this necessitates reducing the
number of inconsistencies for correct and safe opera-
tions. Our approach for preventing state inconsistency
consists of two parts: (1) reducing the occurrence of
state inconsistency and (2) recovery upon detecting state
inconsistency. To reduce the occurrence of state inconsis-
tency in dynamic TDMA, we propose a method of clock
synchronization and a method of adjusting the drifts of
sampling frequency among devices. To detect and resolve
state inconsistency we propose distributed agreement-
based schemes that have been adapted from well-known
algorithms such as C-State based CRC in hard real-time
systems.

A. Resistance from State Inconsistency
1) Clock Synchronization: Salyers et al. [21] stated

that clock drift can quickly cause clocks to become
unsynchronized. Their clock drift model maintains syn-
chronization among nodes in a distributed system by
selecting a reliable host to transmit packets to each
of the clients at a slow rate to obtain a training set
for linear regression. The linear regression estimates
clock drift between systems and synchronizes the clocks.
In [2], [10], the authors proposed a clock synchronization
scheme to influence clock values using fault-free nodes
for time triggered and FlexRay systems. The time trig-
gered architecture (TTP/C) generally uses offset values
for correcting clocks whereas FlexRay uses both offset
and rate-based mechanisms. Offset correction implies
that the current clock state of nodes agrees on a global
time base. The rate correction is the process of modifying
the frequency of nodes’ logical clock.

Clock synchronization methods [18], [21], [22] that
ignore synchronization message transmission delay are
unsuitable for networked systems. The authors of [25]
proposed a simple clock synchronization algorithm that
calculates mean network delay to measure clock dif-
ferences for distributed real-time systems. In contrast,
we use a variation of this algorithm [25] by consid-
ering worst-case network delay in our system when



the medium is idle for long periods so that synchro-
nization messages do not interfere with the communi-
cation messages. The clock synchronization algorithm
that works with our clock drift model will have two
types of synchronization messages: a synchronization
coordination message SC that notifies a node to prepare
for synchronization, and a Sync message that is sent
by a node having the global clock to all other nodes
in the network containing the precise sending time of
the Sync message. The node having the global clock
also sends test Sync messages to each node before the
clock synchronization process starts. This is done to
calculate the worst-case network delay for each link
from a global clocked node to other nodes. In the clock
synchronization process, each node calculates the time
difference (dev) by deducting the worst-case network
delay and the Sync message sending time from the arrival
time of the Sync message. The steps of the proposed
clock synchronization algorithm are in Function 1.

Function 1 ClockSync
Input: delayiworst for each station Pi, where

0 ≤ i ≤ num stations
Output: Synchronized clocks Gc

1: for each station Pi do
2: wait for SC message from the global clocked node
3: record the arrival time arrivaltime of the Sync

message
4: extract the precise sending time sendtime of Sync

message from Sync packet
5: calculate, devi ← (arrivaltime−delayiworst−sendtime)

6: synchronize clocks using devi
7: end for

2) Adjusting Sampling Frequency Drifts: Sampling
rates of devices, which we refer to as sampling frequency
drifts, may vary because of the diverse nature of their
internal architecture and crystal sizes of internal clocks.
The sampling rate denotes the rate of producing a new
sample, i.e., data. Sampling frequency drifts are com-
mon across devices of different architectures. Devices
based on the same architecture may experience this type
of problem less frequently than devices with different
architectures because of the homogeneous nature of in-
teractions. Heterogeneous interactions, communications
across different architectures or capabilities of systems,
often experience sampling frequency drifts.

Adjusting the drifts of the sampling frequencies of
a heterogeneous system is challenging, and can be
controlled through both hardware and software. In this
work, we propose a software-based sampling frequency
drift management scheme to reduce the occurrence of
state inconsistencies. Our scheme dynamically adjusts the
offset for converging the possible diversified decisions
into a common distributed decision.

The sampling frequency drift management system
assumes to have an independent global sampling rate
manager which contacts each of the participating stations
to know the architecture and the sampling rates with

reference to the global sampling rate manager. Rather
than comparing the difference of the sampling rates of
the participating stations in the network, each of them
synchronizes the sampling rate with the sampling rate of
the global sampling rate manager. Each of the stations
performs this action only once at the beginning of the
dynamic TDMA schedule. If the system permits the
addition of new nodes to the network, then the adjustment
should be performed after each admission of a new
node. To increase reliability by sacrificing resources, this
adjustment may be performed after every communication
cycle. Therefore, we let the developer decide when to
adjust sampling rates for different types of applications.
Function 2 describes the operation performed by the
stations to synchronize the sampling rates. Lines 2-3
describe the basic operations performed to gather the
required synchronization information and Lines 4-5 de-
scribe the rate adjustment operations.

Function 2 SamplingSync
Input: global sampling rate rg , set of sampling rates

Rs = {r1, r2, ..., rnum stations}
Output: set of synchronized sampling rates Rsyn =
{r1, r2, ..., rnum stations}

1: for each station Pi where 0 ≤ i ≤ num stations
do

2: sampling rate manager calculates the sampling rate
drift rdrift using rg and ri

3: receives a rate synchronization message rsync con-
taining rdrift

4: if rdrift ≥ tol then
5: adjusts the sampling rate ri using rdrift
6: end if
7: end for

B. Recovery from State Inconsistency
To resolve state inconsistencies for a TMR system

with dynamic TDMA, we aim to use a state inconsistency
masking method once every communication cycle which
may be required to run on the average case. However, to
design the system for the worst case, we have to allocate
time for using the state inconsistency masking method
once every communication cycle. The average case for
the TMR system is to receive two samples rather than
receiving all three samples in the worst case. Since dy-
namic TDMA permits making decisions after the second
transmission about whether to transmit the third sensor
information upon comparing the first two samples, we
check at the beginning of the third transmission whether
all the other stations will make similar decisions. If all
the stations correctly receive the first two samples, then
stations will not need to check for state inconsistency. If
any of the stations want to receive the third sample, the
station will have to check consistency with other stations
because of the possibility of having incorrect decisions.
If one of the stations disagrees and wants to receive the
third sample, then all the stations in the network will
need to be synchronized each other by instructing them



either to collect the third sample or cancel the decision
of receiving the third sample. The workflow for resolving
state consistency is as follows:

Step 1. All stations receive the first two samples which
are similar to static TDMA schemes since there are no
branches up to this point of the scheme. For example, we
have three stations in the network: a, b, and c. Figure 2
shows a dynamic schedule for all the stations. Stations
a, b, and c either execute c1 → 1 → 2 or c2 → 1 → 2
for a particular control (c1 or c2).

Function 3 Detecting State Inconsistency
Input: Transitions E, Guards Gx

Output: State inconsistency CFi

1: Ea←active transition at run time ⊂ E
2: vs←source state at run time: vs ∈ Ea

3: vd←destination state at run time: vd ∈ Ea

4: ga←active guard at run time: (ga ⊂ Gx) ∧ (ga ∈
Ea)

5: Nvar←number of variables
6: buf ←data buffer
7: for (ga`vari: vari⊂buf 6=“not available” where 0 ≤ i ≤

Nvar) do
8: for all entries of vari ∈ buf do
9: if ((ga ` (value of vari)) 6= (buf ` (value of vari)))

then
10: ∃CFi

11: end if
12: end for
13: end for
14: for (ga`vari: vari⊂buf←“na” where 0 ≤ i ≤ Nvar)

do
15: if (C-StateBasedCRC(vs) 6=C-StateBasedCRC(vd))

then
16: ∃CFi

17: else
18: add vari into buf
19: end if
20: end for

Step 2. There are several scenarios that can occur at
this stage: (I) First all the stations receive correct samples
whose values are within the tolerance. The tolerance
value is used to decide whether to accept a received sen-
sor value, and the tolerance value depends on the type of
plant-controller communication. In every communication
cycle, stations check the difference between the previous
sample and current sample values against the tolerance
for redundant transmissions to decide either to accept or
reject samples. If all of the stations accept the first two
sensor values which are within the tolerance, the states of
all stations will remain consistent. (II) A second scenario
is when the state of one station differs from the other
stations. If such a situation occurs, then all stations will
have to be notified immediately. A distributed agreement
algorithm is required for provisioning this facility. We use
the technique used in the C-State based approach [15] to
detect such inconsistencies. C-State is sent explicitly us-
ing a X frame [15] or implicitly using an I frame [15] but
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Fig. 2. Dynamic TDMA schedule for TMR

sent always for all frames during transmission. Instead of
sending a C-State-based CRC for all transmissions, we
may use a history buffer to store recent data and C-State
for avoiding sending C-State for redundant transmissions.
Having the same or better goodput than the C-State based
approach [15], the buffer-based approach can improve
the efficiency of transmissions significantly by increasing
the CRC length for the first transmission. (III) In a third
scenario, stations do not receive any expected data within
a fixed amount of time. If there is a timeout, stations will
inform other stations about possible future violations.
This problem does not occur in a TMR system because
of repeating the schedule after the third transmission but
it can occur in a complex dynamic TDMA schedule that
has data dependencies.

Step 3. Upon detecting state inconsistency, all the
stations will have to take appropriate actions to prevent
the system from failing. The recovery process can be
either pessimistic or optimistic. Pessimistic recovery is
to rollback of all the decisions made at the branching
points. Optimistic recovery involves a majority voting
on the decisions made by stations. The decision with the
highest number of agreements by the stations wins and
the stations that differ are forced to take that decision.
Majority voting can be implemented using the arbitration
method in CAN or any distributed agreement algorithms
on top of Ethernet.

Function 3 describes the operations performed in
detecting state inconsistency. If some of the information
which is about to be received is known a priori, the sta-
tions will check for data mismatches, timeouts in receiv-
ing data, or receiving no data. Otherwise, the stations use
the C-State information to detect state inconsistencies.

VII. Experimental Analysis

The advantages of using dynamic TDMA [7] have
already been demonstrated in different research [7], [8].
Dynamic TDMA performs better in practice than tra-
ditional communication schemes such as conventional
TDMA and round-robin in terms of scheduling flexibility
and efficiency in both hardware and software imple-
mentations in real-time time-triggered networks. Apart
from dynamic TDMA-based systems, several industrial
commercial systems are available such as Powerlink
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Ethernet, PROFINET, SERCOS III, VARAN, Modbus,
TTP/C, FlexRay, and EtherCAT, each of which has a
different set of goals. Dynamic TDMA is different from
what these schemes provide because the application layer
facilitates throughput optimization by providing a flexible
communication framework, which can be dynamically
changed for different types of application requirements.
Examples of applications include both hard and soft real-
time systems such as safety critical systems and control
systems.

We have used real-life devices to setup the test bed
for running experiments. We have used QUARC en-
vironment [1] which has been extensively used in the
research industry to run and test several algorithms for
different safety-critical system prototypes such as un-
manned aerial vehicles, unmanned ground vehicles, and
mobile robots [12]. We have used the Gumstix Verdex
Pro XL6P series board which has the 400 MHz processor
Marvell PXA270 with XScale to run experiments and
observed state inconsistencies that may occur in the
system when using dynamic TDMA. We have also tested
with a dual-core x86 and a quad-core x86 machine to
run experiments and observed state inconsistencies for
four different configurations: local x86, remote x86, x86-
verdex, and verdex. Our experiments discover a number
of real-life communication issues while using dynamic
TDMA or static TDMA.

The application area that is our focus of interest is
the drive-by-wire system. The prototype we have tested
uses the dynamic TDMA communication scheme. We
assume a drive-by-wire system that uses control systems
with electronic control systems using electromechanical
actuators and human-machine interfaces. The command
signals that are generated from the human-machine in-
terface are sent to the controllers via a communication
network. In a drive-by-wire system, faults of some safety-
critical components may disrupt system functions which
are sensitive to the applications. For example, wheel
speed data are important in a drive-by-wire system to
avoid skidding. The design of a drive-by-wire system
should tolerate the loss of some of the data samples,
i.e., packet drops which are caused by the safety-critical
sensors due to a temporary problem with the sensor itself
or with the communication network faults, or a sudden
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number of processors

increase in noise. In such cases, the system has to be
prepared to tolerate such scenarios for correct and safe
operations. The send buffer and receiver buffer size are
1460 bytes and the sampling rate of the host and target
system is set to 50 Hz in all experiments.

State Inconsistency Analysis. We have run all the
experiments for more than an hour and observed the
number of state inconsistencies that may occur when
using a simple dynamic TDMA schedule with TMR.
Figure 3 shows the percentage of state inconsistencies for
four configurations. The percentage of state inconsistency
is less than 9.5% for all configurations. We also observe
(Figure 4) that state inconsistencies increase as the
number of stations increases.

State-Based Scheduling Average Execution Analy-
sis. We have observed by running experiments that the
number of the stations that receive the first two samples
correctly and do not need receive the third sample is
higher than receiving all the three samples. Therefore,
on average, stations do not need to receive all three
samples. Figure 5 depicts the statistics of the average
execution versus worst-case execution in the experiment.
We see that the worst case occurs less frequently than the
average case. This analysis demonstrates the advantages
of using the dynamic TDMA scheme instead of the static
TDMA scheme and justify the necessity for resolving
state inconsistencies.

Reducing the Inconsistency Frequency. Using the
proposed scheme described in Section VI-A, we are able
to decrease the number of state inconsistencies or the
rate of state inconsistencies occurring over time. The
rest of the state inconsistencies are resolved using either
our pessimistic or optimistic recovery schemes discussed
in Section VI-B. Note that the use of these schemes is
more expensive in terms of the time complexity than
our efficient scheme given in Section VI-A for reducing
the number of state inconsistencies Therefore, the use
of all our schemes is application specific. That is, for
applications that may tolerate a low threshold of state
inconsistencies, our scheme of Section VI-A is suit-
able for quickly reducing the number of inconsistencies
below this threshold. In other, more constrained cases,
it may be necessary to resolve all inconsistencies by
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using our pessimistic or optimistic recovery schemes;
however, note that first using our efficient scheme and
then applying the more expensive pessimistic/optimistic
schemes still reduces the cost in such cases. Figure 6
shows that the number of state inconsistency decreases
using the clock synchronization and the sampling rate
synchronization scheme. The response time for resolving
a particular state inconsistency is bounded by a fixed
amount of time which is provisioned within the schedule
offline. In our experiments, the time reserved for each
slot is large enough compared to the computation and
communication time used in a slot. Therefore, recovery
from a state inconsistency does not increase the worst
case transmission time. Figure 7 shows the time spent
for computation and communication over time in the
experiments is less than 0.002 seconds, approximately
one tenth of the sampling period of 0.020 seconds.

Jitter Analysis. We have run the experiments on
several platforms and Figure 8 shows the jitter. We
observe different types of jitter in the system for different
configurations and find that the jitter is small compared
to the sampling period.

VIII. Conclusion

The domain of real-time applications has been ex-
panding over the last few decades. With the advancement
of distributed architectures such as dynamic TDMA-
based architectures, real-time systems would benefit from
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onds

new features such as the on-the-fly decision making
capability in dynamic TDMA. However, these new fea-
tures introduce new challenges such as handling state
inconsistency in dynamic TDMA.

In this paper, we identify and discuss the problem of
state inconsistency which can occur in dynamic TDMA
due to making on-the-fly decisions. We also present
appropriate strategies to resolve state inconsistency. We
propose a clock synchronization algorithm and a sam-
pling rate drift correction algorithm for reducing the oc-
currence of state inconsistency. To resolve the remaining
state inconsistency cases, we also propose appropriate
recovery schemes. Experiments on several computing
architectures support the validity of our approach. Future
work includes analyzing measurement faults which may
affect system performance and protective measures of
such faults to guarantee safety standards.
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