
Generation of Communication Schedules Using
Component Interfaces

Akramul Azim, Rodolfo Pellizzoni, Sebastian Fischmeister
Department of Electrical and Computer Engineering

University of Waterloo, Canada
{aazim,rpellizz,sfischme}@uwaterloo.ca

Abstract—With the growing demand in embedded systems,
safety and non-safety critical parts are integrated together
although guaranteeing safety is a hard problem to tackle due
to the complexity of possible interactions between components
involving communication. However, it is sufficiently recognized
that separation of computation and communication can reduce
the complexity of guaranteeing safety involved in interactions
between components.

In this work, we propose to use component interfaces derived
from periodic resource supplies that can meet the demand of
components experiencing bounded delays. The advantage of
using interfaces is to provide minimal information of compo-
nents without requiring the entire task specifications to generate
a multi-mode communication schedule. We use integer linear
programming to find assignments in generating schedules that
are guaranteed to have low average mode-change delay. A video
monitoring case study demonstrates the advantages on using our
approach in generating communication schedules.

I. INTRODUCTION

Current real-time systems are inherently complex and built
with heavy over-provisioning of resources to compromise
between safety and functionality, because transient overloads
can lead to failure due to missing deadlines. Some systems
such as control systems can tolerate transient overloads (i.e.,
bounded delays) and thus would not need such high over-
provisioning. This will then allow lower overall resource
usage or running more functionalities. A complex real-
time system is, in fact, a multi-mode system that facilitates
high functionality, but also demands guarantees on safety
requirements.

Computation and communication in safety-critical appli-
cations have to be completely separated and isolated. The
conservation of complexity is a justification of separation of
concerns. With the growing focus on safety-critical systems,
the principle of separation is increasingly important for
adaptive embedded systems. Adaptive and reconfigurable em-
bedded systems that integrate safety-critical and non-critical
components, or that integrate safety and adaptive behaviours
require separation of concerns to control system complexity.
Resource dependencies can be minimized by factoring out
the reservation and consumption parts into separate programs.
The approach of splitting the whole program into a minimal

set of resource dependencies makes the programs easier
to understand and analyze. They can then be joined in a
deterministic manner through specified timed interactions
such as timed interfaces.

In an interface-based design, an interface describes how
a component can be used. A well-designed component
interface provides sufficient information to connect other
components in a system [12]. Since an interface-based design
of components in the system allows separation of concerns,
scheduling mechanisms for computation and communication
can differ. For example, in a computational component, a
number of tasks execute on processors based on widely-
used CPU scheduling algorithms such as EDF or RM [11],
and message transmission occurs from one component to
another using a real-time network scheduling algorithm such
as static TDMA or state-based TDMA [8]. An efficient
CPU scheduling algorithm is not necessarily suitable for
networks because of the differences in characteristics. In a
system that supports multiple communication modes, state-
based scheduling has lower average mode-change delay than
EDF [2], which schedules tasks based on deadlines. More-
over, state-based TDMA schedules are suitable for achieving
predictability, reliability, and safety in real-time networks [8].
However, finding a state-based schedule for a time-triggered
architecture to satisfy the timing requirements of tasks is
challenging, because the scheduler has to consider not only
the requirements on each component, but also the global
requirements of system-wide behaviour, including messages
transmitted on the networks.

In this paper, the goal is to generate state-based schedules
using component interfaces to provide separation of com-
putation and communication. Specifications of component
interfaces are computed using local information of tasks.
Tasks execution inside each component remain isolated from
communication because of generating its schedules using the
derived component interfaces. This separation of concerns
and isolation of components provide increased safety in real-
time systems.978-1-4673-7929-8/15/$31 c© 2015 IEEE

II. PROBLEM STATEMENT

A demand bound function (dbf) and supply bound function
(sbf) [11] represent timing requirements of the workload (i.e.,
tasks) and the resource supply to guarantee that sufficient
amount of resource is available to satisfy the demand. The
dbf(t) refers to the maximum resource demand during a time
interval t by the tasks and the sbf(t) determines the minimum
resource supply during t. For hard real-time systems, dbf(t)
is no greater than the sbf(t). However, this condition does
not need to hold [3] for systems that can tolerate bounded
amount of delays.

The sufficient resource supply for a component with
workload specifications converts into the demand to find
a resource supply with additional workload. To satisfy the
demand of a component workload, its interface has a partic-
ular resource supply derived using sbf(t) and dbf(t). These
interfaces are particularly useful for combining multiple tasks
requirements [11].

Recent work [3] on sbf and dbf shows how to find efficient
resource supplies for workloads with a tolerable system delay,
which is experienced by any task at a given time. This avoids
over-provisioning of resource supply because it allows the
sbf(t) to go below the dbf(t) for a bounded amount of delay,
which is added to each component rather than its tasks.

A state-of-the-art research in safety-critical real-time sys-
tems is the analysis of co-scheduling of computational com-
ponents and communication medium because of the necessity
of separation of concerns and design optimization. Separa-
tion of concerns requires isolation of components and the
communication medium to reduce the domino effect. The
domino effect is a chain reaction that occurs when a small
change causes a similar change nearby, which will then cause
another similar change, and so on in linear sequence. Design
optimization requires suitable scheduling policies to use for
computation and communication, and schedules which are
necessarily not the same.

Distributed real-time systems require reliable networking
solutions for the exchange of time-critical data in addition
to the processors. The Network Code framework [8] is
one of the real-time Ethernet-based networking solutions
that supports a language to describe state-based schedules,
which are TDMA-based but have the ability to make on-
the-fly decisions. This on-the-fly decision making capability
in schedules facilitates low average delay while changing
modes. Faster mode-change also depends on how the mes-
sages are scheduled. In state-based schedules, mode-change
delay will become less if more messages of different states
can be allocated to a time slot. This provides a state-based
communication schedule with a less number of branches.
State-based schedules also allow to transmit best-effort traffic
if no real-time traffic is present. The generation of such com-
munication schedules is discussed in [2], but co-scheduling
of computation and communication is not discussed. There-

fore, the delays introduced by computational units affect the
scheduling of communication. This work aims to interconnect
computational units through derived interfaces and generated
communication schedules, even in the presence of delays
introduced in components.

Goal: “Given a set of component interfaces with
period, duration, a worst-case delay, generate
a multi-mode distributed communication schedule
which has low average mode-change delay”.

III. BACKGROUND AND SYSTEM MODEL

A. Scheduling Computation

Scheduling computation has been extensively studied for
real-time systems. Amongst them, the mostly used scheduling
algorithms are EDF and RM. In [4], an extensive comparison
between EDF and RM is shown. EDF is preferred over
RM for better system utilization. Moreover, EDF performs
reasonably well in transient overload situations. Transient
overload occurs when the system needs more computing
resource than available in order to be able to complete all
tasks before their deadlines. In this paper, we assume EDF
to schedule tasks of components of the system, leaving the
extension to other scheduling schemes for future work.

The computation model consists of a periodic resource
model and periodic workload for each of the computa-
tional components. For each computational unit, the periodic
workload has a set of tasks and a set of messages for
communication. Tasks of a component are scheduled using
EDF scheduling. We use the following notations to model
computational units (i.e., components):
• {Cj} = a set of components where j ∈ N+

• {τ ji } = a set of tasks of component j where i ∈ N+

• pji = period of task i of component j
• eji = execution time of task i of component j
• δ∗j = worst-case tolerable delay of component j
• Rj(λj , θj) = θj resource supply in every λj period for

component j
• Ij(λj , θj , δj) = interface of component j characterized

by period λj , duration θj , and worst-case delay δj
Supply and demand bound functions are used to determine

schedulability under a particular scheduling policy. Supply
and demand bound functions facilitate exact schedulability
analysis during all time intervals, rather than sufficient analy-
sis. A demand bound function takes the tasks in the workload
(W), the scheduling policy (e.g., EDF), and the time interval
(t) as input to determine the worst-case demand during a time
interval of length t using Equation 1 as defined in [11].

dbf(W,EDF, t) =
∑
τi∈W

⌊
t

pi

⌋
ei. (1)

In contrast. the supply bound function calculates the min-
imum resource supply during any time interval t. Using

2

Equation 4 from [11], it is possible to find the minimum
resource supply (Figure 1) during any time interval of length
t as:

sbf(t) =


(t− (κ+ 1)(λ− θ)) if t ∈ [κ1, κ2]

(κ− 1)θ otherwise
(2)

with κ1 = (κ+ 1)λ− 2θ, κ2 = (κ+ 1)λ− θ, and κ as

κ = max(d(t− (λ− θ))/λe, 1).

Note that, the value of κ is greater than or equal to 1.

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8 9 10

S
u

p
p
ly

Time interval

Fig. 1: sbf(t) for λ = 3 and θ = 1

Using supply and demand bound functions, it is possible
to derive bounds on the delays that the system can experience
under EDF and a periodic resource supply [3]. For systems
that cannot tolerate overloads, the sbf(t) is no less than
the dbf(t) during all time intervals of length t until the
hyperperiod. On the other hand, sbf(t) can become less than
the dbf(t) for some t during all time intervals of length t
until the hyperperiod. Fig. 2 shows an example of overload.

0

2

4

6

8

10

0 5 10 15 20 25 30

Time interval

D
ur

at
io

n

Resource demand

Resource supply

 Overload

 Overload

Fig. 2: An example of an overload (∃t: sbf(t) < dbf(W, t,EDF))

Example 1. Consider a periodic resource supply R(3, 1),
and a scheduling model M(W,R,EDF) that has two tasks
in the workload, W = {T1(6, 1), T2(12, 2)}. Fig. 2 shows the
computed sbf and dbf. This workload is not schedulable with
the given resource if the workload cannot tolerate any delay,
because the supply is not always greater or equal than the

demand. Slightly changing the specifications of the workload
with a tolerable delay 2 time units makes the system feasible.
The system is feasible because in a time interval of t =
12, the system can experience an overload, which becomes
resolved in a time interval of t = 14.

An overload can be characterized as the delay that a
component can suffer [3]. A periodic transient overload
occurs for a certain amount of time and is repeated after the
hyperperiod. In this paper, we consider the periodic transient
overloads which can be recovered. The time interval when the
overload occurs is referred as an overload point. An overload
point is associated with a recovery point when the overload
becomes resolved. This delay is calculated as the difference
between the overload point and the associated recovery point.
The worst-case delay is the maximum delay that the system
can suffer in the hyperperiod.

Component interfaces facilitate connecting computation
and communication in a distributed system. These interfaces
abstract the timing requirements of the workload of compo-
nents. Using the supply and demand bound function analysis,
interfaces can be derived, which provide the worst-case
timing demand of all tasks in a component. We get the period
and duration of an interface from the periodic resource supply
that meets the demand of the workload in a component.
Interfaces have an additional timing property, which is the
worst-case delay that the component can experience.

Continuing Example 1 If the interface is I , then the spec-
ification of the interface is (3, 1, 2) where period, execution
time, and worst-case delay are 3,1, and 2 respectively.

B. Scheduling Communication

State-based schedules facilitate supporting different com-
munication modes. Different case studies in various do-
mains have demonstrated the advantages of using state-based
schedules such as control theory, hybrid systems, hierarchi-
cal scheduling, and in general bursty demand models. The
runtime framework for state-based schedules provides the
necessary abstractions and execution entities. A state-based
communication schedule is characterized by the following:
• V = a set of communication modes
• {σkm} = a set of messages in communication mode k

where m ∈ N+ and k ∈ N+

• ckm = duration of message σm in mode k
• πkm = period of each message σm in mode k
• αm instances for every message σm up to the end of

communication round (i.e., hyperperiod)
• vs ∈ V denotes the current mode
• Vd ⊆ V denotes the set of possible destination modes,
• B is the bandwidth assigned to scheduled messages,
• L is the link capacity, with B ≤ L.
To illustrate the advantages of state-based schedules, let us

consider an example of a Triple Module Redundancy (TMR)
application. In a traditional setup for TMR, three different

3

sensors transmit independent samples of the same variable
in consecutive messages σ1, σ2, and σ3. A voting controller
receives these messages and performs a majority vote to
determine the final value. In a static TDMA configuration, the
sequence of transmitted messages is determined only by the
progression of time, and then the stations will always transmit
the three messages, even if σ1 and σ2 are already decisive
for the voting. However, a state-based schedule can perform
a preliminary voting after receiving the first two samples, and
if the voting is already decisive, then the slot associated to
the third sample can be empty, leaving the medium available
for other purposes such as background traffic.

C. Co-scheduling

This work interconnects EDF with state-based scheduling
with an assumption that overloads can occur in components
which cause delays in communication. This work also aims to
provide isolation of components through their interfaces and
allows to interconnect them using state-based communica-
tion schedules for better bandwidth utilization and increased
safety in real-time systems. Fig. 3 shows an example model
for two computational components with interfaces R1 and R2

connected through a shared communication medium. Each
component has two tasks τ1 and τ2.

Processor 1

BUS

Processor 2

InterfaceInterface

τ 11 τ 12 τ j1 τ j2

R1 R2

Fig. 3: An example model of isolation between computational components
and the shared communication medium

IV. SPECIFICATION AND DESIGN OF COMPONENT
INTERFACES

This work introduces a model-driven approach to generate
state-based schedules from interface specifications of compo-
nents. The designer (1) specifies the details of components
(i.e., tasks, resources, and their timing demand), transmission
states and their interactions with timing requirements, (2)
performs schedulability analysis and uses mechanisms to find
out interfaces specifications from components information,
(3) uses mechanisms not only to perform reachability and
schedulability analysis, but also generates state-based sched-
ules using components interfaces based on the application
design and constraints.

A smart networked video monitoring system for collision
avoidance is considered as a case study, which is effective

TABLE I: Timing requirements for computation of video components

Nominal [ms] Normalized
Task Comp. Time Period Comp. Time Period
τd 5 32 1 6
τc 10 64 2 12

in different transportation systems. A mining truck is an
example of such system. Mining trucks are typically over 7
meters high and need a monitoring system to avoid collisions
when running with small vehicles. The monitoring system
consists of four cameras attached to wheels to transmit
videos of surroundings. The cameras are labelled as front
camera right (FCR), front camera left (FCL), rear camera
right (RCR), and rear camera left (RCL). All cameras are
connected through 1[Gbit/s] Ethernet link.

Computation specifications. In the case study, we assume
that four sensors in the wheels are embedded along with the
cameras. The cameras transmit two types of videos: standard
quality (SQ) and high quality (HQ). When a sensor detects
an object, the attached camera transmits HQ video. Sensors
activate according to the movement of the truck: front sensors
only activate if the vehicle is moving forward, and rear
sensors only activate if the vehicle is moving backwards. We
assume that the sensors perform a computation task to detect
objects and the direction of the vehicle (τd), and the cameras
perform a computation task to buffer and manage video (τc).
Therefore, each video component has two computation tasks
to schedule under the EDF scheduling policy. Table I shows
the timing specifications of computation tasks for each of
the video components with an assumption that deadline is
equal to the period and the components can tolerate delays.
In specifying requirements, we consider that the rate of task
τc (30 frames per second) is higher than task τd to ensure
that enough data is available. Assuming an atomic unit for the
schedule equal to the minimum computation time for a task,
we normalize the timing specifications to this time unit, and
take the floor of the normalized period. The normalization
may overestimate the actual requirement, but allows us to
represent all the timing requirements as multiple integers of
the time unit. We assume that the timing specifications allow
video components to tolerate a delay of 2 time units in the
worst-case, which is within the tolerable delay range of video
broadcasting for a quality of service(QoS) as discussed in [6].
This case study assumes to transmit the raw video, leaving
the use of encoder (e.g. MPEG-2) and different frames (i.e.,
I, P, B) as discussed in [5] for the future work. Instead of
determining the tolerable delay based on a particular QoS,
a control component can have a maximum delay tolerance
depending on stability metrics as discussed in [3].

The display component is located near the vehicle driver
to receive data periodically from the network. We assume
that the display component has a single task that executes

4

TABLE II: Timing requirements for communication

Nominal [µs] Normalized
FPS Comm. Time Period Comm. Time Period
15 7600 66700 6 48
30 7600 33350 6 24

TABLE III: Feasible modes with messages specifications

ID Mode Utilization
(FCR, FCL, RCR, RCL)

1 (SQ,SQ,SQ,SQ) 0.5
2 (SQ,SQ,SQ,HQ) 0.625
3 (SQ,SQ,HQ,SQ) 0.625
4 (SQ,SQ,HQ,HQ) 0.75
5 (SQ,HQ,SQ,SQ) 0.625
6 (HQ,SQ,SQ,SQ) 0.625
7 (HQ,HQ,SQ,SQ) 0.75

faster than other tasks and therefore the computation time
and period are set to 2 and 4 time units respectively. We
assume that the display component can tolerate a delay of 1
time unit.

Communication specifications. Each of the four cameras
operate in two states based on the frames per second (FPS).
The SQ frames are transmitted by default and cameras
switch to transmitting HQ frames once an object is detected.
Moreover, either front cameras or rear cameras can transmit
HQ frames after an object is detected.

The possible configurations of the communication is calcu-
lated as the cross products of the state machines. The timing
requirements of different types of video transmission (i.e.,
HQ and SQ) as shown in Table II are calculated using pixel
specification (640 × 480) of frames and network bandwidth
(1Gbit/s). To find the feasible communication modes without
considering computation delays, schedulability analysis can
be performed using Equation 3. Table III shows feasible
communication modes for the video case study where B

L = 1.

U(vk) =
∑
σi∈vk

ci
πi
≤ B

L
. (3)

A component has a workload consisting of tasks with
timing specifications and can use an interface to specify
the resource requirement. Under the EDF scheduling policy,
a suitable resource supply (i.e., period and duration) is
calculated using the characteristics of supply and demand
bound functions [3]. To find a suitable resource supply for a
component j, the workflow (shown in Fig. 4) is as follows:
the utilization of the resource supply is kept the same as
the workload utilization. The algorithm based on the supply
calculation model [3] searches for resource supplies that have
recovery points at δ∗j distance from possible overload points
(periods of tasks) and validates calculated resource supplies
using supply and demand bound functions. After getting a

set of valid supplies, one of them is chosen as an efficient
resource supply based on application characteristics. An effi-
cient resource supply becomes the first two parameters in the
specification of an interface I . The delay that the component
experiences because of using the suitable resource supply
becomes the third parameter of the interface specification.

A suitable resource supply meets the specifications of
the workload and avoids over-provisioning of resources. For
example, if the display component has the workload (3, 1),
then a resource supply (4, 2) does not meet specification
because the worst-case delay is greater than 1. However,
the resource supply (2, 1) meets the specification and avoids
over-provisioning of resources compared to (1, 1). For each
of the components located in the wheels, the interface specifi-
cation is (3, 1, 2), where 3 is the period, 1 is the duration, and
2 is the worst-case delay that the component can experience.

No

Workload with tolerable delay δj

Calculate dbf(t)

Calculate sbf(t)

Calculate supply

Calculate delay δ∗j

Store solution

δ∗j ≤ δj

recovery points searched?

Are all overload and

Pick suitable specification

Yes

No

Yes

Fig. 4: Finding specification for component interfaces

A hierarchical scheduling in each component is also possi-
ble where different specifications in each level are combined
together to get a single timing requirement. The resource
supply turns into demand in each level and continues until
no workload specification is left to combine. A compositional
framework uses hierarchical scheduling to reduce complexity
by abstracting subcomponents in a component. Therefore,
using compositionality can reduce the number of interfaces.

V. GENERATION OF STATE-BASED SCHEDULES

This paper discusses scheduling of computation and com-
munication together but a separate scheduling policy is used
for each of them. The EDF scheduling policy determines the
schedulability and sequences of execution for computation.
State-based schedules determine the sequences of execution
for communication.

To generate state-based schedules, the first step is to extract
internal state representations of communication for each of
the components as discussed in the previous sections. We

5

refer the cross product of the states that are reachable as com-
munication modes. A schedulability test is required to find
communication modes that can meet timing requirements.
To characterize a good state-based schedule, we define some
properties.

Definition 1 (Overlap). An overlap is said to exist when a
message m can be executed in different k modes on the same
time slot l such that l = 1, . . . ,LCM({πkm}).

Definition 2 (Group). A group Gzl in slot l is a subset of
modes that have an overlap, where z ∈ {k}.

With regard to overlaps and groups, a mode-change delay
φsd is the time required for changing states at the end of
time slot l for a given message m and a given transition.
Given a group Gzl that belong to a slot l, the mode-change
delay φsd is either instantaneous (i.e., zero) from a source
state vs ∈ Gzl to a destination state vd ∈ Gzl or the time until
the next communication round starts if vd /∈ Gzl ,

φsd =


0 if vd ∈ Gzl

LCM{πkm} − j otherwise.
(4)

A good state-based schedule has low average φsd to switch
between modes at run time. A high number of overlaps
in a state-based schedule results a low number of groups.
This yields a lower average φsd delay because of faster
switching to modes. Thus, generating state-based schedules
is an optimization problem with an objective to minimize the
number of groups.

Component interfaces provide additional information in
generating state-based schedules for communication. In par-
ticular, delays in computation have an impact on commu-
nication and its schedules. Because, delays in computation
cause the data to become available late for transmission
and perhaps require the component to operate in a different
communication mode to meet the timing requirements.

A. Optimization Model

The problem of finding an optimal state-based schedule
with respect to minimizing the number of groups can be
solved using integer linear programming (ILP). To do this, the
model has a constraint on computation time of each message
to obtain at least the required time slots. A boolean variable
xkml is set to 1 if a message m is allocated to a slot l in
mode k, and 0 otherwise. A computation delay that results a
message m in mode k to be transmitted late is characterized
using δkm. We discuss mechanisms to choose to a delay value
in Section V-C. The number of overlaps for a slot l can be
increased if the same message m is allocated to the previous
slots in all modes. A constraint using a variable skml enforces
this. To ensure the occurrence of overlaps earlier than later, a
weight mapped to l is multiplied to each slot assignment xkml

in the objective function. A higher weight indicates a higher
l value. Minimizing the sum of values of variables skml and
xkml ∗ l together ensures minimizing the number of groups in
the schedule. We minimize the number of groups to find out
the assignments of messages to slots to generate a state-based
schedule that has low average mode-change delay.
• xkml coefficient determines the usage of a time slot for
m ∈ N , l ∈ {1, . . . ,LCM{πkm}} and k ∈ V , where
N represent the number of messages and V represent
the number of modes. These coefficients are defined as
follows:

xkml =


1 if message σm uses the slot in mode k

0 otherwise.

• skml coefficient determines the overlaps. The variable
skml is set to 1 if a message m is allocated a slot l in
mode k, and other messages are allocated at the same
slot l in modes except k.

skml =


1 if xkml = 1∧
∃xvul, st : u 6= m ∧ v 6= k ∧ xvul = 1

0 otherwise.

• wkml determines whether different messages of other
modes are allocated to the same slot l if a message i of
mode k is already allocated to slot l.

• δkm is an input delay value for message m in mode k.
• Πk

m = l ∈ {1, . . . ,LCM{πkm}} is the set of periods of
messages in mode k.

min
∑

∀m∈N,l∈Πk
m,k∈V

skml +
∑

∀m∈N,l∈Πk
m,k∈V

xkml ∗ l.

st. C1{∀m ∈ N, k ∈ V} :

gπk
m+πk

m∑
l=gπk

m+1

xkml ≥ ckm + δkm , g = 0, . . . αm − 1;

C2{∀l ∈ Πk
m, k ∈ V} :∑

xkml ≤ 1,

C3{∀m ∈ N, l ∈ Πk
m,

k ∈ V, u ∈ N− {m}, v ∈ V− {k}} :

wkml ≥ xvul,
C4{∀m ∈ N, l ∈ Πk

m, k ∈ V} :

skml ≥ xkml + wkml − 1,

C5{∀m ∈ N, l ∈ Πk
m, k ∈ V} :

skml ≥ 0,

Constraint C1 specifies that all messages at least get the
computation units in their periods even though a delay occurs.

6

Constraint C2 specifies that no two messages are assigned
to the same slot at the same mode. Constraint C3 enforces
overlaps. Constraint C4 and C5 enforces skml to be non-
negative and binary. The objective function includes xkml
to assign overlaps as early as possible in the hyperperiod
for faster mode-change ability in the generated state-based
schedule.

B. Determining Valid Schedules

Due to computational delays the optimization model may
unable to find a state-based communication schedule where
messages can meet the timing constraints during the hyperpe-
riod. If a valid schedule is absent for a given set of messages
with timing constraints, the optimization model reports on
infeasibility. Therefore, it is sufficient to use the optimization
model to run for schedulability analysis of a set of messages
in a number of communication modes up to the hyperperiod.

Definition 3 (Schedulability with delays). A given set of
communication messages {m} in a set of modes {k} up
to slot l = 1 . . . ,LCM{πk

m} will be schedulable for a
given delay specification if the optimization model returns an
assignment of xkml for a given set of communication messages
{m} in all modes {k} upto l = 1 . . . ,LCM{πk

m}.

C. Determining Delays

Interfaces provide specifications of maximum tolerable
delays of components. Thus, if δ∗ is the maximum delay
and δr is a delay that components may experience, then δr
will be no greater than δ∗. Since state-based communication
schedules have the ability to make decisions at runtime, it is
possible to switch between schedules at run time for different
delays. Considering a set of delays as dynamic possible
values of δr which are no greater than the maximum tolerable
delay may provide a greater range of schedulability with
an increase of number of generated schedules. In contrast,
a system may use the maximum of tolerable delays of all
components as the static value of δr to generate a state-
based schedule. Using the static value of δr may reduce the
schedulability of operational modes but provides guarantees
that the schedule is valid for all dynamic values of δr.

1) Dynamic delays: To consider dynamic values of delays,
we assume a set ∆r of finite number of non-negative delays
up to the maximum delay (Equation 5). Therefore, if δt is
the delay that a component experiences at run time, then
δt ≤ δr, where δt ∈ R≥0. Different δr values may be
feasible to generate a state-based schedule for components
running in a communication mode. Fig. 5 shows an example
of different δr values for which a state-based communication
schedule can be generated for component C1 and C2 in mode
k. We can reduce the cardinality of ∆r by choosing a local
maximum of δr as shown in Fig. 5 to generate state-based
schedules for a less number of δr values.

Maximum infeasible δr values

C1 delay

Feasible region of δr values

Local maximum feasible δr values

C2 delay

Fig. 5: Analysis on δr values in mode k

∆r = {δr | (δr < δ∗) ∪ (δr = δ∗), δr ∈ N≥0} . (5)

Example 2. Consider two components with a worst-case
tolerable delay of 3 time units for the communication spec-
ification as shown in Table II, III. Under the assumption of
dynamic delays, δr can be set to 0, 1, 2, and 3. State-based
schedules are generated for the δr values that the optimizer
can use to produce a feasible solution. Thus, if components
are running in mode 7 and experience a delay δt ≤ 2, it can
still operate in the same mode. However, if 2 < δt ≤ 3, then
the components can switch to other feasible modes such as
mode 1 to continue operation using valid schedules.

2) Static delay: Each component j may experience a delay
δ∗j in the worst-case, which not necessarily the maximum
delay among all components in the system. Under the static
delay assumption, the value of δr is the maximum of all
delays that components can experience in the worst-case
(Equation 6).

δr = max
j
δ∗j . (6)

In the case study, the worst-case delay that the components
can suffer in each hyperperiod is 2 time units. Under the
assumption of dynamic delays, the δr values are non-negative
values up to 2 time units. In contrast, the δr value is 2 time
units under the assumption of static delay.

D. Construction of State-based Schedules

Optimization model provides assignments of messages to
slots for each of the communication mode if a state-based
schedule can be generated. To construct the schedule that has
messages timing requirements met within the hyperperiod,
groups are formed using overlaps. However, to guarantee
timing requirements upon a mode change, separate groups
are formed for messages scheduled in the current slot but not
in the previous slot. The optimization model manages to find
optimal assignments of xkml that the decomposition method
(Definition 4) uses to construct a state-based schedule.

7

Definition 4 (Decomposition method from [2]). Given all
schedulable and reachable groups at any time slot l, a
decomposition method derives all groups in the slot l+1 from
xkml followed by a labelled transition (i.e., guard).

E. Characteristics of Generated Schedules

The following theorem describes that a control system
component can have a worst-case tolerable delay. Using
Lemma 2, it is shown that the communication delay is also
bounded for control system components connected using
interfaces and state-based schedules.

Theorem 1 (from [7]). For a given scalar η and gain matrix
K, if there exist matrices P > 0, T > 0, Ni and Mi

(i = 1, 2, 3) of appropriate dimensions such that (8) is true,
then the component is asymptotically stable with the state
feedback input u(t) = Kx(tk), t ∈ [tk + τk, tk+1 + τk+1),
as long as the sampling period p and worst-case delay τ∗

satisfy
p+ τ∗ ≤ η. (7)

Lemma 1. The communication delay is bounded for a given
a system with a number of components connected using
interfaces and state-based schedules.

Proof. The amount of delays that a component experiences
is bounded, transient, and periodic in nature. Let us consider
a component j with workload utilization U jW =

∑
i
eji
pji

,

resource utilization U jR = θj

λj , where task i executes eji in
every pji and resource Rj provides θj units of time in every
λj . As proved in [3], if U jR = U jW then after t = 2(λj−θj),
the function f(t) that represents overloads using sbf(t) and
dbf(t) is periodic with period LCM(λ, pj1, . . . , p

j
n), i.e.,

f(2(λj − θj) + t+ yLCM(λ, pj1, . . . , p
j
n))

= f(2(λj − θj) + t), ∀t ∈ R≥0,∀y ∈ N.

The delays that components can experience in the worst-
case are within the delay tolerance, because this is guaranteed
through calculating an efficient resource supply [3]. There-
fore, the communication delay depends on the mode-change
delay in the worst-case. The communication delay is bounded
to the hyperperiod of all messages transmitted in the network
because the schedule repeats after the hyperperiod.

Theorem 2 (from [2]). Given a set of valid state-based
schedules for a particular system, the schedule with the
fewer number of groups in a communication round will have
lower average mode-change delay for a uniform probability
of mode-changes. The average mode-change delay φsd for
all slots for all possible groups at runtime is:

TABLE IV: Average mode-change delay analysis

Types of assignments Delay [in ms]
Optimized 27.77
Randomized 33.13 (Best=30.62, Worst=35.03)
EDF-assigned 29.45

φsd =

∑
l

∑
z(LCM{πm} − l)(|V −Glz|)|Glz|

LCM{πm}|
⋃
l(
⋃
z G

l
z)|

. (9)

The messages are assigned to slots in a state-based
schedule by maximizing the number of overlaps. Therefore,
generated state-based schedules using component interfaces
have low average mode-change delay with an ability to
transmit best-effort traffic without violating the worst-case
transmission guarantees.

F. Optimization Results

We use a well-known solver, AMPL/GUROBI to design
our case study but can be extended to any similar model
using our open source modeling, optimization, and off-
line schedule generation tool [1]. For the case study in
the paper, we consider the static delay for the maximum
possible utilization. Two of the modes (ID 4 and 7) utilize
the communication medium 100% when the worst-case delay
is 2 time units.

To demonstrate that the optimizer assigns the slots to mes-
sages efficiently with respect to minimizing the number of
groups in the generated schedule, we use random assignments
of xkml and a well-known scheduling policy (i.e., EDF) that
also meet the timing requirements of messages in each state.
For the video-streaming case study in the paper with the
maximum delay of 2 time units, Table IV shows the differ-
ence in the average mode-change delay for the generated
schedule using optimization constraints and the best-case
of 10000 times generated randomized but valid schedules.
The average mode-change delay in the generated optimized
schedule is found significantly better than the randomized
schedules. Moreover, to construct a state-based schedule, we
also assign messages to slots based on deadlines as used in
the EDF scheduling policy, which also results higher average
mode-change delay than the optimized schedule.

VI. RELATED WORK

Separation of concerns has been gaining increasing atten-
tion because of the safety requirements in many real-time
systems [13]. A computational unit may have different tasks
scheduled under multiple scheduling policies such as EDF
and RM. Timing requirements of tasks scheduled under dif-
ferent scheduling policies are converted into a single require-
ment. In [11], the authors propose a compositional real-time
scheduling framework for real-time systems which can be

8


N1 +NT

1 −M1A−ATMT
1 NT

2 −N1 −ATMT
2 −M1BK NT

3 −ATMT
3 +M1 + P ηN1

∗ −N2 −NT
2 −M2BK −KTBTMT

2 −NT
3 +M2 −KTBTMT

3 ηN2

∗ ∗ M3 +MT
3 + ηT ηN3

∗ ∗ ∗ −ηT

 < 0. (8)

used to establish global (system level) timing properties of a
component from individual timing properties of tasks running
on a resource. The authors present schedulability conditions
for a periodic task model and propose a periodic resource
model under EDF and RM scheduling. This periodic resource
model can compute a single timing demand from multiple
timing requirements using supply and demand bound func-
tions. In [12], the authors propose a compositional analysis
framework that uses real-time calculus and assume/guarantee
(A/G) interfaces. Integrating subsystems into a system having
optimal interfaces provides isolation in developing adaptive
and reconfigurable systems.

Traditional real-time communication protocols allow lim-
ited control to the applications over the communication be-
haviour at runtime. For example, application developers have
to assign message priorities statically on a CAN bus to ensure
that the priorities are unique [10]. FlexRay [9] follows a
TDMA approach, assigning an specific slot at the end of each
round for dynamic and arbitrary traffic. However, stations
must always wait for that specific slot to transmit dynamic
messages, and the timing of the messages transmitted during
that slot is not guaranteed. Using state-based communication
schedules [8], stations can make decisions at runtime and
timing of the messages transmitted during that slot can be
guaranteed. This provides flexibility as well as predictability
in message transmissions.

VII. CONCLUSION

In this paper, we present a workflow with an illustration of
a real-time video monitoring case study to implement higher
level component abstractions using interfaces and generate
state-based schedules that facilitate conditional executions at
run time. Component interfaces provide additional informa-
tion in generating state-based schedules for communication
such as delays that cause data to become available late for
transmission. We use constraints to find an optimized state-
based schedule that low average mode-change delay. There-
fore, this work achieves not only safety through isolation
or diversity but also performance due to efficient control on
communication and low average mode-change delay.

REFERENCES

[1] State-based schedule modeling, optimization, and generation. http:
//www.mathworks.com/matlabcentral/fileexchange/44716.

[2] A. Azim, G. Carvajal, R. Pellizzoni, and S. Fischmeister. Generation
of Communication Schedules for Multi-Mode Distributed Real-Time
Applications. In Proceedings of Design, Automation and Test in Europe
(DATE), 2014.

[3] A. Azim, S. Sundaram, and S. Fischmeister. An Efficient Periodic
Resource Supply Model for Workloads with Transient Overloads. In
Proc. of the Euromicro Conference on Real-Time Systems (ECRTS),
2013.

[4] G. C. Buttazzo. Rate Monotonic vs. EDF: Judgment Day. Real-Time
Systems, 29(1):5–26, January 2005.

[5] S. Chakraborty, T. Mitra, A. Roychoudhury, L. Thiele, U.D. Bordoloi,
and C. Derdiyok. Cache-aware timing analysis of streaming appli-
cations. In Real-Time Systems, 2007. ECRTS ’07. 19th Euromicro
Conference on, pages 159–168, July 2007.

[6] Y. Chen, T. Farley, and N. Ye. QoS Requirements of Network
Applications on the Internet. Inf. Knowl. Syst. Manag., 4(1):55–76,
January 2004.

[7] Q.-L. Han D. Yue and C. Peng. State feedback controller design for
networked control systems. IEEE Transactions on Circuits and Systems
– II: Express Briefs, 51(11):640–644, Nov. 2004.

[8] S. Fischmeister, R. Trausmuth, and I. Lee. Hardware Acceleration
for Conditional State-Based Communication Scheduling on Real-Time
Ethernet. IEEE Trans. on Industrial Informatics, 5:3, 2009.

[9] FlexRay Consortium. FlexRay Communications System – Protocol
Specification, June 2004. Version 2.0.

[10] Robert Bosch GmbH. CAN Specification, Version 2, September 1991.
[11] I. Shin and I. Lee. Compositional Real-Time Scheduling Framework.

In IEEE Real-Time Systems Symposium, 2004.
[12] E. Wandeler and L. Thiele. Interface-Based Design of Real-Time Sys-

tems with Hierarchical Scheduling. In Proceedings of the 12th IEEE
Real-Time and Embedded Technology and Applications Symposium,
2006.

[13] A. Wassyng, M. Lawford, and T. Maibaum. Separating Safety and
Control Systems to Reduce Complexity. In Conquering Complexity,
pages 85–102. Springer, 2012.

9

http://www.mathworks.com/matlabcentral/fileexchange/44716
http://www.mathworks.com/matlabcentral/fileexchange/44716

	Introduction
	Problem Statement
	Background and System Model
	Scheduling Computation
	Scheduling Communication
	Co-scheduling

	Specification and Design of Component Interfaces
	Generation of State-Based Schedules
	Optimization Model
	Determining Valid Schedules
	Determining Delays
	Dynamic delays
	Static delay

	Construction of State-based Schedules
	Characteristics of Generated Schedules
	Optimization Results

	Related Work
	Conclusion
	References

