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Abstract—Real-time embedded programs are time sensitive
and, to trace such programs, the instrumentation mechanism
must honor the programs’ timing constraints. We present a
time-aware instrumentation technique that injects program code
with slack-based conditional instrumentation. The central idea
is to execute instrumentation code only when its execution does
not increase the worst-case execution time beyond a program’s
deadline. This occurs at run-time. Unlike previous efforts, this
work allows instrumenting on the path that results in the worst-
case execution time of the program. We propose a software,
and a hardware method of allowing for slack-based conditional
instrumentation. We evaluate and compare these two alternatives
using a common benchmark suite for real-time systems. Our
results show that, on average, the two proposed methods achieve
57% and 80% instrumentation coverage, respectively, compared
to only a 3% coverage by previous work.

I. INTRODUCTION

Testing and validation is an integral component of the soft-
ware design process that ensures that the software under test
is correct. However, providing such software correctness guar-
antees is both difficult [1] and expensive [2]. The process of
diagnosis typically employs program tracing techniques.This is
done by instrumenting the program to trace and/or monitor the
program state. The designer inspects the trace after execution
to identify potentially erroneous state information.

The above-mentioned issues are further aggravated for hard
real-time systems which demand guarantees on temporal be-
haviors in addition to functional correctness. Consequently,
any instrumentation to the original program code for the
purpose of program tracing may affect the temporal be-
haviors of the program. Software-based instrumentation ap-
proaches [3], [4] insert tracing and monitoring code into the
original program code. Typically, the more tracing code the
program executes during the run, the more the perturbation in
temporal behaviors. Dynamic instrumentation approaches [5],
[6] modify the binary at run time and thus cause highly
non-deterministic timing behavior. While DIME [7] limits the
dynamic instrumentation overhead to a pre-specified budget,
overshoots beyond the timing budget can occasionally occur
making DIME more suited for soft real-time applications.
Hardware-supported tracing [8], [9] use special hardware
interfaces to stream data off chip. Special hardware is costly
and is not available for all processors. This method as well
can cause significant perturbation [10].

Recent work in time-aware instrumentation [11], [12], [13]
investigates mechanisms to instrument programs without af-
fecting their specified timing constraints, and functional be-
havior. The underlying idea is to instrument programs only
in places where it leaves the original behavior unaffected

and still obeys all timing constraints. Figure 1 illustrates the
effect of time-aware instrumentation on the execution time
profile. As we instrument a time-sensitive program using the
ideas of time-aware instrumentation, we shift the execution
time profile closer to the program’s deadline (end of the
time budget). While the work in [11], [12], [13] exudes
promise, it has a central restriction that portions of the program
on the worst-case path (WCP) cannot be instrumented. The
repercussions of this restriction are apparent in the results
of a case study of a one-laptop per child (OLPC) keyboard
controller reported in [11]. The OLPC case study showed that
the WCP shared more than 25% of its code with other paths in
the program. Hence, large portions of the program cannot be
instrumented because adding instrumentation to these portions
would increase the execution time on the WCP.
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Fig. 1: The underlying idea of time-aware instrumentation [11]

In this work, we propose a slack-based conditional in-
strumentation (SCI) technique for debugging hard real-time
programs. SCI preserves functional behavior, and temporal
constraints of the original program while allowing the instru-
mentation of variables on the WCP. First, we introduce SCI
which allows the instrumented code to execute only when
there is sufficient slack in the program. Then, we address the
challenge of selecting points in the program code to insert such
SCI. Finally, we use a purely software technique to implement
SCI and compare it against a technique that extends the
processor with instructions to perform the conditional check.
Notice that both of these techniques check for slack at run-
time, and execute the instrumented code only if at run-time
there exists sufficient slack.

We would like to point out that SCI is not a method for
WCET analysis. WCET is only an input to our instrumentation
technique. We apply our instrumentation method for data
tracing in our examples. Potential application areas include
tracing, logging, and runtime verification.

II. THE UNDERLYING CONCEPTS

We refer to conditional instrumentation code points, which
are conditionally executed at run-time based on available run-
time slack, as conditional points (CPs). We also refer to978-1-4673-7929-8/15/$31.00 c© 2015 IEEE



instrumentation code points used in previous work [11], [12],
which are always executed at run time, as instrumentation
points (IPs). We assume that we can reliably estimate the
WCET of instrumentation code points. Hence, there are two
types of instrumentation points that we can insert into a
program: CPs and IPs.

We borrow the abstract model presented in [11], and aug-
ment it to include our proposed approach for SCI. The abstract
model represents the source program as an extended control-
flow graph (CFG). A basic block is a portion of source code
of the program with one entry point and one exit point. We
augment the definition of a vertex with an associated type as
shown in Definition 1. Using this definition of a vertex, we
define the extended CFG as shown in Definition 2. We call
this abstract model a one state-change CFG (OSCCFG).

Definition 1 (Vertex). A vertex is a basic block with at most
one assignment to the same variable. We represent a vertex
as a tuple v = (i, t) where i ∈ N is a unique identifier, and
t ∈ {None,IP,CP} is an instrumentation type.

The unique identifier allows us to distinguish and reference
vertices. A vertex with the None instrumentation type is the
default for all vertices. IP indicates that an instrumentation
code point (IP) is added to that vertex, and CP denotes a
conditional instrumentation code point (CP). Only one instru-
mentation point, either an IP or a CP, can be added to a
vertex. Note that a vertex is a basic block of the program with
the additional requirement that each basic block modifies any
variable at most once within it. A traditional CFG contains
vertices with multiple state changes to the same variables
via assignments within a vertex. We split such vertices into
multiple vertices with only one state change to the same
variable in each vertex, and construct edges between them.
In this modified CFG, adding one instrumentation point to a
vertex would be sufficient to capture all state changes of the
modified variables in this vertex. This modification facilitates
the traversal and instrumentation of the input program.

Definition 2 (One state-change CFG). A one state-change
control-flow graph is a directed graph G := 〈V,E, vs, vx〉
where V is the set of vertices, E ⊆ V × V is the set of edges
that represent flow of control, and vs, vx ∈ V are unique start
and exit vertices, respectively.

A path of an OSCCFG G describes a traversal of the graph
as shown in Definition 3. We denote the set of all paths from
vs to vx as Pvs,vx . We identify the WCP as the path with
the largest WCET estimate [14]. To extract the sequence of
vertices from a path pvs,vx we employ the helper function
vertices : Pvs,vx → V []. Notice that we superscript domains
with [] to denote a sequence and {} for a set. We give an
example of these definitions in Section III.

Definition 3 (Path). A path pvs,vd from source vertex vs to
destination vd in an OSCCFG G is a sequence of vertices
〈vs = v1, v2, . . . , vn−1, vn = vd〉 with n ∈ N being the
number of vertices forming the path.

Figure 2 shows an example execution time profile of a
program. The WCET of a program is an upper-bound on the

execution time of any path in the program [14]. The difference
between the WCET and the actual execution time of any
program instance is commonly called run-time slack [15]. Note
that the actual execution time is a run-time characteristic. SCI
uses this run-time slack to execute instrumentation code. The
static time window, α, is the difference between the program’s
WCET and deadline such that α = Deadline−WCET.
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Fig. 2: Example of a program’s execution time variation

We typically insert IPs at vertices that lie on paths other than
the WCP. For instrumenting vertices on the WCP, we use CPs.
It might occur that after instrumentation, the WCP changes.
We discover this through rerunning the WCET analysis after
instrumentation. If the WCP changes, we will convert all
instrumented vertices on the new WCP from IPs to CPs.

CPs check whether there is sufficient run-time slack avail-
able to execute the instrumentation code, and if there is, then
the program will execute the instrumentation code; otherwise,
the program will skip it. We call the portion of code in the
CP that checks whether sufficient run-time slack is available
to execute the instrumentation code as the overhead of the CP.
This code portion (overhead of a CP) is always executed.

Adding CPs on the WCP may lead to an increase in the
WCET because of the additional overhead. However, WCETs
are typically lower than the application deadline. This means
that perturbations in the WCETs are acceptable as long as
they are less than or equal to the static slack time window, α,
specified by the application. This allows us to absorb small
increases in the WCET, and still ensure that the temporal
deadlines of the program are correct.

III. ILLUSTRATIVE EXAMPLE OF SCI

We illustrate SCI with the example shown in Listing 1. We
annotate Listing 1 with labels A, B, C, D, E, and F that identify
vertices for its OSCCFG G shown in Figure 3.

There are two paths in G: p1 = 〈A,B,E, F 〉, and p2 =
〈A,C,D,E, F 〉. Let us assume that path p2 is the WCP in
this example, which we show as shaded vertices. We want
to trace all state changes to variables x and y. To trace all
state changes of x and y, in this example, we compare naive
instrumentation (IPs on WCP), CPs on WCP (ALLCP), and
minimal CPs on WCP (MINCP). This comparison highlights
the problem with using IPs on the WCP, and motivates the
minimization of CPs on the WCP. Consider the following
hypothetical setting. Assume that each basic block in G has
a WCET of 2 time units and an actual execution time (ET)
of 1.5 time units. Let the cost of recording and retrieving the
current state of the program be 0.8 time units and recording a
single variable to a buffer be 0.08 time units. Let the cost of
checking whether sufficient run-time slack exists be 0.1 time



1 A: x++;
if ( x > 10 ) {

3 C: c = z;
z = y;

5 y = c;
D: c = x;

7 } else {
B: z++;

9 }
E: z++;

11 y += z;
F: z = c;

13 x++;

Listing 1: C program without instrumentation

units. For example, to check whether sufficient run-time slack
exists and if so, record a variable x to the buffer, the cost
incurred would be 0.1+0.8+0.08=0.98 time units. Assume that
the deadline assigned to the program by the developer is 11
time units, hence, α = 11−2∗5 = 1. Note that instrumentation
points are executed at the end of basic blocks but before any
branches are executed.
• Naive: All IPs on WCP. Since A, C, E, and F modify

either x or y, we add IPs to these basic blocks. Using
the above setting and upon execution of the program,
this results in an execution time of 7.5+(0.88)*4 = 11.02
time units, which exceeds the deadline (11).

• ALLCP: All CPs on WCP. We add CPs to basic blocks
A, C, E, and F , as shown in Figure 4, which also
shows the buildup of run-time slack as the program
executes. If a basic block annotated with CP has sufficient
run-time slack to execute the instrumentation, then the
instrumentation block will execute, hence reducing the
run-time slack by 0.98, otherwise the run-time slack is
reduced by 0.1. A and C have insufficient run-time slack
to execute the instrumentation code to record x and y,
respectively. At A and C, after the basic block executes,
the run-time slack increases by 0.5 but decreases by 0.1
to check for run-time slack at the CP. E and F have
sufficient run-time slack to execute instrumentation code,
and consume 0.98 time units each to record y and x,
respectively.

• MINCP: Minimal CPs on WCP. We delay recording
of variables x and y till just before any of them gets
overwritten. We add CPs only at basic blocks D and F
which record both variables x and y as shown in Figure 5.
The cost of recording both x and y at a basic block,
including checking for run-time slack, is 0.8+0.08∗2+
0.1 = 1.06. It can be seen that sufficient run-time slack
is available at D and F to record both variables.

One can infer from the above example the following con-
clusions. The addition of IPs on the WCP could lead to a
violation of the deadline. With addition of CPs on the WCP,
there is a higher chance of execution of the instrumentation
code if placed at a vertex that is closer to the exit vertex. This is
because run-time slack builds up as basic blocks are executed
during program execution. SCI exploits this by minimizing
CPs and delaying the tracing of variables (Section IV). Lastly,
with every CP introduced in the program, there is a mandatory

cost of checking whether sufficient run-time slack exists at
each CP. If the cost of checking for run-time slack is high
enough for the program to miss its deadline, then one will have
to selectively insert CPs in the program to record the maximal
number of state changes of variables of interest (Section V).

Fig. 3: Original Fig. 4: All CPs Fig. 5: Min. CPs

IV. MINIMIZATION OF CPS ON THE WCP (MINCP)

We describe the approach which minimizes the number of
CPs that capture all possible state changes of the variables
that we want to trace on the WCP. MINCP maintains a set of
modified variables. We delay capturing the state change of this
set of modified variables till just before any of the variables
gets overwritten. When we delay capturing a state change, the
program executes more code, which probably leads to gaining
more run-time slack and, thus, increases the likelihood of the
execution of CPs as illustrated in Section III. We denote the
set traceVars ⊆ VARS as the variables we want to trace, where
VARS is the set of all variables in the program. MINCP extracts
a set of vertices to instrument with CPs to capture all state
changes of the variables in traceVars.

We illustrate MINCP by revisiting the OSCCFG shown in
Figure 5. Path pA,F = 〈A,C,D,E, F 〉 is the WCP, which we
show as shaded vertices. MINCP adds a CP at vertex D to
instrument variables x and y before y is modified in vertex E.
It also adds a CP at vertex F to instrument the state changes
of y and x at vertices E and F , respectively.

We show the MINCP algorithm in Function 1. It takes as
input: traceVars and the WCP pvs,vx . The output is V {},
the set of vertices to be instrumented. We introduce several
helper functions in describing this algorithm. To extract the
set of variables being assigned new values in a vertex, we
use function modifiedVars(v) : V → var{}. We use the
function predecessor(v) : V → V to extract the vertex that
has an incident edge on v on the WCP. We use functions
scopeBegin : V → {true, false} and scopeEnd : V →
{true, false} to identify the beginning and end of scopes,
respectively. A scope corresponds to a loop on the WCP
and can be identified by static analysis [16] (also applies to
continue and break statements). Note that if a vertex marks
the beginning of multiple scopes, it will be split into multiple
vertices such that each new vertex marks the beginning of only
one scope. Function getScopeV ars : V → var{} extracts
the set of variables that are modified within a scope where
the input argument to getScopeV ars is the beginning of the



scope. The stack operations push and pop are used to push/pop
an element into/from a stack, respectively.

Function 1 Minimization of CPs on WCP
Input: traceVars, pvs,vx
Output: V {}

Let M ⇐ ∅ be the set of variables being monitored
2: Let I ⇐ ∅ be the set of instrumented vertices

Let S be an empty stack
4:

for v ∈ vertices(pvs,vx) do
6: modV ars← modifiedV ars(v) ∩ traceV ars

8: if scopeBegin(v) then
if getScopeV ars(v) ∩M 6= ∅ then

10: I ← I ∪ {(predecessor(v),M)}
M ← ∅

12: end if
push(S,M)

14: end if

16: if M ∩modV ars 6= ∅ then
I ← I ∪ {(predecessor(v),M)}

18: M ← ∅
end if

20: M ←M ∪modV ars

22: if scopeEnd(v) then
if M 6= ∅ then

24: I ← I ∪ {v,M}
end if

26: M ← pop(S)
end if

28: end for

30: if M 6= ∅ then
I ← I ∪ {vx,M}

32: end if
return I

The core idea of the algorithm is to delay the recording
of a variable change until the point where at least one of
the variables of interest gets overwritten. Function 1 iterates
through the vertices on the WCP pvs,vx in order. While
iterating through the vertices, set M holds the variables of
interest that have been modified without any of the variables
being overwritten. Set I holds the set of vertices to be con-
ditionally instrumented along with the variables to instrument
at each vertex. For each vertex v, the algorithm extracts the
set modV ars which is the set of variables of interest that
vertex v modifies (line 6). First, the algorithm checks whether
vertex v begins a new scope (line 8). If vertex v begins a new
scope and this scope modifies any of the variables in set M
(lines 8-9), then the algorithm will choose to instrument all
variables in M before entering the scope (lines 10-11), i.e.,
at the vertex preceding the beginning of the scope (excluding
the loop’s back-edge). After a new scope starts, the set M
is pushed into a stack S (line 13). If a vertex modifies any
of the variables in the set M , then the algorithm will choose
to instrument variables in M at the preceding vertex (lines
16-19). Afterwards, set M will be updated with the set of
modified variables at vertex v (line 20). If a vertex v marks the
end of a scope, then the vertex v will be instrumented with the

variables in set M (if any) and set M will be popped from the
stack S to restore the set of modified variables before the scope
started (lines 22-27). If the exit vertex is reached and the set
M is not empty, then the exit vertex will be instrumented with
the variables in set M (lines 30-32). Finally, we iterate through
the set V {} obtained as output from Function 1 and add CPs
to these vertices to record the specific variables associated
with each vertex. All helper functions but getScopeV ars have
a constant time complexity with respect to the number of
vertices on the WCP. Function getScopeV ars loops on all
vertices within a scope and, thus, has a linear complexity.
The complexity of the algorithm is, therefore, quadratic in the
number of vertices on the WCP.

V. CONSTRAINED MINIMIZATION OF CPS (C-MINCP)

We augment MINCP to consider a constraint on the increase
in the WCET caused by instrumenting the WCP. We attempt
to maximize coverage by minimizing the number of CPs to
capture the maximum number of state changes of variables in
traceVars given a time budget.

We use Function 1 to get a minimal number of CPs
required to trace all the state changes of variables of interest
(traceVars). Then, we select a subset of these CPs such that
we trace the maximum number of variables of interest, and
the overhead incurred by the CPs is within the static window
α. We can describe the problem of selecting a subset of CPs
using Equation 1.

Max
n∑

i=1

bi ∗ (varsInCPi ∗ frequencyi)

subject to
n∑

i=1

bi ∗ (overheadi ∗ frequencyi) ≤ α (1)

Here, varsInCPi is the number of variables monitored in the
CP i, frequencyi is the number of times CP i is attempted, and
overheadi is the overhead of CP i. The total number of CPs,
n, is obtained from Function 1, and bi is the binary integer
programming (BIP) variable. Notice that we do not include the
execution time incurred by the instrumentation code because
at run-time we determine whether we have sufficient run-time
slack to execute the instructions monitoring the variables. Note
also that the WCET analysis tool determines frequencyi. It is
important to clarify that frequencyi is not the number of times
the instrumentation code inside CP i executes, but rather the
frequency of executing the conditional check of the CP, i.e. the
number of times the CP is attempted. Although using the value
supplied by the WCET analysis tool is pessimistic, our goal is
to make sure that we honor the program’s timing constraints.

Solving our problem for finding a subset of CPs to create
is NP-Complete (the problem is polynomially reducible to
the binary knapsack problem and the problem ∈ NP as it is
verifiable in polynomial time). We use standard BIP tools to
solve the optimization problem and instrument the resulting
vertices picked by the BIP solver.

VI. IMPLEMENTATION APPROACHES

We experiment with two implementations of SCI: software-
based and hardware-based.



A. Software Implementation
The software implementation uses function calls in the

program to extract cycle counter values. Listing 2 shows a
simple example of a software implementation of SCI. Func-
tions func a and func b have WCETs of wceta and wcetb,
respectively. Assume the WCET of all instrumentation code
at labels B, C, and D is wcetc1 and at labels E and F is wcetc2 .

1 int main(void) {
A: globalTime = getTime() + wceta;

3 func a ();
B: if (globalTime − getTime() >= wcetc1 ) {

5 C: // Instrumentation Code
.............

7 }
D: globalTime += wcetb;

9 func b ();
E: if (globalTime − getTime() >= wcetc2 ) {

11 F: // Instrumentation Code
.............

13 }
}

Listing 2: A software implementation of SCI
When the program executes, it sets variable globalTime

at label A, to the time at which function func a will finish
execution in the worst-case. After func a completes, the
instrumentation code compares globalTime to the current time
to check whether there is sufficient run-time slack to execute
the instrumentation code of func a. The instrumentation code
then updates globalTime at label D to hold the time at which
function func b finishes in the worst-case. The same check for
instrumentation is repeated after func b.

The function getTime is not an OS function call but rather
an instruction that reads a dedicated free running hardware
timer on the chosen processor. Hardware timers exist in the
processors used for embedded systems and are either memory-
or register-mapped timers.

B. Hardware Implementation
Our hardware implementation requires extensions to the ins-

truction-set architecture (ISA).
1) Hardware Extensions: We extend a cycle-accurate

ARMv5 architecture platform with a 32-bit count-down timer,
and we extend its ISA with two instructions. We introduce
the set timer stt instruction, and a check time chk instruction.
Figure 6 shows the stt and chk instruction encodings. The stt
instruction has a single 16-bit immediate operand 〈timH:timL〉
while the chk instruction has two 8-bit immediate operands:
〈slk〉 and 〈raddrL:raddrH〉. Every clock cycle, the 32-bit timer
will decrement its value by one if it is greater than zero. The stt
instruction adds its 16-bit operand, 〈timH:timL〉, to the value
already in the timer. The chk instruction compares its first 8-bit
operand 〈slk〉 to the value of the timer, and if the first operand
value is greater than the timer value then the processor will
branch past the number of instructions specified in the second
8-bit operand of the instruction, 〈raddrL:raddrH〉. Otherwise,
the code will execute normally without branches.

We incorporate the stt and chk instructions into the five-
stage pipelined architecture consisting of Fetch, Decode, Ex-
ecute, Memory, and Writeback stages. In the Fetch stage, the

0  0  0  0 0  1  1  1  1  1  1  1 1  1  1  1 timL timH 
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CHK <slk>,<raddrH:raddrL> 
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Fig. 6: Instruction encodings of stt and chk instructions

processor fetches the instruction at the address in the program
counter and increments the program counter by four. In the
Decode stage, the processor decodes the instructions and reads
the value of the 32-bit timer in the case of stt or chk. In the
Execute stage of the stt instruction, the ALU adds the value
of the 16-bit operand to the timer value and the processor
writes back the result to the timer in the Writeback stage. In
the case of executing the chk instruction, the ALU subtracts
the first 8-bit operand from the timer value in the Execute
stage. In the same stage, the branch logic shifts the second
8-bit operand two bits to the left and adds the result to the
new program counter value from the Fetch stage. If the result
of the ALU operation is negative, then a MUX will set the
program counter to the output of the branch logic in the next
Fetch stage, i.e., a branch will occur. Otherwise, the MUX
output will set the program counter to the incremented value
of the program counter from the previous Fetch stage.

2) Functional Operation: Listing 3, a rework of Listing 2,
illustrates the use of stt and chk instructions in SCI. Functions
func a and func b have WCETs of wceta and wcetb cycles,
respectively. The instrumentation code and the chk and stt
instructions at labels B, C, and D have a WCET wcetc1 cycles.
The instruction count in the instrumentation code at label C
is instrc1 . The chk instruction and instrumentation code at
labels E and F have a WCET wcetc2 cycles. The instruction
count in the instrumentation code at label F is instrc2 .

int main(void){
2 A: asm(‘‘ stt wceta”);

func a ();
4 B: asm(‘‘chk wcetc1 ,instrc1”);

C: // Instrumentation Code
6 .............

D: asm(‘‘ stt wcetb”);
8 func b ();

E: asm(‘‘chk wcetc2 ,instrc2”);
10 F: // Instrumentation Code

.............
12 }

Listing 3: SCI using stt and chk instructions
For one execution of the example shown, functions func a

and func b will have an actual execution time of execa
and execb cycles, respectively. The stt instruction at label A
sets the timer to wceta (assuming the timer is initialized to
zero at the start of program execution). The chk instruction
at label B compares the timer (wceta − execa) to wcetc1
which is the time needed to instrument function func a. If the
timer is greater than or equal to the instrumentation time, the
processor will execute the instrumentation code. Otherwise,
the processor will branch forward instrc1 instructions, past



the instrumentation instructions to function func b. The next
pair of stt and chk instructions operate similarly for function
func b. These instructions make use of accumulated run-time
slack. If this slack is insufficient to execute a CP, the timer
will carry forward the run-time slack to use at the next CP.

VII. EXPERIMENTATION

We implement a fully automated tool for SCI. We use the
Unisim cycle-accurate simulator [17] for our implementations
and ISA extensions. In Unisim, for the software implemen-
tation, we implemented getTime as a single instruction that
reads the simulator’s timestamp. We use the Unisim’s default
configurations including the latencies for register and memory
accesses. Our tool extracts the OSCCFG from the program’s
C source code. The tool invokes RapiTime v2.4 [18] to extract
the WCET of each basic block and to find the program’s
WCP. The tool generates and inserts the software or hardware
instrumentation points. Finally, the tool cross compiles the
instrumented program for Unisim, runs the cycle-level sim-
ulation, and extracts the logged trace data.

We experiment with the SNU real-time benchmark
suite [19], which contains 17 C benchmarks that implement
numeric and DSP algorithms. They have 117 lines of code
and 34 basic blocks on average. We compare our approaches
with the technique proposed by Fischmeister et al. [11], which
we refer to as previous work. We trace all variables, except
function arguments, constants, and loop counters, by logging
them to dedicated memory buffers.

We quantitatively assess SCI using the following metrics:
• Instrumentation coverage: Instrumentation coverage

along an execution path shows the ratio of traced variable
assignments to those that a developer desires to trace. It
is the probability that instrumentation captures variable
assignments before their re-assignment.

• WCET Overhead: In the worst-case scenario, an in-
strumented program executes its WCP such that there is
insufficient run-time slack to execute any CPs on that
path. However, there is an increase in the program’s
WCET because CPs add overhead to the WCP (including
conditional checks and dynamic slack computation).

• Code Size Overhead: Every instrumentation point adds
extra code to the original source code. The less the
code size overhead, the more effective the instrumentation
approach is in utilizing code space for instrumentation.

Figure 7 presents the instrumentation coverage of the soft-
ware and hardware implementations of ALLCP and MINCP
against previous work. Recall that ALLCP inserts a CP on the
WCP at each vertex where a variable of interest is assigned
without minimization (Section III). Previous work is only able
to instrument six benchmarks. SCI is able to trace 16 and 13
benchmarks using the hardware and software implementations,
respectively. None of the instrumentation techniques was able
to instrument the fibcall benchmark. This means that there is
insufficient run-time slack at all CPs.

The hardware implementation clearly increases the instru-
mentation coverage versus software. For the hardware imple-
mentation, MINCP has higher coverage than ALLCP. How-
ever, the jfdctint benchmark violates this rule. This shows that

minimizing CPs does not necessarily lead to a higher instru-
mentation coverage. The reason is that although the run-time
slack might be sufficient to execute a small instrumentation
code, it might be insufficient to execute larger instrumentation
code where the smaller one is merged. This also explains
why for the sqrt and crc benchmarks, using the software
implementation, ALLCP has higher coverage than MINCP.

We also compare the instrumentation coverage for the
software implementation of ALLCP against previous work in
Table I. This table shows the mean value, the 95% confidence
interval, and the standard error of mean. Even with conser-
vative estimates, the software implementation is at least one
order of magnitude better than previous work.

TABLE I: Instrumentation coverage

Instrumentation Mean 95% CI SEM
Previous Work 0.026 0.040 0.019

ALLCP- Software 0.569 0.220 0.104

We also analyze the different implementations of ALLCP
and MINCP for the WCET and code size overheads (values
omitted due to space constraints). The values of the WCET and
code size overheads for the software approach are relatively
high as compared to the WCET and the code size of the
original programs. Although previous work leaves the WCET
of the WCP unchanged and has minimal increase in code size,
it also has least coverage of the proposed approaches.

We compare the overheads of our approaches to the software
implementation of ALLCP. The code size overhead of MINCP
software, ALLCP hardware, and MINCP hardware have values
of 92.4%, 31.9% and 29.7%, on average. In the worst-case, the
hardware methods minimize the code size overhead 2.3 times
as compared to the software methods. Moreover, the hardware
implementation decreases the WCET overhead. On average,
compared to the WCET overhead of ALLCP software, MINCP
software, ALLCP hardware, and MINCP hardware have values
of 89.4%, 21.0%, and 22.7%, respectively.

To experiment with the software and hardware implementa-
tions of C-MINCP, we present results for the minver program
which performs a 3x3 matrix inversion. Notice that to see the
effect of C-MINCP in choosing CPs, we need to synthetically
generate versions of the program each with a different time
budget. To collect results, we (1) calculate the overhead and
the number of traced variables at each CP, (2) measure the
frequency of execution of each CP, (3) increment the static
slack α by one cycle (starting by 0), (4) run the algorithm
given in Section V to instrument the program, (5) compile and
cycle-level simulate the program, and (6) repeat steps 3, 4, and
5 until we reach the maximum instrumentation coverage.

Figure 8a shows the instrumentation coverage of the minver
benchmark as the static slack α increases. We observe that the
instrumentation coverage increases as α increases as expected.
This is because more CPs can be inserted in the code. Notice
that increasing α after all CPs are inserted, increases the
coverage because it adds more initial slack to the program
which executes more CPs. It is apparent from the figure that at
some points increasing α leads to less coverage. The reason is
that increasing α might lead to inserting a CP instead of a few
others because the former traces more variables. Typically, this
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should lead to higher coverage, however, the run-time slack
might be insufficient for the execution of the larger CP.

Figures 8b and 8c present the variation in code size and
WCET overheads as α increases, respectively. Generally, code
size and WCET overheads increase as α increases but clearly
there are large variations as the figures show. The reason for
the sudden drops is that at a certain point increasing the budget
leads to the replacement of many CPs by only one, because
the latter traces more variables as compared to all the former
combined, thus leading to a decrease in the added overhead.
Summary: SCI collects traces from 16 benchmarks versus
only six for previous work. The hardware implementation
highly outperforms the software one, and gains an average
coverage of 41.5% for three benchmarks that the software
implementation fails to extract any data from. The hardware
implementation decreases the WCET overhead compared to
software to 21.0%, and decreases code size overhead to 31.9%.

VIII. DISCUSSION

This section focuses on some high-level issues concerning
the applicability of the techniques described in this work.
Usefulness of Partial Instrumentation: Time-aware instru-
mentation constraints the instrumentation process and extracts
only partial information. A full instrumentation, however,
can still be constructed from the union of multiple partial
instrumentation instances. This might not be convenient in
some cases, but will allow timely execution of the partially
instrumented versions of the software versus a full instru-
mentation. Apart from constructing a full instrumentation, the
extracted partial information is still useful [20], [21].
Instrumentation of Multiple WCPs: Our analysis ignores the
rare case of multiple WCPs existing in a program. This case
did not appear in any of our experiments. However, addressing
multiple WCPs is an easy task. We mentioned earlier that if the
WCP changes after instrumentation, then the tool will convert
the IPs on the new WCP to CPs. The tool can simply extend
this concept to directly instrument multiple WCPs with CPs.
Concurrent Applications: For concurrent applications, the
static slack α is an allowable increase in the WCET of each
task such that the schedulability relations hold. While the
specific way to distribute static slack among the tasks is up to
the developer, the whole workload must remain schedulable.
Choosing a WCET Analysis Tool: Our analysis uses
RapiTime [18] to obtain the WCET of basic blocks. RapiTime

is a measurement-based WCET analysis tool and thus might
underestimate the actual WCET. WCET, however, is only an
input to our framework and thus the validity of the proposed
concept is independent of the accuracy of the analysis tool.
The choice of RapiTime was due to the availability of the
tool in our labs, past experience using it, and independence of
the architecture on which the software executes.
Rerunning the WCET Analysis: The number of instrumen-
tation retries is usually low [13]. We mentioned in Section II
that our tool discovers WCP changes through rerunning the
WCET analysis. This is also required to ensure that the new
WCET, after instrumentation, is still below the deadline. If the
new WCET exceeds the deadline, the tool will decrease the
static time window α and rerun the instrumentation process.
Limitations of SCI: In this work, we focused on tracing scalar
variables. It is possible to extract other information such as
array elements, function calls, or branches.

This work assumes that the overhead of a CP is less than
the WCET of the instrumentation code in the CP. Otherwise,
replacing the CP with an IP would have less overhead.
Usually, the instrumentation code involves reading variables
from memory and either writing these variables to memory
buffers or sending them off-chip. Hence, CPs usually have
less overhead than their instrumentation code. Otherwise, our
tool can be modified to replace a CP with an IP in that case.

In some cases, the minimization of CPs decreased the in-
strumentation coverage (Figure 8a). This conflicts with the fact
that delaying instrumentation and reducing CPs accumulates
more slack to increase coverage. This requires slightly varying
the budget to achieve the best instrumentation coverage.

IX. RELATED WORK

Static instrumentation frameworks include Atom [3], Etch,
Morph, and Executable Editing Library (EEL). Dynamic in-
strumentation tools include DynamoRIO [6] and Pin [5]. None
of these tools support concepts of interference or constraints
such as timing and resource bounds.

Hardware-based methods include using performance coun-
ters, special monitoring hardware [8], [9], or simple emulation
such as in-circuit emulation (ICE) hardware. Although such
approaches naturally provide low interference, they can still
have a significant impact on performance [10].

Static time-aware instrumentation techniques instrument a
program at code locations that do not modify the program’s
WCET (or modify it within a given budget). The authors
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Fig. 8: C-MINCP for the matrix inversion algorithm

in [12] apply code transformation techniques to increase
instrumentation coverage. The authors in [13] introduce IN-
STEP; an instrumentation framework for preserving multiple
competing extra-functional properties. None of these tech-
niques, however, can instrument the WCP of a program. In this
work, we build on top of [11], and, as a future extension, we
can complement our work with the techniques in [12] and [13].

DIME [7], a framework for time-aware dynamic binary
instrumentation, uses rate-based resource allocation to limit
the instrumentation time to a pre-specified budget. DIME is
well-suited for instrumenting soft real-time applications. We
focus on static source-code instrumentation techniques that are
better suited for instrumenting hard real-time applications.

Kritikakou et al. [22] propose a run-time WCET controller
for ensuring the predictability of concurrently executing high
criticality tasks. The proposed run-time control mechanism,
used to monitor a task’s execution time, is more sophisticated
than ours in in handling loops and function calls. However,
the goal of our work is different, and the specific approach to
run-time control is orthogonal to the concept of SCI.

X. CONCLUSION

In this work, we investigate an SCI mechanism that obeys
timing constraints but can also extract information on the
WCP. While previous work exists on tracing, these approaches
only preserve logical correctness or preserve timing as well
but cannot extract information on the WCP. We compared
hardware and software-based implementations in detail and
proposed solutions to two problems of how to efficiently use
SCI. We also reported on non-intuitive results such as the neg-
ative side effects of minimizing the number of instrumentation
points. Overall, however, our approach improves over previous
work on time-aware instrumentation by an order of magnitude
in instrumentation coverage and several orders of magnitude
in the number of executed instrumentation points (=generated
trace data) at the expense of code size.
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