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Abstract. Design of real-time systems is prone to uncertainty due to
software and hardware changes throughout their deployment. In this
context, both industry and academia have shown interest in new trace
mining approaches for diagnosis and prognosis of complex embedded sys-
tems. Trace mining techniques construct empirical models that mainly
target achieving high accuracy in detecting anomalies. However, when
applied to safety-critical systems, such models lack in providing theoret-
ical bounds on the system resilience to variations from these anomalies.
This paper presents the first work that derives robustness criteria on a
trace mining approach that constructs arrival-curves models from dataset
of traces collected from real-time systems. Through abstracting arrival-
curves models to the demand-bound functions of a sporadic task under an
EDF scheduler, the analysis presented in the paper enables designers to
quantify the permissible change to the parameters of a given task model
by relating to the variation expressed within the empirical model. The
result is a methodology to evaluate a system to dynamically changing
workloads. We evaluate the proposed approach on an industrial cyber-
physical system that generates traces of timestamped QNX events.
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1 Introduction

Modern real-time systems are becoming increasingly complex, and their runtime
behavior is subject to uncertainties arising from dynamic workloads and changes
in their underlying software and hardware. For example, a platform executing
a real-time application may suffer a degradation in processor performance if
maliciously switched to a low-power mode, or it may sporadically increase its
processor demand when handling an anomalous execution scenario. To model
and analyze those systems, designers usually apply traditional formal methods
that use worst-case analysis to bound any possible workload that can occur
at runtime. Although traditional formal methods are relatively mature and have
become a standard practice in the industry, they tend to be overly pessimistic and
have limited applicability for modern practical systems with dynamic properties.



With the rise of Industry 4.0 and digital twin concepts [8, 23], researchers
have started using runtime traces collected from non-invasive tracing tools to
improve diagnostics and prognostics. Event traces provide valuable information
for performing data-driven analysis when formal methods become complicated or
infeasible [1]. For example, formal methods become inadequate when analyzing
complex system-level timing requirements of interacting processes. Alternatively,
trace mining is proving useful for characterizing real-time systems, as they con-
struct models using traces from different processes, in addition to component-
level trace events representing core switching and resource allocations [7].

One relevant open question associated to empirical models constructed from
traces is how to evaluate their effectiveness. For example, surveys [4,16,26] high-
light that the primary evaluation method of empirical models used for anomaly
detection is by their ability to classify normal versus anomalous behavior. How-
ever, the current research work shows a lack in the methods that derive ro-
bustness bounds on the acceptable behavior of a given system using margins
provided by the empirical models. In this context, authors in [9] acknowledge
that, unlike traditional formal methods, empirical models for anomaly detec-
tion are generally tuned in an ad-hoc manner without guidance by well-found
theoretical framework or analysis. As a result, authors claim that there are no
guarantees on the effectiveness of the empirical models after deployment.

Authors in [22] show the feasibility of a trace mining approach in modeling the
behavior of a real-time system using arrival curves [13] constructed from event
traces. The proposed framework computes empirical arrival curves by traversing
the trace with a sliding window, capturing the maximum and minimum observa-
tion counts of different system events for windows of different length. In a typical
classification setting, a normal profile for the system corresponds to a model that
aggregates arrival curves computed over a set of representative traces that char-
acterize the normal system behavior. Finally, a classifier uses the model to label
unseen traces with a specified accuracy for anomaly detection purposes.

This paper presents an analysis to assess the robustness of arrival-curves
models used to characterize the ranges of tolerable behavioral variations of a
real-time system such as hardware degradation, external attacks, etc. The pre-
sented analysis is based on the assumption that an arrival curve can be analogous
to a demand bound function. We state the problem as follows: Given an em-
pirical arrival curve for a system that can be represented by a sporadic task-set
scheduled using an EDF scheduler, and associated upper and lower bounds on
allowed variations in the demand of the task set, obtain a range of allowed vari-
ations in the task parameters (period, execution time) such that the system stays
operational within the allowed variations in the expected overall demand.

The rest of the paper is organized as follows: We present the background and
assumptions for the system models in Section 2. We derive the bounds on the
task parameters that correspond to the deviation in the dbf of the task model
in Section 3, and we perform an asymptotic analysis to these variation bounds
of the task parameters corresponding to the change of the demand deviation
in Section 4. In Section 5, we evaluate the robustness assessment framework of



empirical arrival-curves models of an actual real-time system. Section 6 discusses
the validity of our assumptions, Section 7 reviews the related work, and finally
Section 8 concludes the paper.

2 Arrival Curves and Demand Bound Functions

This section reviews some basic definitions of arrival curves and establishes a
relationship between these curves and demand bound functions for a given task
model T (p, e, d) with period p, execution time e, and deadline d. The relationship
between arrival curves and dbf provides the basis for the theoretical analysis
presented in the paper since our work attempts to fill the gap between the
empirically constructed arrival curves and the theoretical models of demand-
bound functions that are typically used for formal analysis of a given system.
We evaluate and validate the assumptions presented in this section using data
from a real-world application in Section 5.

2.1 Overview of Arrival Curves

Arrival curves are widely used abstractions for modeling temporal workloads in
real-time systems. Multiple frameworks based on Network Calculus [13] rely on
arrival curves to model worst-case workloads and perform exhaustive analysis
of real-time systems at design-time, obtaining guaranteed performance metrics
before system deployment [28]. More recently, multiple authors have shown that
analyzing the properties of arrival curves constructed from execution traces col-
lected while the system is operating opens new avenues in applications such as
resource management [12, 18] and anomaly detection [22]. The ever-increasing
accessibility of system-specific traces from embedded systems and the availability
of tools to accelerate the construction of accurate empirical arrival curves [5] fa-
cilitate the development of new data-driven methods to complement traditional
formal methods in the analysis of modern real-time systems.

Arrival curves are functions of interval time domain that provide upper and
lower limits to the number of events that can occur in a system within any time
interval of length ∆t. Starting from a timestamped trace of events, it is possible
to obtain an empirical arrival curve by sliding a window of varying length∆t, and
registering the maximum and the minimum number of events enclosed within
the window while traversing the trace. The resulting curves bound the lower and
upper event counts versus the corresponding time interval lengths.

An empirical arrival curve representing a maximum count of events for dif-
ferent interval lengths is a non-decreasing function that starts at the origin [22],
and it can be approximated by a line passing through the origin. In the rest of
this section, we present the dbf of a sporadic task model under EDF scheduler,
which can also be approximated through a line passing through the origin. This
assumption allows us to relate the arrival curves with the dbf of a given task-set,
enabling us to perform a mathematical analysis for the resilience of systems to
the dynamically changing workloads.
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Fig. 1: Graphical representation of variations in task parameters and dbf.

2.2 Assumed task model and demand bound functions

Definition 1. A task T (p, e, d) is a dispatchable entity in the system where the
period p is the number of time units between successive dispatches, e is the exe-
cution time (in time units) required to complete the work, and the deadline d is
the maximum time available to complete the work after dispatching.

A demand-bound function (dbf) models the maximum processor demand by
a task over any interval of length t [2]. The dbf of a given sporadic task under
EDF assumption is defined as:

dbf(t) =

⌊
t+ p− d

p

⌋
e (1)

We will consider that the sporadic task has an implicit deadline (d = p) and
there are no overloads, restricting the possible values of e to ]0, p], with p ∈ R.

Due to the empirical nature of the target arrival-curves model, the purpose
of the chosen task model is to provide a reasonable approximation to the arrival
curve that describes an increasing events count versus an increasing sliding win-
dow interval [22]. Hence, we choose the specified sporadic task model with an
implicit deadline under EDF scheduler, which yields an increasing function that
steps e units every p time units. The function can be approximated by a straight
line with slope e

p . We evaluate the choice of this task model and the empirical
model approximation in Section 5.

Variations in the nominal task parameters can either increase or decrease
the task demand. In practical settings, changes in the task parameters may arise
from changing operational conditions. We formalize the range of possible values
of the altered task parameters as follows:

Definition 2. Decreasing the period of a task. α is defined as the reduction of
the task period p in time units, therefore α ∈ (−∞, p [.

Definition 3. Increasing the execution time of a task. β is defined as the in-
crease of the task execution time e in time units, therefore β ∈ ] −e, (p−α)−e [.



We define α as a decrement and β as an increment for mathematical conve-
nience. But to generalize our analysis, we highlight that both Definitions 2 and 3
allow negative values for α and β.

We now introduce the general model for an altered task T ′(p − α, e + β),
which incorporates the variations in period and execution time while maintaining
the condition of implicit deadlines but for the altered period in this case, i.e.,
(d− α = p− α). We can obtain a corresponding altered dbf as follows:

dbf ′(t) =

⌊
t

p− α

⌋
(e+ β) (2)

Let us now consider that for each interval length t, we define arbitrary bounds
on allowed variations in the nominal dbf from Eq. 1 (with α = β = 0), restricting
the valid values of dbf ′ for a given application.

Definition 4. Variation Bound on Task Demand. We denote the allowed vari-
ations of the dbf at time interval t as σ(t) = dbf ′(t) − dbf(t), where σ(t) ∈
[σl(t), σu(t)], and σl(t), σu(t) ∈ R.

The restriction in the allowed values of σ(t) can be either set by the sys-
tem designer according to some specific operational accuracy requirement or
can represent some uncertainty in the specifications. Note that Definition 4 per-
mits describing deviations above and below the nominal demand. This is a key
difference of our analysis with respect to related work on sensitivity analysis
from the scheduling domain [20, 27, 29–31], which focuses on verifying that the
demand stays below a certain limit such that the system remains schedulable.
We contrast our work with sensitivity analysis in Section 7.

Fig. 1 illustrates the previous definitions for the variations in the nominal
task parameters and the corresponding dbf. The diagram on the left shows the
timeline for the execution of a task T with period p and execution time e, and
also the execution of tasks T ′1 and T ′2 that include variations in the nominal
parameters. In specific, T ′1 increments the nominal execution time by β time
units (represented in the shaded green box), and T ′2 aggregates a reduction in
the period. Both T ′1 and T ′2 generate a demand above the nominal value. The
diagram to the right shows the step-wise nominal dbf together with the terms
defined earlier for allowed variations at a certain point ta. In this case, the
demand of the altered task dbf ′(ta) is above the nominal value, but within the
specified boundaries of allowed variations σl(ta) and σu(ta).

Considering the previous definitions, we can tackle the problem introduced
in Section 1 by finding the region of allowed values of α and β, such that the
value of σ(t), representing the deviation in the demand of the altered task dbf ′(t)
with respect to the nominal demand dbf(t), stays within the predefined range
[σl(t), σu(t)]. Traditionally for the assumed task model, a utilization-based ap-
proach is the solution to evaluate timing properties of a given real-time system;
however, this work uses demand-bound functions since we hypothesize their fea-
sible abstraction to empirical arrival curves as we demonstrate in Section 5.
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Fig. 2: Permissible task parameter alteration in Example 1

3 Computing Bounds on Task-Model Alteration

In this section, we relate the demand deviation bound to a feasibility region for
the parameters α and β of the altered task model T ′. The mathematical founda-
tions assume a specified demand variation bound for a given task. However, the
analysis presented in this section can be directly extended to specified demand
variation bounds for multiple independent tasks, i.e., a task Ti has a specified
demand variation bound σi where

∑
i σi = σ. Such problem breaks down into

multiple sub-problems that can be solved by finding the feasible region for each
αi and βi for each task Ti separately.

Substituting Eq. 1 and Eq. 2 in Definition 4, we can derive a relationship
between α and β values that alter a nominal task model T while meeting a
deviation demand σ(ta) at a given time interval ta as follows:

β =

σ(ta)−

(⌊
ta

p− α

⌋
−

⌊
ta
p

⌋)
e⌊

ta
p− α

⌋ (3)

The allowed deviation from the nominal dbf is bounded by [σl(ta), σu(ta)].
By replacing σ(ta) by σl(ta) in Eq. 3, we can establish a relationship between
a lower bound for the parameter βl, and the possible values of α. In a similar
manner, we can replace σ(ta) by σu(ta) to obtain the upper bound βu.

Fig. 2 illustrates how we can use the relationships described above to obtain
a feasibility region for the values of α and β given a certain σ(ta). The figure
shows a plot of β as a function of α, in addition to the resulting βl and βu.
The dashed straight lines delimit the valid intervals for α and β according to
Definitions 2 and 3, respectively. The lines for βl and βu intersect at the point



(α, β) = (p,−e). We restrict the lower bound of α to −p, so the range of allowed
α values from Definition 2 changes to [−p, p]. Considering the limits βl and
βu and the restrictions over the parameters, we can obtain a feasibility region
(shown in shaded green) for the valid combinations of α and β that will allow
to keep the altered demand within predefined boundaries.

To illustrate the theoretical foundations, we present the following example
with concrete task parameters that we will use throughout the rest of the paper.

Example 1. Consider a sporadic task with parameters e = 0.375 and p = d = 0.5.
Find the feasibility region for α and β such that the demand of the altered task
at ta = 30 remains within a range of ±10% of the nominal demand.

Fig. 2 shows the computed upper bound βu and lower bound βl with respect
to valid values for α by applying Eq. 3 to the demand of the task in Example 1.
The resulting feasibility region for the variations in parameters is shaded green.
When drawing a vertical straight line for a given value of α, any value of β within
that region will ensure that the resulting demand from the altered system will
remain within the specified variations.

4 Asymptotic Analysis for Task Alteration Parameters

This section describes how variations in α and β change over increasing time
intervals t to meet the specified demand bounds. We use Eq. 3 to establish the
relation between β and the time interval t for a given α. Similarly, for a given β,
the equation defines the relation between α and time interval t. Analyzing the
change of β and α as the time interval t increases gives us an insight into the
change of permissible system parameters alteration over different time intervals.

To compute these asymptotic bounds, we need to apply a transformation to
Eq. 3 using approximations that are valid for asymptotic values of time intervals.

First, we relate the decrease in period α to the period p using a variable k,
where α = k × p such that k ∈ (−∞, 1[. In other words, the variable k is a
ratio of the decrease in period α with respect to the nominal period p. Second,
we relate t to both p and α by defining c where t ≈ c (p−α) assuming c is some
factor much larger than (p− α). Hence, t ≈ c p (1− k) as well.

We evaluate these approximation as t → ∞. We obtain the limit of the
floor operator using the Squeeze Theorem of Limits [10], which allows us to find
limx→∞ f(x) where f(x) is bounded by g(x) and h(x), g(x) ≤ f(x) ≤ h(x) as
follows:

lim
x→∞

g(x) ≤ lim
x→∞

f(x) ≤ lim
x→∞

h(x) (4)

Applying Eq. 4 to the definition of floor function, c− 1 ≤ bcc < c, we deduce
that limc→+∞ c− 1 = c and limc→+∞ c = c, and as a result:

lim
c→+∞

bcc = c (5)

Similarly, since (1− k) is a constant. We obtain the following result in Eq. 6.
Combining Eq. 5 and Eq. 6 allow for transforming Eq. 3 to obtain β.
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Fig. 3: Asymptotic analysis for the β and α using relative σ

lim
c→+∞

bc (1− k)c = c (1− k) (6)

Asymptotic analysis for variation in execution time β We consider σ(t)
values that can be defined relatively to the nominal demand dbf(t). Let us define
σ as a fraction f of the nominal demand dbf(t). For example, the demand varia-
tion bound can be set to be ±10% of the nominal demand at any given interval
t. In this case, to compute the asymptotic values we use Eq. 7 as follows:

σ(t) = f dbf(t) = f

⌊
t

p

⌋
e (7)

Using σ(t) from Eq. 7, the asymptotic values of a function βv(t) that varies
with t can be derived as follows:

lim
t→+∞

βv(t) = lim
t→+∞

f
⌊
t
p

⌋
e−

(⌊
t

p−α

⌋
−
⌊
t
p

⌋)
e⌊

t
p−α

⌋
= lim
c→+∞

f
⌊
cp(1−k)

p

⌋
e−

(⌊
c(p−α)
p−α

⌋
−
⌊
cp(1−k)

p

⌋)
e

bcc

= lim
c→+∞

f bc(1− k)c e− (bcc − bc(1− k)c) e
bcc

= lim
c→+∞

fc(1− k)e− (c− c(1− k))e
c

= −ke+ f(1− k)e

(8)



Fig. 3a shows the boundaries βu and βl when σ(t) ∈ [0.9∗dbf(t), 1.1∗dbf(t)]
in Example 1 for an arbitrary value α = 0.04. Using Eq. 8, we find the asymptotic
values for the boundaries are βl ≈ −0.064 and βu ≈ 0.0045. The figure shows
that the boundary curve smooths as t increases due to the diminishing effect of
the floor operator in Eq. 7.

Asymptotic analysis for variation in period α For a given value of β, we
study how a varying function αv(t) changes over time interval t by obtaining the
relation between αv(t) and t from Eq. 3 as follows:

Z =

⌊
t

p− αv(t)

⌋
=

σ +

⌊
t

p

⌋
e

e+ β
(9)

Unlike the analysis for the values of βv(t), defining a precise relation between
αv(t) and t for a given β is not a straightforward operation. Since the inverse
of the floor operator is undefined, we cannot obtain a closed formula for αv(t).
Instead, we restrict the analysis to obtain conservative bounds for the range of
αv(t) values that satisfy Eq. 9. To do this, we can apply the range property of
the floor operator [11], which states the following:

bxc = m ⇐⇒ m ≤ x < m+ 1 (10)

Using the property in (10), we can describe a range for the values of α v(t)
as:

p− t

Z
≤ αv(t) < p− t

Z + 1
, with Z =

σ +

⌊
t

p

⌋
e

(e+ β)
(11)

Substituting σ for the specified demand variation bounds σl and σu in the
obtained inequality, we can obtain the relation of the corresponding boundaries
for αv(t) versus time interval t for a given β. Note that each boundary for σ leads
to a feasible range of αv(t), so we define Zu and Zl, which we obtain replacing
σu and σl in the term Z defined in Eq. 9, respectively. Substituting Z by Zu and
Zl in Eq. 11 yields two inequalities with four boundaries which can be bounded
by the αv(t) in Eq. 12. Now, we show the asymptotic values for both boundaries
when the demand variation bound σ is defined as a function of nominal demand
and we visualize these results in Fig. 3b.

p− t

Zl
≤ αv(t) < p− t

Zu + 1
(12)

We consider σ(t) values that are relative to the nominal demand dbf(t) where
the variation of the demand is constrained by a given range [σl, σu] that changes



over time intervals t. Using the transformation from Eq. 7, the asymptotic values
for α can be computed using the boundaries in Eq. 11 again as follows starting
with the left-hand side in Eq. 13 then the right-hand size in Eq. 14:

p− t

Z
= p− c p (1− k)

f c (1−k) e+c (1−k) e
e +β

= p − c p (1− k)(e + β)

c (1− k) e (1 + f)
= p − p (e + β)

e (1 + f)

(13)

p− t

Z + 1
= p− cp(1− k)

c(1−k)e(1+f)+(e+β)
e+β

= p− cp(1− k)(e+ β)

c(1− k)e(1 + f) + (e+ β) (14)

Then taking the limit as t goes to ∞ for Eq. 13 yields the same equation,
however, for Eq. 14, we obtain the asymptotic value as follows:

lim
c→+∞

cp(1− k)
c(1−k)e(1+f)+(e+β)

e+β

= lim
c→+∞

p(1− k)(e+ β)

e(1− k)(1 + f) + (e+β)
c

=
p(1 + β)

e(1 + f) (15)

Thus, we conclude that asymptotically, both sides of the inequality will con-
verge to the same limit. According to the Squeeze Theorem, α can be defined
asymptotically in this case as:

α ≈ p− p (e+ β)

e(1 + f)
(16)

Figure 3b shows the boundaries for αu and αl when σ(t) ∈ [0.9 ∗ dbf(t), 1.1 ∗
dbf(t)] in Example 1 for an arbitrary value β = 0.01. Using Equation 16, we find
the asymptotic values for the boundaries are αl ≈ −0.07 and αu ≈ 0.03. The
boundaries in Figure 3 shows the importance of the asymptotic analysis since
we can observe that these asymptotic limits are not necessarily the tightest over
the time interval t. As a result, this analysis provides the designer with a tool to
assess the validity of the calculated robustness bounds versus increasing t values.

In the following section, we apply the theoretical analysis to an application
of interest by tackling the problem statement introduced in Section 1, which
aims at assessing the robustness of data-driven trace mining approach that uses
arrival-curves models for a deployed real-time system.

5 Application: Robustness Assessment for Empirical
Arrival-Curves Models

In this section, we evaluate the hypothesis that an empirical arrival curve can be
represented as linear demand-bound functions of the assumed task model in this
paper, and as a result, we perform robustness evaluation for the arrival-curves
models using the presented theoretical foundations.



The procedure of robustness assessment for the empirical arrival-curve model
follows these steps: a) abstract an arrival-curves model to a sporadic task model
as in Section 2, b) obtain the relation that describes the feasibility region of the
allowed alteration for the task model which corresponds to a variation in the
arrival behavior shown by the empirical model as in Section 3, c) evaluate the
approach feasibility by quantifying the effect of approximating the curves to a
linear demand-bound function of a sporadic task under an EDF scheduler which
we demonstrate in this section.

5.1 Representing Arrival Curves as Demand-Bound Functions

A model of empirical arrival-curves is an aggregate for the curves computed
over a set of multiple traces collected from the system [22]. In our application,
we consider a model that is comprised of the mean of arrival curves describing
the maximum counts of events within variable window sizes, in addition to two
boundary curves that described a confidence interval for that mean. Fig. 4a
shows the arrival-curves model of a specified QNX event computed using a set
of traces that represent the normal behavior of a real-time system, we discuss
the experimental setup later in this section.

In Section 2, the mathematical foundation uses a task model of a sporadic
task using the dbf under an EDF scheduler. As a result, we obtain a demand
function, which we can approximate by a line passing through the origin. Sim-
ilarly, an empirical arrival curve representing a maximum count is a function
whose non-decreasing curve starts at the origin [22]. Now, we can introduce the
methodology that relates both the arrival curve and the demand-bound function.

We apply Linear Regression [17] to obtain the line that best fits an empirical
arrival curve. We offset the fitted line to pass by the origin, and as a result, it
can be analogous to a demand-bound function. Later in this section, we quantify
the negligible error introduced by this process. For example, Fig. 4b shows the
fitted regression lines for the mean arrival curve and the two confidence interval
curves after being offset to pass by the origin. The linearity of the curves makes
them a good pick for our demonstration.

The regression lines in Fig. 4b are now analogous to a nominal dbf(t) with an
upper and lower variation bound to the demand σl and σu respectively which are
both functions of t. In other words, we can define a sporadic task which demands
e execution time units every p time interval whose demand-bound function can be
approximated by an empirical arrival curve counting a maximum of e instances
of an event in a trace every sliding window of p time units.

5.2 Robustness Assessment using Task Alteration Parameters

In order to enable the analysis presented in the previous sections to the robust-
ness assessment of empirical arrival curves, we use the task model assumed in
Section 2 to map the task parameters and its variations to the slopes of the
regression lines obtained in Fig. 4b. We denote these slopes as, S for the slope of
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Fig. 4: Fitting empirical arrival-curves model to demand-bound functions

the regression line for the mean curve, Su, and Sl for the slopes of the regression
lines for both confidence interval curves. We compute these slopes as follows:

S =
e

p
, Su =

e+ βu

p− αu
, Sl =

e+ βl

p− αl
(17)

Eq. 17 defines the relation between task parameters e and p and the regression
slopes. We obtain the relations between the variation of parameters α and β from
Eq. 3 using the definitions of Su and Sl as follows:

βu =

σu −

(⌊
ta Su
e+ βu

⌋
−

⌊
ta S

e

⌋)
e⌊

ta Su
e+ βu

⌋ , βl =

σl −

(⌊
ta Sl
e+ βl

⌋
−

⌊
ta S

e

⌋)
e⌊

ta Sl
e+ βl

⌋
(18)

The above equations provide the relation between bounds on β versus exe-
cution time e. To define the relation between α and the period p, we substitute
e by S × p from Eq. 17:

αu = p− e+ βu
Su

, αl = p− e+ βl
Sl

(19)

The above set of equations provide the relations between the parameters e
and p, and the corresponding alterations β and α. The relations evaluate the
alteration that would cause a deviation σ to the dbfs obtained by approximating
the fitted regression lines of the empirical arrival-curves model. Analogously, β



and α now describe the permissible variation to the arrival-curves model, i.e.,
the count of events of the corresponding sliding window interval of observance.

Now, we present an application to demonstrate how to use these relations to
assess the robustness of a model for a real-time system. We exploit the proposed
approach by obtaining the feasibility region for the permissible task parameter
variations of the mapped task model through the approximation of the empirical
arrival curves to demand-bound functions.

5.3 Evaluation on QNX Traces from UAV

The dataset traces are generated from an unmanned aerial vehicle (UAV) run-
ning the real-time operating system QNX Neutrino 6.4. The UAV was developed
at the University of Waterloo, received the Special Flight Operating Certifi-
cate (SFOC), and flew real mapping and payload-drop missions in Nova Sco-
tia and Ontario. The traces are collected using the tracing facility tracelogger.
A trace entry is a timestamped kernel event that shows the type of an event
generated while running a specific process on a specified CPU core. In this sec-
tion, we represent an arrival-curves model for a specific QNX event THREAD
THRUNNING that marks every start of a thread execution for a specified process
proc/boot/procnto-instr. To evaluate the robustness of the example model
in Fig. 4a, we perform the following steps:

a) Compute Regression Slopes. We obtain the slopes of the fitted regres-
sion lines for the mean arrival curve and its confidence interval. It is advisable
to assess the adjusted R squared of the regression model. The metric measures
the goodness of the linear fit to evaluate whether the assumption that the model
is linear was valid [17]. In our example, the slopes of the lines in Fig. 4b can
be obtained as S = 6.76× 10−5, Su = 7.01× 10−5, and Sl = 6.52× 10−5. The
adjusted R squared is 98% indicating a good linear fit.

b) Choose Task Parameters. Next step is to specify the task parameters
e and p in order to obtain the relation between α and β from Eq. 18 and Eq. 19.
However, the provided empirical arrival-curves model cannot be used to obtain
the e and p values. This comes from the fact that the slopes of fitted regression
lines can represent any underlying task model satisfying the relation S = e

p .
Therefore, to obtain reasonable values for e and p, we need to choose p that

is a small fraction of ta to obtain the asymptotic values for α and β, in other
words, we aim to maximize the factor c defined in Section 4. Additionally, the
choice of p or e can be arbitrarily guided by domain knowledge of the system
under scrutiny. The other parameter can be estimated using the relation S = e

p
from Eq. 17 upon deciding on the value of p or e. In our example, we choose an
arbitrary value ta = 4× 105 that captures a sufficient number of trace events.
Then, we choose p = 0.001 x ta = 400, and as a result, we compute e = S x
p = 0.027.

c) Obtain Demand Variation Bound. The last parameters needed to
obtain the relation between α and β are σu and σl. The σ parameter defines
the difference between the fitted confidence interval curves after offsetting them
to pass by the origin (0, 0). Note that σ optimally can be expressed as σ =
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(dbf ′+intercept′)−(dbf +intercept), but we discard the difference between both
intercepts as the error resulting from that approximation is negligible. For the
example in Fig. 4b, we measure σu = −σl = σ′ where σ′ = 0.957 at ta = 4× 105.

d) Apply Feasibility Region Formulas. To obtain the estimated feasibil-
ity region for α and β, we plot the values of βu and βl for a valid range of α values
using the slopes of fitted regression lines from Eq. 18. For the actual feasibility
region, we plot the values of βu and βl versus α using Eq. 3. Fig. 5 shows the
overlay of both feasibility regions using the arrival-curves model and the actual
task model which, similarly to the illustration in Fig. 2, describe the permissible
values of α and the corresponding bounds on β. The negligible error between
both the actual and estimated feasibility regions validates that the approxima-
tion of a linear empirical arrival-curves model to the assumed demand-bound
function is reasonable.

The case study shows an example of an arrival-curves model that charac-
terizes the behavior of QNX kernel event on a real-time system. The empirical
model can now be represented as the demand-bound function of an equivalent
task model whose parameters alteration can be bounded. The boundaries de-
scribe the robustness of the model as it quantifies the variation captured in the
underlying normal behavior of the system. Such quantification provides design-
ers a valuable tool on how robust the model is, and allows for comparing different
models by assessing the feasibility regions of the task parameter variation.

6 Discussion

6.1 Linearity Assumption for Arrival Curves

We showed that having an empirical model that can be best approximated by a
regression line minimizes the error between the actual and the estimated feasi-



bility region. However, the linearity assumption might not hold for other arrival-
curves models. For example, mode-switching [19] yields an increasing arrival
curve but with horizontal gaps that correspond to the mode switches, because
of the lack of events arrival versus the increasing sliding window size.

6.2 Compositionality and Empirical Arrival Curves

We presented an empirical arrival-curves model that corresponds to a single
QNX event, however, our work can be extended by using compositionality [6,
24] to combine the task models describing empirical arrival curves originating
from multiple events into a system-level task model. In this case, the robustness
evaluation can be performed on a system-level which considers inter- and intra-
event interactions in contrast to the evaluation using event-level models.

6.3 Handling Heterogeneous Task Parameters

Finding the feasibility region for the permissible task variation becomes a more
complex problem if there exist different parameters αi and βi of heterogeneous
tasks. One reason is that the mathematical foundation presented in our work
assumes that the variations of nominal parameters for multiple tasks are inde-
pendent. In practice, the tasks of a given real-time system might not encounter
the same alteration, and in this case, translating such complex interaction into
a single demand-bound function, using compositionality for example, might be
a solution that would enable extending our work to multiple dependent tasks.

6.4 Iterative Model Assessment for Anomaly Detection

In anomaly detection, it is essential to evaluate whether the model is good enough
during the training process. Our approach can be integrated with the model
training procedure, such that the model is iteratively evaluated as new traces
are added. A designer can limit the model tolerance to a given specification that
relates α and β as represented in the feasibility region, and then a certification
procedure can assess the overlap of this region and the computed one.

7 Related Work on Sensitivity Analysis

Our work in this paper assumes that the demand boundaries of a given task are
defined and aims to find the feasible task parameters that would not exceed such
demand. Contrarily, research work in the domain of schedulability analysis aims
to study whether a given set of tasks can be scheduled, i.e., meet the task demand
without exceeding a given deadline, using different scheduling methods [2,15,25].
However, in the domain of scheduling, the analysis in this paper can be closely
related to sensitivity analysis.

Sensitivity analysis [20, 21, 29, 31] studies how much change to task parame-
ters, i.e., execution time or task period, will not violate scheduling constraints.



The early work on sensitivity analysis [14] computed the maximum variation
of all execution time for a given set of tasks that keep a system schedulable
for a rate-monotonic scheduler. Further work considered parameters other than
execution time, for example, the authors in [3] presents a feasibility space for
task deadlines to meet the constraint of schedulability. Authors in [29–31] study
the sensitivity analysis for EDF scheduling through the computation of optimal
task parameters such that a given system remains schedulable. Particularly, [29]
applied sensitivity analysis considering a varying task execution and [30] con-
sidered the case when the task period can be varied, while [31] assumed a fixed
ratio between relative deadline and period. Our work considers a novel scope
by obtaining feasibility regions for the permissible variation of task parameters,
without restricting such variation to a single task variation parameter, to meet
defined constraints on the increase and decrease to task demand rather than the
schedulability condition.

8 Conclusion

This paper presents an approach to evaluate the robustness of empirical arrival-
curves models that characterize the behavior of real-time systems. We derive
theoretical bounds on task parameter alteration permissible by the demand
variation represented in the demand-bound function of a sporadic task with
an implicit deadline under an EDF scheduler. We demonstrate the feasibility of
the approach through an abstraction of an empirical arrival-curves model to a
demand-bound function of the assumed task model. We evaluate the approach
on the arrival-curves models constructed from QNX operating system events
that describe the behavior of a real-time system.
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