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Abstract
Memory layout variations are often cited as a threat to the

reproducibility of computer performance experiments. Previ-
ous research has shown worst-case effects as large as 300% of
execution time, among other surprising cases. While these are
worrying results, how frequent and widespread are these large
effects? To answer this question, this paper presents a wide-
scale evaluation of memory layout effects on the performance
of a large subset of the SPECCPU2006 benchmark suite on a
wide array of diverse machines. We find that on average, these
benchmarks are not as susceptible to memory layout effects
as the worst-case analysis found in the literature suggests.
Finally, we re-execute our own experiment and demonstrate
why the reproducibility of an experiment’s result should not
depend on its data being perfectly reproducible.

1. Introduction
Several recent publications in the computer performance liter-
ature have reported on the dangers of discounting the effect
of small memory layout variations on empirical performance
results [1, 3, 4, 5, 13, 16]. Even small, seemingly innocu-
ous, adjustments to a program’s memory layout — e.g., the
size of the POSIX environment — can have a profound ef-
fect. In some cases, the extreme worst case memory layout
effects on performance can reach as high as 57% in the case
of link-order, and 300% in the case of changes to the POSIX
environment [4, 16]. We have independently confirmed [5]
the impact of memory layout on performance observed by
Mytkowicz et al. [16] using analogous experiment conditions,
and others have observed similar effects in the wild [3, 13].
However, at the other extreme, a number of researchers re-
port that performance effects as small as 2% occur in some
benchmarks as a result of link-order manipulations [1, 16].

Changes to the memory layout of an application can man-
ifest performance effects in several different ways. The size
of the POSIX environment of a process influences its memory
layout. Linux places environments at the beginning of the
address space, the larger the environment, the further along
the address space the code section and stack allocated data
reside. As a direct result of this offset, cache and page misses
may increase or decrease, influencing performance. Linux’s
Address Space Layout Randomization (ASLR) feature may
also cause these effects to occur as a result of the process itself
being mapped to different addresses.

While these factors are well known and the worst reported
effects are worrisome, it is important for researchers to know
if such large performance variations are guaranteed to affect
their benchmarks, or if they are rare or specific to certain
platforms. In this paper, we measure the performance effect
of varying the memory layout of a wide range of applications
and platforms, to determine how frequent and how large these
effects are on average. We use two methods of varying the
memory layout of an application, the POSIX environment size,
and Linux’s ASLR feature, on 11 different benchmarks in
the SPECCPU2006 benchmark suite, on 17 unique hardware
configurations. With replicates, this produces 2,244 individual
trials for analysis. This provides us with a much broader sense
of the impact on program performance of memory layout
variations.

First, we investigate if performance effects are reproducible
between benchmarks and machines, and second, we try to
reproduce these effects on the same hardware later in time.
We find both that memory has a significant effect on some
benchmarks, but that the effect is small when present.

2. Related Work

Several researchers have reported observing statistically sig-
nificant performance differences from memory layout manip-
ulations. With observations of effects from layout related
nuisance factors such as link-order, POSIX environment size,
and ASLR.

Kalibera et al. [13] demonstrate that the random initial state
of 6 different benchmarks had a significant impact on each
benchmark’s results. Kalibera concluded that benchmarks
were likely to be influenced by their random initial state. Four
of the benchmarks tested were Fast Fourier Transforms, it
is possible that there is a greater incidence of sensitivity to
memory layout in computation-heavy benchmarks.

Chen et al. [1] recently reported observing small, within
2%, variations in performance from different link-orders and
POSIX environment sizes in their study of iterative optimiza-
tion, a process highly dependent on reliable, reproducible and
consistent results.

Curtsinger et al. [3, 4] developed a tool for randomizing
the memory layout of code, stack and data memory regions
of a program at runtime, allowing a researcher to control the
effects of memory layout. The tool forces memory layout
effects to approximate a Gaussian distribution, permitting the



use of traditional statistical analysis techniques. Curtsinger
also reports performance regressions of up to 57% as a result
of manipulating link-order.

We have reproduced the results found in [16] in our own
reproduction case study [5] using very similar experimental
conditions. We confirmed that not only did memory layout
have a significant impact on performance, but that the optimal
link-order was machine dependent.

Researchers have called for more reproducibility and statis-
tical rigor in empirical computer science [2, 6, 7, 8, 17, 19],
and recently groups such as the Evaluate Collaboratory [10]
have come together to further pursue this goal. Complaints
include low numbers of factors, lack of measurements of dis-
persion, improper or missing statistical analysis. In addition,
the reporting practices in empirical computer performance
research — key to reproduction of empirical results — has
recently come into question. Tichy et al. [20] find substantial
flaws in experiment design and execution in their survey of
computer performance publications. Vitek and Kalibera [21]
report that 39 of 42 papers published in PLDI’11 did not re-
port a measure of dispersion with their data. Desprez et al.
draw similar conclusions from their paper survey [9]. Our own
literature survey [5] of over 200 recent publications from well
reputed performance conferences found that less than 25% of
the papers that included empirical performance data included
measurements of dispersion, less than 2% performed any sta-
tistical analysis of their results, and less than 60% included
any performance comparison for contextualizing results.

Despite these warnings and calls to action, we have
shown [5] that even today only the vanishing minority of
empirical computer science publications contain complete
enough information to reproduce experimental results, or in-
clude a measure of dispersion, a requirement for statistically
sound results in the presence of variability.

3. Memory Layout Experiments
To determine how frequent and how large memory layout
effects are in the wild, we measure the effect of different
memory layouts on the execution time of a wide range of
benchmarks, on a wide range of machines. The benchmarks
chosen are a subset of the SPECCPU2006 benchmark suite,
shown in Table 1, selected for their widespread use in com-
puter science [11]. We are interested in both increases and
decreases of execution time, SPECCPU2006’s native metric,
since the effects of memory layout are not necessarily all detri-
mental. Table 2 shows the machines used. This large sample
of heterogeneous machines and benchmarks will provide a
larger sample size than previous research, painting a more
comprehensive picture of these effects.

We force benchmarks to execute under different memory
layouts by varying two factors: POSIX environment padding
and Linux’s ASLR feature. The environment size of a process
affects its memory layout because Linux places environments
at the beginning of the address space. The larger the envi-

Benchmark Area
Astar Path-finding

Calculix Structural Mechanics
Bzip2 Data Compression
GCC Compiler

GobMK A.I.
H264 Video Comp.
Lbm Fluid Dynamics
Milc Physics

Povray Ray-tracing
Tonto Chemistry

Wrf Weather
Zeus Physics

Table 1: Benchmark Set

ID Processor RAM
73 VIA Nano X2 1.6GHz 1.5GB
75 Pentium 4 CPU 3.20GHz 1GB
80 Core i7-2600K 3.40GHz 8GB
81 Opteron 8378 2.4GHz 32GB
88 Pentium M 1.70GHz 1GB
90 Pentium 4 3.20GHz 1GB
91 Pentium 4 2.40GHz 1GB
93 Pentium 4 3.40GHz 1GB
96 Pentium 4 3.20GHz 2GB
97 Pentium 4 3.00GHz 900MB
98 Pentium 4 3.00GHz 900MB
99 Pentium 4 2.80GHz 900MB

105 Pentium 4 3.20GHz 900MB
106 Pentium 4 3.20GHz 500MB
128 Pentium D 3.00GHz 2GB
130 Pentium 4 3.20GHz 900MB
135 Athlon 64 3500+ 2GB

Table 2: Machine Set

ronment, the farther out in the address space the code section
will be, and depending on the increments of this offset, cache
or paging-related performance effects may occur. Similarly,
Linux’s ASLR feature may cause these effects to appear due to
the sections of a process being mapped at different addresses.

The experiment follows a two-level full-factorial de-
sign [15], where both factors have two levels (or settings)
and are explored concurrently (i.e., all possible combinations
of factors are explored). The environment paddings used are
zero bytes or 10,928 bytes, and ASLR is set to “on” or “off”.
Each factor combination is executed three times on each ma-
chine to allow for a measure of variance, leading to a total of
twelve (2×2×3) jobs per machine, per benchmark, totaling
2,244 individual jobs. To collect this large amount of data, we
use DataMill, a performance evaluation infrastructure further
discussed in Section 5.
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Figure 1: Memory Effects on Bzip2 on Machine 128

3.1. Analysis of Variance

To determine the effect of the two memory layout factors on
the execution time of the benchmarks, we use analysis of vari-
ance (ANOVA). ANOVA is a statistical method that partitions
the variability of a data set into its component parts; in our
case, the variability caused by the environment padding factor,
the variability caused by the ASLR factor, the interaction be-
tween these two factors, and unexplained variability caused
by error (i.e., uncontrolled sources of variability).

Figure 1 shows the effect size for the two factors and their
interaction on Bzip2 when executed on machine 128. The
x-axis shows the source of variability, and the y-axis shows
the size of the effect as a percentage of the mean performance,
with error bars showing one standard error around the effect
estimate. For example, an effect of +10% means that, on this
machine, this benchmark’s execution time will increase by
10% of the average when this factor is “turned on”. In the case
of Figure 1, the effect of both factors is less than one tenth of
one percent of the mean, even though address randomization
effect is statistically significant with P < 0.01 (the environment
padding effect and the interaction between the two effects are
not statistically significant).

An effect must be statistically significant to be distinguish-
able from noise. More pragmatically, an effect must also be
large enough to be of importance; for example, a statistically
significant effect of 0.1% of the mean is not large enough to
impact the majority of applications. The remainder of this
section elaborates on this distinction.

3.2. Results

Figure 2 shows the relative effect sizes for each factor and their
interaction for each benchmark, with data from all machines
grouped in a single box plot. The three horizontal lines in each
box represent the upper quartile, the median, and the lower
quartile. The lower and upper whiskers extend to the last value
within 1.5 times the interquartile range of the lower and upper
quartile, respectively. Dots represent outliers that are outside
this range. If a benchmark had a systematic sensitivity to either
factor or their interaction, one of these plots would show a
significant deviation from zero. As the plots show, however,
the most significant deviation is still well under 3%.

Figure 3 shows the relative effect sizes for each factor and
their interaction for each machine, with data from all bench-
marks grouped in a single box plot. Similarly to Figure 2,
this plot would reveal a machine’s systematic sensitivity to
either factor or their interaction, but, again, no such significant
sensitivity exists.

The previous figures show that, from a bird’s eye view, our
memory-layout-related effects appear negligible. Figure 4
shows the absolute worst case observed in our experiments,
Astar on machine 81. The x-axis shows the factor name, and
the y-axis shows the absolute magnitude of the effect. On
this machine-benchmark pair, the ASLR factor had an effect
estimate of -22.06s, while the mean execution time of that
benchmark on that machine was 787.3s (a relative effect of
-2.8%). Note that the error bars straddle the zero axis, and
therefore these effects are not statistically significant. Most
importantly, even if we were to ignore statistical significance
(running the risk of treating noise as a real effect), this effect
is not practically significant, and therefore, not even our worst
single observed case is cause for concern.

Given the breadth of machines and benchmarks explored
here, we feel confident in saying that memory effects, as con-
trolled by the two factors we investigated, are not significant
enough to warrant widespread concern. Exceptional cases,
where these effects are more pronounced, or where a sub-3%
performance difference is crucial may occur, but for the great
majority of computer performance researchers these effects
appear negligible.

4. Reproduction

While the goal of statistical methods such as ANOVA is to
ensure reproducible results, we have repeated the set of experi-
ments described in Section 3.2 one week later to evaluate how
reliable those measurements were, and how easily the results
could be reproduced at a later date.

Table 3 presents a comparison between the original experi-
ment and the reproduction experiment. The numbers presented
for mean and maximum effects are based on the absolute val-
ues of the effects, such that negative effects do not cancel
out positive ones. Due to hardware malfunctions, only 13 of
the original 17 machines were available for the reproduction,

3



Astar Bzip2 Calculix GCC Gobmk H264 Lbm Milc Tonto Wrf Zeusmp

●

● ●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●● ●

−2

0

2

EP AR Int EP AR Int EP AR Int EP AR Int EP AR Int EP AR Int EP AR Int EP AR Int EP AR Int EP AR Int EP AR Int
Factor

E
ffe

ct
 S

iz
e 

[%
 o

f M
ea

n]

Figure 2: Memory Effects by Benchmark
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Figure 3: Memory Effects by Machine

and only 9 of the original 11 applications ran to completion
for the full duration of the experiment. As seen on the table,
the mean estimates of the reproduction were similar to the
original experiment (that is to say, effects were negligible),
but the single worst case effect of the address randomization
factor grew significantly. However, much like the 2.8% worst
case effect of the original experiment, the 5.94% effect of the
reproduction experiment is also statistically insignificant, and

therefore indistinguishable from noise. The equivalent plots
to Figures 2 and 3 are suppressed due to space constraints, but
are largely indistinguishable from the original plots.

Although precisely the same conditions were not recreated
as a result of a power surge that led to hardware failures, we
were able to reproduce the result from the first experiment.
This is due to the built-in reproduction of results on a wide
array of machines and benchmarks. This broader strategy of
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Figure 4: Worst Case Addr. Rand. Effect on Astar on Machine
81

Original Reproduction
Mean Env. Pad. 0.000032% 0.000045%
Max. Env. Pad. 0.00035% 0.00031%

Mean Addr. Rand. 0.23% 0.42%
Max. Addr. Rand. 2.8% 5.94%

Machines 17 13
Applications 11 9

Table 3: Reproduction Summary

reproduction is more desirable than simply re-running experi-
ments on a single platform, since results derived from it are
more likely to be reproducible by other researchers on other
platforms.

5. Discussion and Lessons Learned

Generality of claims vs individual results Our work con-
firms findings and arguments reported by others regarding the
generality of claims. The large set of diverse nuisance factors
that influence computer performance experimentation forces
us to be extremely careful when reporting that our results hold
in the general case [12, 13, 14, 15, 16]. Even in well designed
experiments that use multiple machines, and many experimen-
tal conditions such as in [3, 13, 16], results and effects can be
observed that pertain only to the set of conditions tested.

Reproduction of data vs reproduction of results Given
the fast pace of computer technology, reproducing data on a
single platform only goes so far. By reproducing an effect
on various platforms and under various operating conditions,
researchers improve the generality of their results. We cannot

justify using small numbers of experimental conditions for
comparing performance. The fact that our results greatly differ
from those found by others in the literature only further con-
firms that we must use more sets of experimental conditions.

In [16], Mytkowicz et al. find not only that link-order and
POSIX environment size have a significant effect on perfor-
mance, but that they can cause very dramatic regressions or
speedups in performance (57% and 300% worst cases respec-
tively). The paper concludes saying that we must be careful not
to run experiments against only a small set of conditions, and
that we need to be cautious of the impact of small variations
in our experimental environment, as they can be deceptively
influential.

Although our results point towards much lower worst case
memory layout effects — 2.8% and 5.94% worst case effects
for the original and reproduction experiments respectively —
this does not contradict data found by other researchers, nor
does it contradict their results. Instead, our data improves
the generality of our understanding of memory layout perfor-
mance effects. We observe smaller effects in different bench-
marks, and on different hardware configurations. Our set of
conditions is different from those of others in the literature, so
we can expect our data to differ as well.

The process of reproducing the data found in a study allows
researchers to ensure the experiment is calibrated appropri-
ately, and to work out issues in the experimental setup, as
in [5]. Once the experiment achieves the results previously
observed in the original study, performing sanity checks by
varying factors that purportedly should not affect the results, as
we did in this paper, is a very useful and enlightening process.

Reliability of diverse systems In our attempt to reproduce
our results at a later date, we found that several of the machines
used in the previous experiments had ceased to function as
the result of a power surge. Experiences like this highlight
the importance of reproducible results of a paper as opposed
to reproducible data. Although we were unable to replicate
the precise conditions of the experiment due to our machine
losses, we were able to reproduce the results.

It is because we following advice and guidelines similar
to those in [16], to using a diverse set of experimental condi-
tions for experimentation, that we were able to successfully
reproduce our results.

Determining sensitivity to memory layout effects Despite
the fact that our results point to a lack of sensitivity to memory
layout performance effects in the general case, the fact remains
that a given experiment could be susceptible to them. How
can we determine whether or not memory layout effects will
be a concern for a given benchmark-machine pair? At current,
there is no simple answer other than to perform exploratory
experimentation.

A common idiom in clinical drug trials — another science
that must deal with many interacting nuisance factors — is
to perform so-called pilot trials, where a drug is tested in a
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limited size and scope to roughly estimate the drug’s effective-
ness and sensitivity to factors. The results of the pilot trial,
along with expert knowledge, are used to guide the design
and prioritization of factor exploration of the more in-depth
experiment, the pivotal trial.

From a small set of randomized conditions, as in a pilot
trial, a computer science researcher may be able to identify
sensitivity to well-known nuisance factors and prioritize the
factors considered in their final experiments accordingly.

Mass experimentation with diverse hardware All of the
experimental trials were conducted using DataMill [18, 5], a
community-driven infrastructure for computer performance
evaluation.

DataMill offers a wide variety of diverse machines for ex-
periment execution in a clean-room environment, ensuring
repeatability and consistent results across machines and sim-
plified trial replication. The pertinent details of the hardware
and software used during the course of the experiment are
also automatically recorded and reported by the infrastructure
to contextualize results. This combination of features placed
DataMill in a good position to explore the effects of memory
layout in a much broader set of experiment conditions than
previously realized.

6. Conclusion
This paper presented a wide-scale evaluation of memory ef-
fects on benchmark performance, using a large subset of SPEC-
CPU2006 on a wide array of machines. The results show that,
on average, these benchmarks are not as susceptible to memory
layout effects as the worst-case analysis found in the literature
suggests, and, therefore, these effects should not be a priority
when controlling threats to experiment reproducibility.

Our results also clearly show that statistical significance,
while important for reproducibility, is secondary to “practical
significance”. While many benchmark-machine pairs showed
statistically significant memory-layout-related effects, these
were almost entirely negligible for the average researcher.

Finally, when attempting to reproduce our own results at
a later date, we found it difficult to execute the exact same
jobs on the exact same machines at such a large scale due to
hardware failures. This makes it all the more important that
the results of a paper are reproducible even though the data
may not be. A conclusion drawn from a set of machines will
not depend on data from any single one of them, and is more
likely to apply in the general case.
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