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ABSTRACT

The goal of runtime verification is to inspect the correctness
of a system by incorporating a monitor during its execution.
Predictability of time distribution of monitor invocations
and memory usage are two indicators of the quality of a mon-
itoring solution, specially in cyber-physical systems, where
the physical environment is a part of the system dynam-
ics. In our previous work, we proposed a control-theoretic
approach for coordinating time predictability and memory
utilization in runtime verification of time-sensitive systems.
To this end, we designed controllers that attempt to improve
time predictability, while ensuring the soundness of verifica-
tion by incorporating a maximally utilized bounded memory
buffer that accumulates events.

Since the frequency of occurrence of environment actions
in cyber-physical systems is not known a priori, the system
may run into situations, where the buffer is full, but a moni-
tor invocation has not yet been scheduled. In control theory,
this is called the overshooting phenomenon, which inherently
decreases time predictability. In this paper, we address the
issue of overshoots, by employing a second controller that
allows limited memory reservations to temporarily extend
the size of the event buffer when the system is subject to
bursts of environment actions. We apply our solution to
the verification of the air/fuel ratio in a car engine exhaust.
The acceptable ratio varies depending on the driving circum-
stances, and monitoring that ratio is important to control
emissions in a vehicle. A highly predictable monitor imposes
uniform load on the engine control unit (ECU), thus, not
negatively or sporadically affecting its control tasks. The ex-
perimental results exhibit two significant contributions: we
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(1) demonstrate the advantages of applying our approach
to achieve low variation in the frequency of monitor invoca-
tions for verification, while maintaining maximum memory
utilization, and (2) clearly illustrate that by negligible tem-
porary increases in the size of the event buffer, the number
of overshoots decreases significantly, which in turn substan-
tially increases time predictability of runtime verification.
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Control Methods, and Search—Control theory
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1. INTRODUCTION

Runtime verification (RV) is a technique that employs
tools for monitoring software execution to gain assurance
about the correctness of systems. The inherent cost of RV
is runtime overhead. In the context of systems that are re-
quired to meet soft or hard timing constraints, this cost by
itself is not the main obstacle in augmenting a system with
RV technology. Rather, the monitoring mechanism must be
designed in a non-intrusive fashion; i.e., the monitor should
not interfere with the normal timing behavior of the system.
To achieve this goal, the monitor should behave in a man-
ner, where it is invoked with some level of time predictability
regardless of the system behavior and more importantly en-
vironment actions. Cyber-physical systems interact heavily
with the physical world, often making it more difficult to
predict the behavior of the system due to the unpredictabil-
ity of the environment. In such systems, time predictability
is crucial to avoid the negative impact of sporadic load in
verification.



Program Threads Legend
N
—> Data Flow SChEdUI.Ed
- Invocation
— Control Flow ----- Instrumentation
ceep Buffer Triggered
Invocation Y,
Empty Locations to Safety
Event Buffer
=
> 3 .,
[ | 3 ' Total Empty
. T : / Locations
Buffer + L TTTIToctihmTmmTmmTTImTIees
Tr?g ;err E Type of Invocation
" 4
.......... TE DT T T R PP P POy Py T PP PPN PP PR -
+ | Monitor Buffer Size Controller |
Y Clear Calculate L
Read Verify. : | Nos je— ney buﬁer I
Events Properties | : :|queue size
7y l - L
: 11 Polling Period Controller : Ns
Read Polling | & ¢ o elements
Period 11| Clear Calculate XL
H : Ny [&— new polling
: e - iod Es ! L
Lo Idle : ¢ | queue perios -
H . Npp
......................................................................... elements
Monitor Thread Polling Period

Figure 1: Outline of the proposed controller design.

There exist several approaches in the literature for mon-
itoring real-time systems. In [4, 5], the authors introduce a
monitoring approach, where a time-triggered monitor polls
the state of the system under inspection within fixed time
intervals. In order to reconstruct the system state soundly,
this technique analyzes the timing characteristics of the code
in detail. However, this work falls short in dealing with sys-
tems that need to react to the environment actions in a
timely fashion at run time. Other approaches (e.g., [16])
only make recommendations on how to design such mon-
itors for real-time systems. Thus, our premise is that we
currently lack time-predictable monitoring methods that can
deal with reactive systems, where the time and frequency of
occurrence of environment actions are unanticipated.

With this motivation, in this paper, we concentrate on
designing an RV technique, where the monitor should react
to system dynamics and environment actions, while taking
resource limitations into account. We require the following:

1. The monitor is invoked within time intervals, called the
polling period, subject to an upper bound to enforce
property violation detection latency. The monitor is
also required to maintain minimum jitter in changing
the polling period.

2. The monitor must be sound; i.e., false-positives and
false-negatives are not acceptable.

3. Since the monitor is invoked within time intervals, the
program under inspection may store events between
two subsequent polls in a bounded-size static buffer.
This buffer is required to be filled with mazimum wuti-
lization.

In [11], we show that the above objectives can be
achieved elegantly by designing fuzzy controllers that dy-
namically determine the polling period to optimize memory

utilization and time predictability. The input to this fuzzy
controller is the average number of empty locations in the
static buffer over a period of time. When the buffer is about
to get full, the controller decreases the polling period. More-
over, to maintain soundness, when the static buffer is full,
the monitor invocation is automatically triggered ahead of
its scheduled invocation. We call this phenomenon, a buffer
trigger (also called an overshoot in control theory).

Obviously, buffer triggers may cause undesirable varia-
tions in timing behavior of monitor invocations. Thus, in
this paper, we build on our previous results by designing a
method that can dynamically extend the buffer size in peri-
ods of time that the monitor is overloaded with bursts of in-
coming events (see Figure 1). We require that the extension
to the buffer is (1) temporary, (2) of minimum size, and (3)
acceptable if the system indeed has extra unutilized memory
space. To this end, we design a second fuzzy controller (see
the “Buffer Size Controller” in Figure 1) that reserves mem-
ory, if there is space, and releases it after transient overloads.
The input to this controller is the average number of empty
locations in the buffer as well as the average number of mon-
itor invocations and their types (regular polling vs. buffer
trigger) over a period of time. If the system experiences a
number of transient buffer triggers, the controller extends
the buffer size to avoid additional buffer triggers. This addi-
tional buffer space is allocated for monitoring purposes, so
that monitors can reserve parts of it to maintain predictable
behavior. Moreover, our design gives more priority to the
decisions made by the second controller; i.e., extensions to
the buffer have higher priority than decreasing the polling
period. We demonstrate using experiments that memory
reservations by the controller are on average very low, indi-
cating that the additional space is generally available during
execution (i.e. for use by other monitors) except during pe-
riods of transient load. We emphasize that the design of our
fuzzy controllers (i.e., fuzzy sets and membership functions)
are quite simple and straightforward and the designer does
not need to incorporate sophisticated knowledge about the
system in the controller design.

Fuzzy controllers provide a set of advantages that make
them a suitable choice for controlling memory utilization
and time predictability:

1. They support non-linear systems where incoming
events can potentially exhibit high variability in short
periods of time.

2. They are easy to implement due to the simple math-
ematics involved in their computation, thus, inducing
low processing overhead.

3. Although there are many customizations that can op-
timize a fuzzy controller, we show that a trivial imple-
mentation can show an improvement over an uncon-
trolled system.

To validate our approach, we conduct a set of thorough ex-
periments on the verification of air/fuel ratio in a Toyota 2JZ
engine exhaust. For environmental purposes as well as pro-
tecting the engine from failure, a control system is present
in vehicles to control the air/fuel ratio. It is crucial to verify
the validity of the measured ratio to detect any failures that



could potentially be harmful to the environment or to the
engine itself. An engine control unit (ECU) is responsible
for managing the many control systems within an engine.
Similar to most cyber-physical systems, the ECU output is
affected heavily by the physical world. Thus, verification in
this system should not impose non-uniform load and should
be predictable. Our experiments clearly demonstrate the ad-
vantages of employing our simple fuzzy controllers to achieve
low variation in the monitor polling period, while maintain-
ing maximum memory utilization in highly non-linear en-
vironments. Our GPU-based verification engine [2] is run
by our RV tool RiITHM [13] for specifications expressed in
the 3-valued semantics of linear temporal logic (LTLs [1]).
In particular, our results show that the second controller
can prevent up to 83% of the overshoots and improve time
predictability by a factor of 2. Moreover, the average size
of buffer extension is negligible (as low as 2.5%). Our ex-
periments also show a positive correlation coefficient of 0.96
between the number of buffer triggers and the coefficient
of variation in the polling period. This observation strongly
supports the basis on which the second controller is designed:

Decreasing the number of buffer triggers will sig-
nificantly improve time predictability of runtime
monitoring.

Organization.

The rest of the paper is organized as follows. In Section 2,
we formally state our runtime monitoring objectives. Sec-
tion 3 recaps the basic concepts on fuzzy controllers. Our
controller design choices are explained in Section 4. We
present our case study and experimental results in Section 5.
Related work is discussed in Section 6. Finally, we make
concluding remarks and discuss future work in Section 7.

2. FORMAL PROBLEM DESCRIPTION

Expressing logical properties of a system normally involves
a set of program variables whose value may change over time.
We call such change of value an event. Monitoring an event
involves invoking a process (called the monitor) that evalu-
ates the properties associated with that event at run time.
This paper is concerned with the problem of runtime verifi-
cation of reactive systems, where the monitor is required to
exhibit the following features simultaneously:

e Soundness. For verification to be sound, all events
should be monitored. That is, no event that can poten-
tially change the valuation of a property is overlooked.

e Time predictability. Since invocation of the
monitor interrupts the program execution, we require
that these interruptions are predictable with respect
to time. This requirement assists in achieving more
accurate system-wide scheduling.

e Resource utilization. The monitor has a preallo-
cated static buffer to store events that need to be mon-
itored. However, it may temporarily extend the static
buffer by dynamically reserving memory, if the system
indeed has unutilized space. We call the static buffer

plus the newly reserved memory space the extended
buffer. The system maintains a memory space to be re-
served by monitors suffering high transient loads. This
space is also bounded. We require minimum reserva-
tions and maximum utilization of the static buffer.

We now formulate the above constraints. Let R be a re-
active system with limited memory under inspection and ®
be a set of logical properties (e.g., in LTL), where R is ex-
pected to satisfy ®. Since, system R has limited memory,
we assume that the number of events that it can buffer for
monitoring has an upper bound B.

Let E = ejez---e, be a given finite sequence of events
that can change the valuation of ® and T, = tc te, - - - te,,
be the finite sequence of timestamps of occurrence of the
events, where n € N. Also, let M = mimz---my be the
output finite sequence of monitor invocations and 15, =
tmitms - - - tm, be the finite sequence of timestamps of mon-
itor invocations, where k£ € N. We note that k is a variable
to be controlled, meaning that depending upon the monitor-
ing policy, k may change. We denote the start time of the
monitor by t,,,. Thus, we extend Tr, as timglm;tms == tmy, -
Also, let Bm = bm,bm, -+ - bm, be the output sequence of
extended buffer sizes for each monitor invocation.

Since the extended buffer size is decided by the monitor,
it should never exceed a given upper bound B, and should
not fall below a given lower bound B. The lower bound is
the size of the static buffer when the monitor is initialized.
Thus, the following condition must hold:

Vi €{l---k}:B<bm, <B (1)

Let between (11, 72) be a function that returns all the events
that occur between time 7 and 7o:

between(m1,72) ={e; | 71 <te, < T2} (2)

Based on the above description, we say that the monitor is
sound iff:

Vi € {1---k}: |between (tm,;_,,tm,)

<bm, ()

which implies that at no point in time incoming events will
overflow the extended buffer space.

We formalize maximization of memory utilization as the
following objective:

k
1 !between (th 7tW)
o {kZ by } @

i=1

Thus, the objective is to maximize the average memory uti-
lization by maximizing the filling ratio of the buffer
(‘ between (tm,;_y,tm, )| /bm,). Since k is a variable over which
the formula is maximized, the smaller the k, the higher the
average.

This memory utilization is relative to the extended buffer
space at the time of monitor invocation. However, since we
allow dynamic reservation and release of memory, the mon-
itoring solution should also attempt to minimize the extra
reservations above the B lower bound:

i {i 2 b B} ®)



Thus, the average size of extra reservations across all runs
of the monitor should be minimized.
Let X = {X; |1 <4<k} be the set, where

X = tmi - tmi,l

i.e., each X; is the amount of time elapsed between moni-
tor invocations m; and m;—;. Thus, we characterize time
predictability by the following objective:

min {V(X) | for all possible sets of X} (6)

where V(X)) is the variance of X. In other words, by min-
imizing the variance of all X;, we achieve predictability in
the invocation of the monitor.

Observe that the best case minimum variance is zero,
which means that for all ¢, t;,, — tm,_, remains constant.
However, if a monitor adopts a constant monitoring fre-
quency, it may be possible to lose soundness in a reactive
system, as the rate of occurrence of events depends upon
external stimuli, such as environment actions. Furthermore,
for memory utilization, the best case is 100% average uti-
lization. However, such a constraint conflicts with the time
predictability requirement, since invoking the monitor when-
ever the buffer is full will result in a variance that is totally
controlled by external actions. This discussion clearly illus-
trates that memory utilization and time-predictability are
conflicting requirements.

Since the sequence of events to be monitored is not given
a priori, an optimal monitoring policy that satisfies sound-
ness, time predictability, and high memory utilization can-
not be designed before system deployment. In other words,
the times and frequency of monitor invocations have to be
dynamically adjusted based on the conditions of the system
under inspection. Consequently, our goal is to design a run-
time control mechanism that enforces our objectives (i.e.,
Equations 3, 4, 5, and 6) simultaneously through identify-
ing Tr, (i.e., time of monitor invocations and, hence, k) in a
best-effort fashion.

3. BACKGROUND: FUZZY
CONTROLLERS

A fuzzy controller is often considered as a real-time ex-
pert system that relies in part on the system operator’s ex-
pertise in the form of situation/action rules [8]. This dif-
fers from PID controllers in that fuzzy controllers mainly
describe what the system’s operator would do in different
situations based on a set of fuzzy conditions, which resem-
bles our human perception of conditions/actions such as the
control we employ while driving. This fundamental basis
enables fuzzy controllers to outperform PID controllers in
non-linear systems.

3.1 Fuzzy Logic

The first function of a fuzzy controller is to transform a
discrete measured value called a crisp value (e.g., 30° or
1.9m) to a fuzzy value (e.g., High or Tall). We first define
fuzzy sets as sets, whose elements have degrees of member-
ship to that set. For a universe U, each fuzzy set is associated
with a membership function, which maps each value u € U
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Figure 2: Structure of a Fuzzy Controller [8].

to a value within the interval [0, 1]. That is
p:U —[0,1]

An if-then implication rule is generally of the form “if X
is A then Y is B”, where X is a fuzzy variable (a variable
that can be expressed in fuzzy values instead of numerical
crisp values), A is an antecedent fuzzy set, Y is an output
fuzzy variable and B is a consequent fuzzy set. In fuzzy
logic, there are many methods with which we can perform
inference based on this implication. We use scaled infer-
ence, which has the advantage of preserving the shape of
the membership function. In scaled inference, an implica-
tion is represented by scaling the consequent membership
function with the degree of membership of the crisp value
in the antecedent function. Thus, for an if-then rule, scaled
inference S is calculated as follows:

ps(z,y) = pa(z) - 1Y)

where z is the measured crisp value of the fuzzy variable X
and y is the output crisp value of fuzzy variable Y. This
process of evaluating the above equation is called firing.

Applying scaled inference to support multiple rules is our
goal in fuzzy controllers, since we need to control the system
using a set of rules that account for the expert’s response
in different situations. There are two ways to apply scaled
inference to multiple rules: (1) composition-based inference,
and (2) individual-rule-based inference. The difference be-
tween these two methods is that in individual-rule-based in-
ference, each rule is fired individually and then a union is
calculated for all rules. Composition-based inference calcu-
lates the union first and then fires the resulting set. The
output for both methods is the same when using scaled in-
ference. Thus, for a given u € U, the result of firing the set
of rules using individual rule-based inference is obtained by
the following equation:

pr (u) = max {ba00 (@) - prgon (u)} (7)

where k is the enumerator over the set of rules, and x is the
crisp input.

3.2 Structure of a Fuzzy Controller

Figure 2 shows the structure of a typical fuzzy controller [8].
A fuzzy controller consists of the following components:

e Fuzzification. When a fuzzy controller receives
a measured value from the system, this value must
be fuzzified, so that its membership to the associated
fuzzy sets could be determined. As mentioned earlier,
in this paper, we use scaled inference for fuzzification.



¢ Knowledge base. This component consists of a
rulebase and a database. The rulebase contains the
set of rules including the antecedents and consequents.
The database contains the membership functions of
fuzzy sets. In common practice there are five fuzzy
sets for each fuzzy variable: LargeNeg, MedNeg, Small,
MedPos, and LargePos. The membership functions for
these sets are lambda-type functions, with the excep-
tion of LargeNeg and LargePos, which are Z-type and
S-type respectively [14]. The lambda-type function is
defined as follows:

(z=0)/(m-=1) 1<z<m
(r—=z)/(r—m) m<z<r
0 otherwise

L(z)=

where [, m, and r denote left, middle, and right points,
respectively with | < m < r. Similarly, the S-type
function is defined as follows:

0 x <l
SE)y=<¢ (z=0)/(r=1) Il<z<r
1 T>T

Finally, the Z-type function is defined as follows:

1 <l
Z(x) = (r—=x)/(r=10) l<z<r
0 xr>r

An example of these functions is shown in Figure 3.
LargeNeg is a Z-type function, LargePos is an S-type
function, and MedNeg, Small and MedPos are lambda-
type functions.

e Inference engine. The inference engine employs
either composition-based inference or individual-rule-
based inference, described above. The latter is more
widely used in fuzzy control since it is computationally
more efficient and uses less memory.

e Defuzzification. This component transforms the
output of the inference engine into one single point-
wise value. This value is then applied to the sys-
tem to complete the control loop. The most widely
used method for defuzzification is gravity defuzzifica-
tion, which calculates the center of gravity for us (u)
in Equation 7. The output crisp value u* is calculated

LargeNeg  MedNeg Small MedPos LargePos
1A 1 4 \ \
075~ S LN
05/ %
025\ o
0 / SR
-10 -5 0 5 10

Figure 3: Membership functions of input fuzzy sets.

as follows:

) /+oou-,u1 (u) du
- /+Oo,u1 (u) du

—o0

4. CONTROLLER DESIGN

Recall that Figure 1 shows the general outline of our solu-
tion. The program under inspection can be multi-threaded
running on a single-core machine. We instrument the pro-
gram under inspection, so that it enqueues the value of vari-
ables of interest in a buffer whenever they are modified. The
monitor is a separate thread within the program’s process,
that executes at a higher priority than the program threads.
It is idle for a period of time (the polling period) while events
are being enqueued in the buffer, and it is scheduled for
invocation once the polling period expires. Once invoked,
the monitor preempts the program threads due to having
a higher priority. The monitor then reads all events and
verifies a set of predefined logical properties. Once the veri-
fication is complete, the monitor enters idle mode again, and
awaits the refilling of the event buffer. In order to maintain
soundness, no events should be dropped from the buffer.
Thus, when the static buffer is full, the monitor is auto-
matically triggered ahead of its scheduled invocation. We
call this phenomenon a buffer trigger. Our design is based
on the collaboration of two controllers: (1) a controller is
responsible for managing the polling period (described in
Subsection 4.1), and (2) a controller is responsible for man-
aging the buffer size (described in Subsection 4.2).

4.1 Polling Period Controller (PPC)

We now describe two designs for PPC previously pre-
sented in [11]: Fuzzy 1 which is a fuzzy controller attempting
to maximize memory utilization (Equation 4), and Fuzzy 2
which attempts to simultaneously maximize memory utiliza-
tion and enhance time predictability (Equations 4 and 6).

4.1.1 Fuzzy Controller 1

Since we deal with reactive systems, in principle, buffer-
triggered invocations of the monitor are inevitable. Our de-
sign supports a safety threshold for buffer utilization. For
instance, a controller with 80% safety threshold will attempt
to keep the buffer 80% utilized in every monitor invocation.
The purpose of having a safety threshold is to decrease the
number of buffer triggers. This controller operates within
the monitor thread. It is invoked every N, invocations of
the monitor, where N,, is a design parameter. In Figure 1,
PPC buffers the number of empty locations of the last NV,
invocations, to be used to calculate the average when the
controller is invoked. The design of the controller is as fol-
lows:

e Input. The input to the controller is the fuzzy
variable E'p representing the average number of empty
locations in the buffer in the last N, monitor invoca-
tions. The crisp value for this variable is calculated as
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functions as shown in Figure 4. The Small set has a
peak at zero error, with the left x-intercept at choosing a polling period of a value as close as possible to the
b, (1 — Sun,) mean of all previous polling periods. The second condition

s 5 s ensures that the variance of the polling period is minimized.

Figure 4: Membership functions of Fp fuzzy sets.

and the right z-intercept at

bm; X Sm;
2

The reason these points are not symmetric is that the
largest positive error that could be reached is bp,; x
Sm;, which denotes that the buffer is completely empty.
However, the largest negative error is —by,, (1 — Sm,),
since buffer triggering will prevent the error from ex-
ceeding that value.

Output. The output of the controller is the offset
value from the current polling period, which we de-
note as Ax. The membership functions for the output
variable are standard lambda-type functions similar to
those in Figure 3, with centers at —1, —0.5, 0, 0.5, and
1, respectively. The output is multiplied by a factor
depending on the nature of the system.

If-then rules.  The if-then rules for the controller
are as follows:

— if Ep is LargeNeg, Ax is LargeNeg
— if Ep is MedNeg, Ax is MedNeg

— if E'p is Small, Ax is Small

— if Ep is MedPos, Ax is MedPos

— if Ep is LargePos, Ax is LargePos

Fuzzification, inference, and defuzzification.
The fuzzification module uses scaled inference and the
inference engine uses individual rule based firing. The
defuzzification module uses the center of gravity method
to calculate the output value. The calculations in-
volved in applying these methods are minimal, with
the advantage that most of the calculations can be pre-
computed before the system executes, thus decreasing
the processing overhead of the controller in runtime.

e Input. In addition to Fp, we introduce a new fuzzy
variable Eg to control the polling period variance.
Polling period here refers to the period of time be-
tween two monitor invocations, regardless of whether
the invocations were scheduled or buffer triggered. The
reason for this is twofold: (1) The controller needs to
account for buffer triggers in its calculations to stabi-
lize the polling period, and (2) scheduled invocations
are not always accurate due to system noise. Eg rep-
resents the difference between the average polling pe-
riod in the last Np, invocations and the mean of all
previous polling periods. As in Fuzzy 1, the polling
period is buffered in an N, element buffer to calcu-
late the average. The crisp values of Ex is calculated
as follows:

J-Npp
1 _
¥ o> Xi-X
i=(j—1)-Npp
X

where i is the index of the monitor invocation, X, is
the ith polling period, j is the index of the controller
invocation and X is the mean of all previous polling
periods. FEx is a percentage so as to make the con-
troller computations independent of the time scale at
which the system operates. The membership functions
for this variable are standard lambda-type, as shown
in Figure 5. These values are configuration parame-
ters and can be changed according to the user require-
ment. The choice of the range —30% to 30% produces
low variation in the polling periods, and consequently
high time predictability.

Ex(j) =

e Output. The output of the controller is the same
as Fuzzy 1.

e If-then rules. Since the controller is now targeting
two simultaneous goals involving two fuzzy variables
(Ep and Ex), with 5 fuzzy sets each, there are 25

4.1.2  Fuzzy Controller 2

This controller targets both memory utilization and time
predictability. The approach of this controller is to bal-
ance between choosing a polling period that would minimize
the number of empty locations in the extended buffer, and

possible if-then rules. Table 1 shows the consequent
fuzzy set of each rule based on the combination of the
two antecedent fuzzy sets, where the columns are Ex
fuzzy sets, the rows are Ep fuzzy sets, and LN, MN, S,
MP, and LP are abbreviations of LargeNeg, MedNeg,
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Figure 5: Membership functions of Ex.

Small, MedPos, and LargePos, respectively. The map-
ping above is symmetric and no variable has a more
significant effect on the output than the other; i.e.,
both are equally contributing to the decision made by
the controller. This mapping is a configuration pa-
rameter and could be changed according to the system
requirements.

4.2 Buffer Size Controller (BSC)

We expect the frequency of buffer triggers to affect the
time predictability of the system. Thus, we present a con-
troller that dynamically reserves more memory to decrease
the number of buffer triggers. Based on the number of buffer
triggers and the average number of empty buffer locations in
the last Nps invocations, the controller makes the decision
on whether to reserve or release memory. The controller
cannot reserve more memory than the upper bound B (e.g.,
the preallocated space available for monitoring), and cannot
release memory beyond the lower bound B (i.e., its static
buffer).

BSC operates at a higher priority than PPC. The reason
for this is to prevent PPC from reacting prematurely, result-
ing in sudden changes in the polling period. By prioritizing
the buffer size controller, the buffer size will be adjusted first,
thus alleviating the stress of changing the polling period im-
mediately. To achieve this, the buffer size controller adjusts
the safety threshold percentage along with every change in
the buffer size to maintain the same threshold value. For
instance, suppose that the buffer size is 20, and the safety
threshold is 80% (as set in Subsection 4.1). This means that
PPC will attempt to stabilize memory utilization around
20 x 0.8 = 16 elements at every invocation. If the BSC
decides to increase the buffer size to 24, it will change the
safety threshold to 66%. This will essentially decreases the
number of buffer triggers using the extra memory without
affecting the polling period controller, since the target is still

E% Fuzzy sets
LN MN S MP LP
LN | S MN LN LN LN
Ep MN | MP S MN LN LN
Fuzzy S LP MP S MN LN
sets MP | LP LP MP S MN
LP | LP LP LP MP S

Table 1: Symmetric mapping of input variables in
if-then rules.

16. The only difference is that PPC is under less pressure
to change the polling period.
The design of the controller is as follows:

e Input. The controller has two inputs. The first in-
put is Ep, which is the percentage of buffer triggered
invocations in the last N, invocations. The second
input is E%, which is the average percentage of uti-
lization of the buffer in the last Ns invocations. The
formula for E is as follows:

1 I Nbs ‘between (thl , tmi)

Nos | =655, bm.

Ep(j)

The reason for omitting safety in the calculations is
that BSC dynamically changes the safety threshold
percentage as explained above. Ey; and Ef are fuzzi-
fied into three sets: Small, Medium, and Large. There
is no negative or positive since they are percentages.
The membership functions for these sets are centered
around 0%, 50%, and 100% (Figure 6). These values
are configuration parameters and can be changed ac-
cording to the user requirement.

e Output. The output of the controller is the off-
set value from the current buffer size, which we de-
note as Aps. The membership functions for the output
variable are standard lambda-type functions similar to
those in Figure 3, with centers at —1, —0.5, 0, 0.5, and
1, respectively. The output is multiplied by a factor
depending on the nature of the system.

e If-then rules. Table 2 shows the consequent fuzzy
set of each rule based on the combination of the two an-
tecedent fuzzy sets, where the columns are E% fuzzy
sets, the rows are Ej; fuzzy sets, and S, M, and L
are abbreviations of Small, Medium and Large, respec-
tively. The purpose of incorporating E in the design
is visible in the mapping. As can be seen in the table,
the controller attempts to release memory when there
is a large empty space in the buffer. This helps the sys-
tem reclaim some reserved and underutilized memory,
which in effect attempts to satisfy Equation 5. The
mapping here favors minimizing buffer triggers, since
we can afford to let memory releases gradually accumu-
late small values with less urgency than, for instance,
a high percentage of buffer triggers.

e Invocation. Instead of running BSC in a separate
thread at its own frequency, we utilize the existing
invocation of PPC (caused by the invocation of the
monitor) to run BSC. Thus, there are no separate in-
vocations of BSC and thus, no jitter due to these invo-
cations. Since BSC performs its processing every Nps
invocations of the monitor, it performs its processing
after the verification process is completed every N{*
invocation. Since it has a higher priority than PPC,
it performs its processing first in the case where both
controllers coincide.

The Ny parameter determines how responsive the con-
troller to change. A smaller number indicates that
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Figure 6: Membership functions of Epr.

BSC reacts quicker to sudden buffer triggers. In our
experiments section we discuss the impact of changing
Nps.

Customizability. A lot of tweaking goes in applying
fuzzy controllers. A basic customization that could be
applied to BSC is to bias it towards being more conser-
vative towards buffer triggers. In Figure 6, the center
point is a neutral 50%. Moving this point to the left
causes the controller to be less tolerant of buffer trig-
gers, aggressively trying to maintain stability around
the now tighter left region. This customization may
enhance the performance of the controller versus a triv-
ial implementation such as the one in Figure 6 for some
systems where buffer triggers are not tolerable or when
non-linearity is very high. We discuss this notion fur-
ther in our experiments section.

5. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

In order to analyze the performance of our controllers, we
conduct a case study on a cyber-physical system, the air/fuel
ratio in the exhaust of a Toyota 2JZ engine. The case study
involves using different controllers with different configura-
tions. Experimental background, settings and results are
presented in Subsections 5.1, 5.2, and 5.3, respectively.

5.1 Experimental Background

Environmental concerns require diligent monitoring of
air/fuel ratio in a vehicles exhaust. The Lambda value is an
industry standard value calculated as the ratio between the
amount of oxygen present in the exhaust versus the amount
of oxygen that would be present in the exhaust had there
been perfect combustion. A lambda value of 1.00 indicates
that the measured air/fuel ratio is exactly the same as that
of a perfect combustion. If the value is less than 1.00, this
indicates that the amount of fuel in the exhaust is higher,
which is known as rich. If greater than 1.00, it is known

E; Fuzzy sets

S M L
Epr S S S MN
Fuzzy | M | MP MP S
sets L | LP LP MP

Table 2: Mapping of input variables in if-then rules
for the buffer size controller.
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Figure 7: RPM of engine in a 43 seconds long step
test.

as lean. A vehicle running rich is less environment friendly,
due to the higher percentage of hydrocarbons and carbon
monoxide present in the exhaust. However, a highly lean
condition indicates a possible misfire which could result in
serious engine damage.

A control system is required to maintain a safe lambda
value, that protects the environment as well as the engine.
Depending on driving conditions, the acceptable values dif-
fer. For instance, accelerating the vehicle with a wide open
throttle (WOT) requires a richer mixture in the exhaust,
while cruising or driving in economy mode would require a
leaner running condition. This dynamic behavior is com-
mon in cyber-physical systems due to their dependence on
the physical environment.

An engine control unit (ECU) controls all actuators in
the engine using a multitude of sensors, one of which is
the lambda sensor. The ECU software determines how rich
or lean the engine should run, such that the desired level
of emissions is maintained and the required performance is
achieved. Failure to do so can be caused by multiple rea-
sons, including malfunctioning sensors, or bad timed piston
firings. In these critical cases, a verification system is re-
quired to report this failure. However, the verification sys-
tem should not produce largely varying processing overhead
that might negatively impact the performance of the main
ECU functionality.

5.2 Experimental Settings

The experimental setup is composed of the Toyota 2JZ
engine, a multitude of sensors and actuators controlled by
the ECU, and a data logging station that allows the operator
to monitor engine health. As mentioned above, the verifi-
cation software should not exhibit unpredictable behavior
that would negatively impact the ECU. We attempt to em-
ploy our controllers to maintain predictable behavior during
the run of the engine, regardless of its speed or the rate of
incoming events.

The events received are changes in the air/fuel ratio read
by the lambda sensor. In the cases of rapid increase or de-
crease in the speed of the vehicle, the lambda sensor read-
ing also exhibits rapid changes. This causes non-linearity
in the rate of events that need processing for verification
purposes. We use the sensor logs produced by running the
engine through a standard test to evaluate the performance
of our solution. The test performed is a step test, in which
the RPM of the engine is increased in a stepwise fashion as
shown in Figure 7. The lambda sensor readings of the engine
are shown in Figure 8. A photograph of the experimental
setup is shown in Figure 9.
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Figure 9: The 2JZ engine in the engine test room.

Our experiments are designed based on five factors:

1. Type of PPC. We incorporate Fuzzy 1 and Fuzzy 2
controllers introduced in Section 4.1.

2. BSC enable status. We experiment with enabling
and disabling the buffer size controller.

3. Static buffer size (B). We consider two different
static buffer sizes: 20 and 40.

4. Invocation frequency. Recall from Figure 1 that the
controllers build a history of previous input signals.
We experiment with varying the invocation frequency
of both the polling period controller and the buffer size
controller. We configure the controllers with 2 different
combinations of frequencies: (5,5) and (10,5) for the
polling period controller and the buffer size controller,
respectively.

5. Biased membership functions. We consider chang-
ing the center point of the Fj; membership functions
from 0.5 to 0.2 (see Section 4.2). This is in an attempt
to force the controller to be more conservative about
buffer triggers. We study the effect of this change on
the different metrics.

Hence, there is a total of 32 configurations to test all different
combinations of the above four factors. We carry out 10
runs (replicates) with randomization to provide statistical
confidence in the results.

The five measurement metrics that we observe are:

1. Error mean (Eg). This is the mean number of empty
buffer locations at every invocation of the monitor.
This value is a measure of the memory utilization of

the monitor; i.e., the lower the value, the more utilized
the memory. This metric is based on Equation 4.

2. Polling period coefficient of variation (C,). This
value is a measure of time predictability; i.e., the lower
the value, the closer polling periods are to their mean,
and hence, the more predictable the timing behavior
of the monitor. This metric is based on Equation 6.

3. Context switches (C'S). This is the number of con-
text switches due to invocations of the monitor during
a run of an experiment. This value is a measure of the
overhead introduced by the monitor.

4. Buffer triggers (BT). This is the number of buffer
triggered monitor invocations. This value is a measure
of the quality of the controller in the sense that a well
designed controller should not overshoot frequently.
Thus, a lower number of buffer triggers indicates that
the controller is adapting better to the non-linearity of
the external events.

5. Average buffer size (B). The average size of the
extended buffer across the run of an experiment. A
value closer to the static buffer size is more desirable
since it indicates that the monitor is reserving less ex-
tra memory. This metric is based on Equation 5.

We also test the performance of the system in terms of
the above metrics when the monitor is invoked only due to
buffer triggers. This test is performed for both buffer sizes
20 and 40, making the total number of runs in a full replicate
equal to 34.

5.3 Analysis of Results

This section analyzes the results of our experiments with
respect to the metrics discussed in Subsection 5.2. Since
there are 34 possible combinations of the experimental fac-
tors, we first present only a subset of these combinations
that are most significant. Then, we present the remaining
combinations and demonstrate the reasons for selecting a
subset. There are 5 main experiments that emphasize the
design tradeoffs:

e (BTM) In this implementation, the monitor is always
invoked when the static buffer is full.

e (PPC:F1) This implementation uses only PPC with
the Fuzzy 1 design (recall that this is the design in our
previous work [11]).

e (PPC:F2) In this implementation, only PPC is used,
with the Fuzzy 2 design (recall that this is also the
design in our previous work [11]).

e (BSC+PPC:F1) This design implements BSC in addi-
tion to PPC, with the Fuzzy 1 design.

e (BSC+PPC:F2) In this implementation, BSC is used
in addition to PPC, with the Fuzzy 2 design.

Time Predictability
Figure 10 shows the polling period coefficient of variation
(Cy) versus the mean number of empty locations in the
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buffer (Eg) for the five different implementations mentioned
above. For static buffer size B = 20, the figure shows the
improvement in C, introduced by using PPC only (i.e., the
design in [11]) compared to a buffer triggered monitor, which
in the case of Fuzzy 1, causes a drop in C,, from 1.02 to 0.83.
However, the more significant improvement is introduced by
incorporating BSC, which decreases C,, further down to 0.57,
which is a 45% improvement over a trivial buffer-triggered
implementation and a 31% improvement over the PPC de-
sign in [11].

The same trend can be extended to Fuzzy 2, which scores
a C, = 0.52, almost 50% improvement over BTM and 34%
improvement over PPC:F2. The larger improvement when
using Fuzzy 2 is due to its design, which targets minimizing
C, by selecting polling periods closer to their mean. Fig-
ure 10 also shows similar results when B = 40. An interest-
ing point is that in BSC+PPC, the improvement still exists
yet is not as significant as when the initial buffer size is 20.
This is attributed to the nature of non-linearity in the mea-
sured lamda readings, which naturally becomes more stable
at a buffer size of 40.

Figure 11 shows a significant decrease in the number of
buffer triggers (BT) when BSC is used. For BSC+PPC:F1,
the number of buffer triggers is 66. Compared to BTM which
has 387 buffer triggers, BSC+PPC:F1 is preventing 83% of
the buffer triggers. Figure 11 also shows the relationship
between C, and the number of buffer triggers (BT). The
correlation coefficient of C, and BT is 0.96, which confirms
a strong positive relationship. This supports our hypothesis
basis on which the BSC controller is designed: decreasing the
number of buffer triggers will improve the time predictability
of the monitor.

Figure 12 shows the distribution of polling periods for the
five main implementations. The figure shows that BTM has
the highest variability and dispersion. PPC:F1 has a nar-
rower range, yet wide variability within that range.
BSC+PPC:F1 shows improvement in the variability of
polling periods. BSC+PPC:F2 shows a significant improve-
ment over its PPC counterpart, and also over its F1 coun-
terpart. This is due to it leveraging the aggressiveness of
Fuzzy 2 with the polling period in its favor, producing the
tighter distribution.

Memory Utilization
Figure 10 shows the memory utilization (measured using
E5) of the different implementations. For BTM, the mem-
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Figure 11: C, versus BT for the five main imple-
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Figure 12: Violin plot of polling periods for the five
main implementations.

ory utilization is the highest by design (lowest Eg), since the
monitor is invoked only when the buffer is full. This explains
the negative E for BTM, since the utilization exceeds the
safety limit (see Equation 9). The figure shows that the
utilization of BSC+PPC is at least the same as PPC if not
better (BSC+PPC:F1). This result further motivates the
use of BSC, since the improvement of time predictability
does not come at the cost of memory utilization.

Extended Buffer Size

Table 3 shows the average size of the buffer (B) for both
BSC+PPC:F1 and BSC+PPC:F2, versus both static buffer
sizes 20 and 40. For Fuzzy 1, the extended buffer size scales
with the increase in the size of the static buffer, which shows
that the controller attempts to stabilize around the extended
buffer size suitable for the rate of external events. For Fuzzy
2, the extended buffer size is only 4 more locations for buffer
size 20 and one more location for buffer size 40. Refer-
ring to Figure 10 for B = 20, C, of BSC+PPC:F2 is 0.52,
whereas C, of PPC:F2 is 0.79. This shows that adding BSC
to PPC:F2 decreases C, by approximately a third, at almost
no cost of extra memory. The controller achieves this result
by adapting to the external events and reserving extra mem-
ory at critical points in time to preserve predictability.

CPU Utilization
We measure the user CPU time (UT) used for every experi-

Static Buffer Size B

20 40
BSC+PPC:F1 | 35 47
BSC+PPC:F2 | 24 41

Table 3: Average buffer size B results.
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mentations.

ment. Figure 13 shows the UT results versus the number of
context switches (CS) for the five implementations. The fig-
ure exhibits relatively large error bars, due to factors such as
cache misses and paging that affect the UT of the monitor.
However, a conclusion that could be drawn is that system
noise is a far more deciding factor in UT than the actual
different implementations. This is attributed to the simplic-
ity of fuzzy controllers, in that the processing involved is
always a fixed number of basic arithmetic operations. Thus,
adding a second controller (BSC) is not expected to have a
large impact on time.

BSC Design Parameters

There are two experimental factors that are specific to the
BSC+PPC implementations: (1) Biased versus unbiased
membership functions, and (2) invocation frequency. Fig-
ure 14 shows the C, and BT of biased and unbiased versions
of BSC+PPC. We compare two invocation frequencies: 5-5
and 10-5 for BSC and PPC, respectively, and also the two
designs for PPC:F1 and PPC:F2. As shown in Figure 14, al-
though there is improvement in C, introduced by using the
biased implementation, that improvement is minimal and
only visible in cases where both controllers are running at
the same frequency. The reason for this is that if BSC is
running slower, its bias has a less significant effect on the
output.

The percentage improvement in C,, is at most 6%. This
result demonstrates that although tweaking the membership
functions can introduce improvements, satisfactory results
can be achieved using basic membership functions and a
trivial implementation.

Figure 15 shows the C, for different invocation frequen-
cies when PPC is using the Fuzzy 1 design. The figure shows
the trend of C,, when the invocation frequency of BSC is de-
creased while fixing the invocation frequency of PPC. Three
data points are compared: Nps = 5 (meaning BSC is in-
voked every 5 monitor invocations), Nps = 10 (every 10
invocations), and Nps = co (no invocation of BSC at all).
The results show a consistently increasing trend for both
static buffer sizes. Thus, if PPC is operating at a higher fre-
quency than BSC, granting it higher priority than BSC, the
improvement that should be introduced by BSC diminishes.
This is due to PPC reacting faster to changes in external
events before BSC can adjust the extended buffer size.

Based on these results, the elected implementation for
BSC+PPC is an unbiased implementation with 5-5 invo-
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Figure 14: A comparison of biased versus unbiased
membership functions.
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cation frequency for BSC and PPC, respectively.

6. RELATED WORK

The main focus of classic event-based runtime verification
is to reduce the monitoring overhead through improved in-
strumentation [6,9], static analysis [3], and efficient monitor
generation [7]. Huang, et al. [10] propose a control-theoretic
based software monitoring technique. In this work, cascaded
PID controllers are used to temporarily disable monitors
in order to keep monitoring overhead below a user-defined
threshold. This results in an unsound monitor, since events
are dropped when a particular monitor is disabled. To tackle
this problem, Bartocci et al. [15] augment the method pre-
sented in [10] with a Hidden Markov Model (HMM) to fill
in the gaps in event sequences. However, both these meth-
ods require tuning of PID controllers and training of HMM
in [15].

In the context of time-predictability, in time-triggered run-
time verification [5] a monitor periodically samples the sys-
tem state and verifies critical properties of the system. The
time-triggered approach involves the problem of finding an
optimal sampling period to minimize the size of auxiliary
memory required, so that the monitor can correctly recon-
struct the sequence of program state changes. [12] uses sym-
bolic execution to compute the sampling period at run time.
However, static analysis does not scale well in large systems,
and the technique is inapplicable in reactive non-linear sys-
tems.



7. CONCLUSION

In this paper, we focused on designing a scalable approach
for controlling buffer overshoots in time-predictable runtime
verification of systems that heavily interact with the phys-
ical world. We followed three objectives: soundness, mini-
mum jitter in monitor invocation frequency, and maximum
memory utilization. To this end, we proposed a monitoring
technique that utilizes two fuzzy controllers: one that con-
trols the period of invocation of the monitor and another
that dynamically (and temporarily) extends the buffer size
in periods of time that the monitor is overloaded with bursts
of incoming events. We demonstrated how this design is ap-
plicable to cyber-physical systems that rely heavily on in-
teraction with the physical world. Our experimental results
show that the proposed controller can prevent up to 83% of
the overshoots and improve time predictability by a factor
of 2. Moreover, the average size of buffer extension is neg-
ligible (as low as 2.5%). Our experiments also show a very
strong correlation between the number of overshoots and the
coefficient of variation in the period of monitor invocations.

For future work, one can incorporate static analysis tech-
niques such as analysis of control-flow graphs and symbolic
execution, so controllers are aware of the structure of the
system under inspection. Another interesting research di-
rection is to design parallel monitors and controllers that
observe different execution threads of time-sensitive concur-
rent multi-core applications. We are also working on de-
veloping time-predictable runtime monitors that are also
power-efficient.
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