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Abstract—One of the significant challenges of deep neural net-
works is that the complex nature of the network prevents human
comprehension of the outcome of the network. Consequently, the
applicability of complex machine learning models is limited in
the safety-critical domains, which incurs risk to life and property.
To fully exploit the capabilities of complex neural networks, we
propose a non-intrusive interpretability technique that uses the
input and output of the model to generate a saliency map. The
method works by empirically optimizing a randomly initialized
input mask by localizing and weighing individual pixels according
to their sensitivity towards the target class. Our experiments
show that the proposed model interpretability approach performs
better than the existing saliency map-based approaches methods
at localizing the relevant input pixels.

Furthermore, to obtain a global perspective on the target-
specific explanation, we propose a saliency map reconstruction
approach to generate acceptable variations of the salient inputs
from the space of input data distribution for which the model
outcome remains unaltered. Experiments show that our inter-
pretability method can reconstruct the salient part of the input
with a classification accuracy of 89%.

Index Terms—Interpretability, deep learning, Images

I. INTRODUCTION

Recent advances in the field of deep neural networks
have led to widespread applicability of artificially intelligent
systems in the field of computer vision for the task of
object detection [1], image classification [2], segmentation [3],
image captioning [4], visual question-answer [5]. Despite the
significant advances in the speed and accuracy of neural
networks, the complexity of the models makes the human-level
understanding of the model’s decision-making a challenging
problem. Notably, the highly non-linear interactions between
the layers of the network make the outcome unintuitive and
unpredictable. As a result of their inexplicable nature, their
applicability remains limited in the domain of safety-critical
systems (medicine, automotive, robotics, finance, nuclear)
where a decision based on the outcome can lead to fatal
consequences.

Some of the research in the direction of explainable AI
elucidate instances reflecting on the unpredictable nature of
complex machine learning systems. For instance, in [6], the
author shows how bias manifested in the machine learning
algorithm through data leads it to misconstrued the character-
istics of the snow for that of husky. Another work by Stock et
al. [7] demonstrates the ImageNet [2] bias introduced in the

ResNet [8] model. As a consequence of the bias, the model
prefers the image of a black person with a basketball for the
class basketball, and Asians in red dress for the ping pong
class. Athalye et al. [9] show the sensitivity of the model can
lead to misclassification. In the paper, the authors demonstrate
that adding imperceptible perturbation to the input causes the
model to misclassify the image of the turtle to the class of
rifle.

All the above examples scenarios show the unpredictable
nature of model prediction in the presence of uncertainty.
Consequently, such advanced AI systems cannot be reliably
used for decision making in critical systems that demand
explanation and verification.

As a consequence of the black-box nature of complex
AI systems, many possible solutions for understanding and
interpreting the complex machine learning models have been
developed in the last couple of years. One such technique is to
visualize the activations of the individual layers of the network
[10]. However, for a particular image, this method can only
tell apart what neurons are important for classifying the input
to a certain class. Salient map-based methods exist [11] that
localize the input pixels sensitive to the classification of the
input to an output class. However, one of the limitations of
these techniques is that they are intrusive; they require access
to the network parameters and gradients flowing through the
network to localize the important input pixels. Thus, there is
a need for a non-intrusive explanation technique for target-
specific model outcomes.

Fig. 1. Saliency map generated for the image containing broccoli. The two
saliency map for broccoli highlights non-overlapping regions of the image as
important for broccoli classification.

Furthermore, explanation using perturbation based tech-
niques lacks consistency in the explanation. As shown in
Figure 1, multiple iterations of explaining the same image
result in contradictory salient region detection for the target



Fig. 2. Saliency map generated for the target-specific image classification using our approach, RISE [12], GCAM [13], and LIME [6]. The first column shows
the input image along with the top predicted class of the model outcome and the accuracy of classification. Second column onwards shows the saliency map
overlapped with the input image and the AUC scores (%) of insertion/deletion metrics [12] where a higher value is considered good for insertion, and a lower
value is considered good for deletion.

class. Therefore, there is also a need for a global perspective
on the explanation for a target class.

A. Contribution

Our contribution to the paper is two-fold. First, we pro-
pose a non-intrusive interpretability technique by generating a
saliency map based target-specific model outcome explanation.
And second, we propose a method for generating alternate
explanations for the part of the input, which is salient for
target-specific classification.

Inspired by the work of Petsuik et al. [12], we propose
a non-intrusive explainability technique that leverages the
input and the output of the model to generate a class-specific
saliency map. Our method differs from RISE [12] in the
sense that for a target class, instead of performing MCMC
sampling [14] of input subsamples, we generate a class-
specific saliency map by optimizing a randomly initialized
mask. We use an empirical risk minimization approach with
a randomly initialized mask to locate the optimal set of input
pixels sensitive for the classification of the input to the target
class. Therefore, if for the masked input, the confidence of
the model in the most probable class is given by p ∈ [0, 1],
then the optimal pixels for the input is empirically located by
randomly retaining p% of the unmasked pixels (pixels with
value 1) and (1 − p)% of the masked pixels (pixels with
value zero) followed by weighing the pixels using the class
score. Figure 2 shows a visual comparison of the saliency

for example images from ImageNet [2] using our approach,
RISE [12], GCAM [13], and LIME [6].

To generalize the explanation for the target class using the
saliency map, we propose a technique to identify the variations
of the pixels in the salient regions of the input for which
the model prediction remains unaltered. The hypothesis for
finding variations of the salient region comes from the analogy
that the model is invariant to small perturbations in the input.
Thereby, the approach helps identify variations (changes in
colour intensities, object rotation, or inversion) in the salient
region of the input space for which the model classification
remains unaltered [15]. To generate alternative explanations
for the salient regions of the input, we use an image com-
pletion technique [16], [17] that uses the neighbouring pixels
features to reconstruct the pixels in the salient regions of the
input. Using this approach, we can find an exhaustive and
contextually similar set of transformations for the pixels in
the semantic regions classified to the same output class as the
original input image.

II. RELATED WORK

With the increasing applicability of complex machine learn-
ing models, the need for an explainable and verifiable AI is
increasing. In an attempt to justify models’ outcomes, a variety
of techniques have been proposed over the years. A majority of
the explainability techniques use either a third-party explainer:
a separate model for explaining the outcomes of the base



model, or is based on justifying the base model outcome using
techniques such as input perturbation and network parameters.

One of the earliest third-party explainer [6] attempts to
provide a linear interpretation within the local neighbourhood
of the data point. However, the approach is not effective at
explaining non-linear models. [18] is another technique that
trains two models for providing textual as well as visual
justification for the visual question answering task and activity
recognition task. However, these approaches are costly to
implement because of the reliance on the availability of large
human-annotated ground-truth explanations.

Within the realm of justifiable models, a variety of ex-
plainability approaches have been developed. Some of the
approaches [10], [11], [19], [20] attempts to synthesize input
images that result in a high activation score for particular
neurons. Another approach by [21] generates a target-specific
saliency map by taking the global average pooling of the
feature maps at the layer before the fully connected layer.
GradCAM [13] is a generalized version of CAM that, in
addition to the feature map weights, feeds the class gradient to
the fully connected layer to assign importance to each of the
input pixels. However, [13], [21] can only be applied to limited
network architectures with global average pooling. Another
work by Zhang et al. [22] proposes to use a backpropagation
scheme to generate an attention map by propagating the signal
downward through the network hierarchy using a winner-
take-it-all strategy. A few techniques examine the relationship
between input and output to learn a perturbation mask by
backpropagating the error signal [23].

Despite the ability of the techniques [13], [21], [23], [24]
to justify the model’s decision, the methods mentioned above
have limitations. The methods [13] are constrained by the use
of network parameters such as gradients flowing through the
network and network layer weights. While techniques such
as [13], [22] require a specific kind of network architecture,
in some cases [10], the method requires access to interme-
diate layers of computation for visualizing the features at
several layers. Furthermore, the techniques can explain only
a particular input at a time, without considering the possible
variants (rotation, inversion, deformations) of the image. A
work by Kim et al. [25] proposes a technique to provide an
explanation that is representative of user-defined concepts, but
the manually generated concepts limit the technique. Our work
is an extension of the work by Petsuik et al. [12] to localize
and generalize the salient pixels of the target class using the
input and the output of the model. We obtain a saliency map
(using N less than that of [12]) by empirically optimizing
the pixels important for target-specific classification. Also, we
propose an approach to provide a global perspective on the
explanation of the outcome using a reconstruction technique,
which generates possible variations of the salient pixels of the
input.

III. PROPOSED TECHNIQUE

We propose a non-intrusive explainability technique by
localizing and generalizing the parts of input important for

target-specific classification. To localize the pixels sensitive
for target-specific classification, we extend [12] to generate a
saliency map. Second, to obtain a global perspective on the
saliency map of the model outcome, we propose a salient
region reconstruction approach that reconstructs the input
image with alternate variations of the pixels from the salient
region of the input, all of which classifies to the target class.

A. Saliency Map Generation

Given an image I of dimension H × W from the space
of images I = {I ∶ Λ

H×W
→ R3} that maps each pixel

coordinate to three color values, a target class c ∈ C, a
classifier f ∶ I → RC , which maps inputs from the input
space, I to a vector of real numbers signifying the strength
of the classifier in the output classes, C, a random initial
mask, M0 = {Λ

h×w
→ [0, 1], h < H,w < W}. M0 is

composed of a set of unmasked and masked pixels such that
Λ
h×w

= {Λ
h1×w1
on ∪ Λ

h2×w2
off }, and n1 and n2 are the number

of pixels in the Λon and Λoff sets. Thus, given a binary mask
M0, if λ ∈ Λon, then M0(λ) = 1 else M0(λ) = 0.

We use the empirical risk minimization approach to find a
mask M with a minimal set of unmasked pixels Λ

min
on . The

mask is such that the model’s confidence in class c using the
masked version of the input departs from the confidence with
that of the actual input by no more than a predefined threshold
δ.

minimize
Λon

M

subject to ∣f(I ⊙M) − f(I)∣ ≤ δ
(1)

In the equation 1, δ is a threshold determined empirically
and ⊙ is the element wise multiplication of the input with
the mask. The key to a good estimate of the saliency map,
which satisfies the optimization condition in Equation 1, is to
iteratively update the initial mask M0 by selectively filtering
the masked and unmasked pixels from Λon and Λoff based on
the prediction probability p = f(I ⊙M) of the class c, where
M is the upsampled version of the mask at the ith iteration.
M is upsampled using bilinear interpolation to the size of
the input image as shown in the second column of Figure 3.
The bilinear interpolation is a common resizing technique in
computer vision that helps avoid the inclusion of unwanted
artifacts in the mask during empirical optimization by blur-
ring out the edges, as shown in figure 3, thus, eliminating
misclassifications.

Algorithm 1 shows the saliency map generation method.
Based on the prediction probability of the target class c, the
algorithm randomly retains p% of the unmasked pixels, Λon
and (1 − p)% of the masked pixels, Λoff. The subset of the
pixels preserved from Λon and Λoff forms the new set of
unmasked pixels Λon, which are sensitive for the classification
of input I to the target class c. However, the mask update is
likely to saturate if the change in the prediction probability
p of the target class is negligible. To overcome the issue of
saturation, we add a regularizer, which penalizes the set of
unmasked pixels according to two factors: the change in the
prediction probability of the target ∆p and the total variation



Algorithm 1 Algorithm for generating saliency map
Input: Input image I ∈ I, Target class c ∈ C
Output: saliency map M

Initialisation : M0 ∈ Rh×w

1: for i = 1 to N do
2: M ← upsample Mi−1

3: compute pi = f(I ⊙M)
4: Λ1 ← randomly select n1pi pixels of Λon
5: Λ2 ← randomly select n2(1 − pi) pixels of Λoff
6: Λon ← Λ1 ∪ Λ2

7: Λoff ← Λ \ Λon
8: if (λ ∈ Λon) then
9: Mi(λ) ←Mi−1(λ)∆p

10: end if
11: if (λ ∈ Λoff) then
12: Mi(λ) ← 0
13: end if
14: V = ∑

x,y
∥Mxy+1

i−1 −M
xy
i−1∥

2 + ∑
x,y

∥Mx+1y
i−1 −M

xy
i−1∥

2

15: Mi ←Mi + ηVMi−1

16: end for
17: return M

of the mask V where ∆ denotes the change in the value from
the previous iteration. If the mask is invariant to small changes
in the classification accuracy, then the regularizer will heavily
penalize unmasked pixel values by adding a large negative
penalty. On the other hand, if the change in ∆p is significant,
the regularizer adds a low penalty to the updated mask. This
way, M captures the pixels sensitive towards the classification
of I to the target class c. In the update equation for the mask,
η is a constant that determines the amount of change in the
total variation of the mask to retain.

B. Variations of the salient region of the input

We propose an approach to generate the acceptable vari-
ations for the salient region (the highlighted region in the
second column of Figure 3) of the input image as alternate
explanations for the model outcome. To achieve this, we use
an image completion technique proposed by Pathak et al [17],
which reconstructs a patch of the input image by iteratively
backpropagating the error in a generator.

Fig. 3. From left to right, I: input image, M: saliency map, B: bounding box,
R: reconstruction mask.

Let B be a binary bounding box for the saliency mask M of
the input image I , as shown in Figure 3 third from left, where
pixels inside the box are set to one, and the pixels outside
are set to zero. The reconstruction mask, R, is obtained by

inverting B, followed by convolving B with a kernel of size
(s, s) such that the weights assigned to pixels are inversely
proportional to their distance from the bounding box. As pixels
near the box are more important for the reconstruction of
missing pixels from the box, the mask R is such that it assigns
more importance to the pixels in the vicinity of the box than
to the pixels far away. Let G be a generator that learns an
encoding dz of the input image distribution dI in the latent
space (z).

The objective is to reconstruct the corrupt image ((1−R)⊙
I) using G. As the corrupt image is not a sample from the
input distribution dI ; therefore, G will be poor at recognizing
the patterns of the missing part of the image. Therefore, we
use the image reconstruction technique as described in [16],
where the authors use the back-propagation technique with
the generator to find an encoding (z′) for the missing part of
the image that is closest in encoding to the input I while
being confined to the learned manifold (z). The objective
function for learning the encoding (z′) comprises context loss
and discriminative loss.

Context Loss is used to reconstruct the missing part of the
original image given the corrupt image by measuring a squared
error between the corrupt image and the reconstructed image.

Lcxt(z) = (I ⊙ (1 −R)) − (G(z)⊙ (1 −R)) (2)

Discriminative Loss is used for measuring the authenticity of
the generated images by feeding them to the discriminator D,
which returns the confidence in G(z) being real.

Ldis(z) = −D(G(z)) (3)

The overall loss for learning the encoding for the missing
salient region of the input is as follows,

L(z′) = argmin
z

{Lcxt(z∣I,R) + Ldis(z)} (4)

Using the learned encoding, G(z′) generates the image that is
approximately close to the missing salient part of the image.
The image reconstructed using the generated image is given
by,

Irec = (I ⊙ (1 −B)) + (B ⊙G(z′)) (5)

We repeat image reconstruction for k randomly sampled
noise vectors z to generate k reconstructed variants of the
salient region of the input image I where z is a sample
from a gaussian distribution with mean zero and variance
one. The generated images will be such that their encoding
will lie in the vicinity of the learned manifold in the latent
space (z). However, if the encoding z

′ fails to capture the
context of the salient region of the input using the evidence
from the local neighbourhood of pixels, then some of the
reconstructed images will not be contextually similar to the
original input salient region. The selected set of Irec for
which the model prediction remains unaltered is considered
alternative explanations for the salient regions of the input
image.



IV. EVALUATION

This section gives an overview of the evaluation metrics,
models, and datasets used to describe the results of the
evaluation of the proposed approach.

A. Model and Data Description

We evaluate the efficacy of the proposed saliency map based
explainability approach using a range of publically available
open image datasets such as ImageNet [2] and MS-COCO
(Microsoft-Common Object in Context) [26]. ImageNet is a
repository of 15 M high-resolution images gathered from more
than 20 K categories. MS-COCO, on the other hand, is a
significantly smaller database of images but with more number
of instances per category. The dataset has 330 K images with
more than 80 object categories. The MS-COCO dataset is
used for object detection, object segmentation, and image
captioning.

We use pre-trained models: VGG16 [27], Inception V3 [28],
and ResNet50 [8] as base models for image classification.
The pre-trained models are loaded with ImageNet weights
and accepts inputs of size 224 × 224. The models differ
in terms of their network structure and number of trainable
parameters. VGG16 is a convolutional neural network trained
on ImageNet dataset achieving top-5 accuracy of 92.0% on
ImageNet. ResNet50 is a 50 layer network achieving 93.29%
accuracy on the ImageNet. Inception V3 is another model that
achieves an accuracy of 94.4% on the ImageNet. Relying on
pre-trained models [8], [27], [28] for image classification helps
avoid the common training pitfalls such as model over-fitting,
skewed data distribution, right model selection, and insufficient
resources (such as GPUs) for training.

B. Evaluation Metrics

1) Insertion and Deletion Metrics: Motivated by [12], we
use the metrics of insertion and deletion to evaluate our
saliency map approach. In the deletion metric, the deletion
of salient pixels from the input causes the model to drop the
probability of the target class. And in the insertion metric,
the insertion of pixels from the relevant region of the input
causes the model to increase the probability of target class.
We capture the sensitivity of the model to the removal and
insertion of pixels from the relevant region of the input using
an average AUC (Area Under the Curve) score. Thus, during
deletion, as the relevant input pixels are deleted from the
masked input, the AUC curve for the model will shrink to a
thin area, thus, dropping the average AUC score, indicating the
right explanation for the model decision. Similarly, during the
insertion, as the pixels from the relevant region of the input are
added to the masked input, the AUC curve expands to cover
the large area under the probability curve, thus increasing the
average AUC score.

2) Pointing Game: The pointing game [22] metric is
a method of evaluating the class discriminative nature of
saliency-map based approaches. Given an annotated segmen-
tation box for an instance of an object and the corresponding
saliency map, the method measures the number of pixels on

the saliency map of the input that lies on the annotated box of
the object instance. To measure the overlap, we calculate the
fraction of the area (As) of the saliency map that overlap with
the annotated segmentation box (At) of the image using an
IOU (Intersection Over Union) score (%) = ∑(As∩At)

∑(As∪At)
. The

numerator is the sum of pixels values in the union of As

and At, and the denominator is the sum of pixels values in
the intersection of At and As. A high IOU score (typically
⩾ 50%) means that a large fraction of the salient region of
the input overlaps with the annotated box, indicating a good
explanation.

C. Evaluation using insertion and deletion metrics

Given a pre-trained classifier, we evaluate the class dis-
criminative capability of saliency-map based approaches [6],
[12], [13], [20] using the quantitative measures of insertion
and deletion metric. For the base models: VGG16 [27],
ResNet50 [8], and Inception V3 [28] and the datasets: Im-
ageNet [2] and MS-COCO [26], we report the average AUC
score of insertion and deletion on a set of images. The test
images are randomly selected from the test set of the datasets.
For each technique, Table I shows the mean AUC score of
the insertion and deletion metrics for each technique across
all the models and all the datasets. We also show the standard
deviation of the AUC of the insertion and deletion metrics for
our approach. From the table, it is evident that our approach
outperforms other saliency-map based approaches in localizing
the pixels sensitive for the classification of the input to the
target class across both the datasets and all the base models.

D. The pointing game metrics

We evaluate the localization capability of saliency map-
based approaches for target-specific objects using the pointing
game. For the ImageNet dataset, we report the average IOU
score for a set of test images across all the models. The
IOU score is calculated for the saliency map of the images
using the enclosed area of the bounding box, As and the
annotated segmentation box, At for the target-specific input
images. Table II shows the mean IOU score (%) for the test
set of images across all the models and both the datasets.
The table also shows the standard deviation of the IOU
score for our approach. From the table, it is evident that
the performance of our saliency map approach across the
models is at least 5% more accurate than [12] and 20% more
accurate than [6] at localizing the pixels sensitive towards
target-specific classification. Note that we omit the evaluation
of the gradient backpropagation technique using the pointing
game as the technique highlights only the edges of the target
object, which is insufficient for evaluation against this metric.

E. Convergence

We show that our approach converges to localize pixels
sensitive for the target class in less than half the number of
iterations compared to [12]. To show this, we calculated the
saliency map of a set of randomly selected images from class
honey bee using our approach and RISE [12] for N = 5000.



TABLE I
MEAN AUC SCORE(%) USING INSERTION (INS) AND DELETION (DEL) METRICS

Model Dataset Ours RISE [12] GCAM [13] LIME [6] Guided Backprop [20]
Ins Del Ins Del Ins Del Ins Del Ins Del

ResNet50 [8] MS-COCO [26] 75.53/0.02 1.80/0.001 73.71 4.14 55.08 6.95 46.27 7.02 38.96 4.25
ImageNet [2] 63.16/0.004 11.48/0.05 60.32 13.04 58.57 18.22 45.89 15.86 49.37 3.54

VGG16 [27] MS-COCO [26] 64.64/0.001 4.49/0.003 62.88 5.00 40.03 10.07 37.94 7.06 38.96 4.25
ImageNet [2] 58.72/0.03 12.23/0.1 59.47 12.66 51.59 15.75 45.75 16.23 49.20 3.13

InceptionV3 [28] MS-COCO [26] 66.25/0.001 5.88/0.005 65.87 5.00 62.43 4.83 53.59 6.41 39.62 6.00
ImageNet [2] 67.43/0.004 6.34/0.003 65.12 10.25 60.99 11.31 45.76 13.32 49.12 4.27

TABLE II
MEAN IOU SCORE(%) USING POINTING GAME METRIC

Model Ours RISE [12] GCAM [13] LIME [6]

ResNet50 [8] 79.01/0.02 74.9 69.11 57.29
VGG16 [27] 78.0/0.001 81.12 62.31 51.17
InceptionV3 [28] 76.0/0.002 63.23 57.54 48.21

The criteria for choosing a particular image category includes
the presence of at least one distractor object, which makes the
target class discrimination difficult. Figure 4(a) and 4(b) shows
the insertion and deletion metric of the saliency map at every
iteration. The error bar at each iteration shows the standard
deviation of the average AUC. For every 1000

th iteration, we
report the average AUC of insertion and deletion of the pixels
using the saliency map generated using both the approaches.
From Figure 4(a), we observe that the accuracy increases over
iterations and then approaches a point after which updating the
saliency mask does not improve the performance of insertion
accuracy. This point is the point of convergence. The figure
shows that our approach reaches the point of convergence
faster than [12]. Furthermore, unlike [12], the monotonically
increasing and decreasing curve of the mean AUC of insertion
and deletion metric shows that the saliency map over iterations
generated using our approach is more reliable for decision-
making.

F. Evaluation of the variations of the salient region

In this section, we evaluate the generalizability of our
saliency map approach on an input image of a lynx. The image
is chosen such that the presence of distractor objects makes
the discrimination of the target class against other classes
challenging using a saliency mask. For instance, the image
of lynx has a background whose pattern and colour match
with that of the lynx, which contributes to reducing the target
accuracy to 62.15%. However, we found that the results of the
evaluation followed a similar trend for other images evaluated
from the test set of the ImageNet dataset.

1) Classification Accuracy of reconstructed images: Given
a saliency map for an input image of Lynx, we report the
classification accuracy of a subset of reconstructed images of
lynx that are correctly classified as Lynx by ResNet50. To
obtain the reconstructed images, first, we created a reconstruc-
tion mask R by convolving the bounding box for the saliency

(a)

(b)

Fig. 4. The figure shows the AUC score of insertion 4(a) and deletion 4(b)
for the saliency map of an input image using our approach and RISE [12]
over the iterations.

map of Lynx with a kernel of size (15, 15). We also trained
a GAN [29] as the generator (G) using a set of 40K training
images from the ImageNet dataset. The input images were
downsampled to a size of (64 × 64) to speed up the training
process of G. The training is followed by feeding G with
the input image, the reconstruction mask and a batch of 64
random noise vector z to generate a batch of 64 images. The
generated images are used to reconstruct a set of 64 images
using Equation 5.

Figure 5 shows a subset of the reconstructed images that
are correctly classified to the target class Lynx with an
average accuracy of 64%. The figures are pixelated because
the reconstructed images are resized from size (64×64) to size
(224 × 224) where (64 × 64) is the size of generator output
and (224 × 224) is the size of the saliency map. From the
figure, we observe that most of the reconstructed parts of the



Class: Lynx, Accuracy: 89%, Std Deviation: 0.2%

Fig. 5. Reconstructed images for the image of a Lynx with saliency map (M ) as shown in Figure 3

Fig. 6. Figures showing the histogram of the reconstructed salient pixels and the original salient pixels. The title of the sub-figures show the accuracy of the
class Lynx for input image/reconstructed image.

images (face including eyes, nose, mouth, left side of the face)
contain a blob, which is black in the vicinity of the mouth and
the lower part of the nose. The presence of a consistent feature
across the reconstructed images shows that the area around the
nose and the mouth of the image is essential for classifying
the image to the class of Lynx.

Figure 6 shows the histograms of the reconstructed salient
region of the input and the original salient region of the
input. For each of the reconstruction, the figure also shows
the accuracy of the target class Lynx and the t-score. The t-
score is a measure to tell apart the difference between the
reconstructed pixels and the original pixels; thus, the higher
the t-score value, the larger the differences. Based on the t-
score, it is evident that the reconstructed pixels classified to the
target class Lynx have variations that are significantly different
from the original pixels. Thus, these reconstructed pixels of
the salient region of the input are the variations, which form

alternate explanations for the target class.

2) Impact of varying sizes of bounding boxes: We show that
the size of the bounding box enclosing the salient region of the
input influences the quality of the reconstructed images and
hence the alternate explanations. The idea is that as the size of
the salient region to reconstruct shrinks, the evidence from the
neighbourhood to reconstruct missing pixels increases, thereby
generating contextually similar images. We reconstructed the
input image using the varying sizes of the bounding boxes by
reducing the bounding box by a factor of α = 0.1 until half
the original size. From Figure 7, it is evident that the number
of reconstructed images correctly classified to the target class
Lynx increases as the size of the bounding box decreases. The
most number of correct classifications are observed with the
bounding box that is half the size of the original salient region.
Equivalently, as shown in Figure 8, the loss incurred by the
generator during the reconstruction of the images decreases



as the size of the bounding box decreases. This shows that a
carefully chosen value of α helps generate contextually similar
images. For the image of lynx, a value of 8α, which retains
80% of the salient region in the bounding box, generates
reconstructed images with an average classification accuracy
of 63.4%.

Fig. 7. Figure shows the number and accuracy of correct classifications using
the reconstructed images over different sizes of bounding boxes.

Fig. 8. Figure shows the reconstruction loss over the different sizes of
bounding boxes.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a generalizable saliency map-
based explainability technique for explaining the target-
specific outcome of a model. We evaluated our saliency map
based explanation approach using two datasets: ImageNet and
MS-COCO, and against a set of models: VGG16, ResNet50,
Inception V3. We also compared our approach against other
saliency map-based techniques. Experiments show that our
method performs better than the existing explainability ap-
proaches across most of the tested scenarios. Furthermore, to
evaluate the generalizability of our approach, we evaluated the
correctness of the alternate explanations. The accuracy of the
reconstructed input using the saliency map as the mask shows
that the approach can find explanations that are relevant to the
classification of input to the target class.

As part of future work, we will extend our non-intrusive
saliency map-based approach for explaining the mode outcome
for the input of type time-series as well sequences.
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