
1

Accurate Measurement of Small Execution
Times – Getting Around Measurement Errors

Carlos Moreno, Sebastian Fischmeister

Abstract—Engineers and researchers often require accurate
measurements of small execution times or duration of events in
a program. Errors in the measurement facility can introduce
important challenges, especially when measuring small intervals.
Mitigating approaches commonly used exhibit several issues; in
particular, they only reduce the effect of the error, and never
eliminate it. In this letter, we propose a technique to effectively
eliminate measurement errors and obtain a robust statistical
estimate of execution time or duration of events in a program.
The technique is simple to implement, yet it entirely eliminates
the systematic (non-random) component of the measurement
error, as opposed to simply reduce it. Experimental results
confirm the effectiveness of the proposed method.

I. MOTIVATION

Software engineers and researchers often require accurate
measurements of small execution times or duration of events in
a program. These measurements may be necessary for example
for performance analysis or comparison, or for measurement-
based worst-case execution time (WCET) analysis. Obtaining
execution times analytically from the assembly code is increas-
ingly difficult with modern architectures, and often the most
practical alternative is actual measurement during execution.

Measurement errors and uncertainties introduce an impor-
tant difficulty, especially for short intervals. For example, a
basic approach to measure the execution time of a given
function or fragment of code F is the following:

time start = get_current_time()
Execute F
time end = get_current_time()
// execution time = end - start

Unfortunately, the resulting measurement includes the
actual execution time of F plus an unknown amount
of time corresponding to the internal processing time of
get_current_time(). With modern OSs, invocation of the
get_current_time() facility can even involve a context
switch to kernel mode and back. This unknown overhead
comprises a systematic (non-random) component and a noise
(random) component. The systematic error is in general related
to the execution time of the get_current_time() facility,
whereas the random component can be due to a variety of
factors such as measurement based on clock ticks or schedul-
ing issues, or even electrical noise in the case of measurement
based on pin-toggling. Though our work addresses both,
our focus is on the systematic error, which is the one that
commonly used approaches fail to effectively eliminate.

Some of the common mitigating approaches only reduce the
effect of these errors and never completely eliminate it. In our

Carlos Moreno and Sebastian Fischmeister are with the Electrical and
Computer Engineering Department of the University of Waterloo, Canada.
E-mail: {cmoreno,sfischme}@uwaterloo.ca

example, a typical mitigation approach consists of executing
F multiple times, as shown below:

time start = get_current_time()
Repeat N times:

Execute F
time end = get_current_time()
// execution time = (end - start) / N

The execution time that we obtain is subject to the mea-
surement error divided by N ; by choosing a large enough
N , we can make this error arbitrarily low. However, this
approach has several potential issues: (1) repeating N times
can in turn introduce an additional unknown overhead, if coded
as a for loop. Furthermore, this is subject to uncertainty in
that the compiler may or may not implement loop unrolling,
meaning that the user could be unaware of whether this
overhead is present; (2) the efficiency of the error reduction
process is low; that is, we require a large N (thus, potentially
large experiment times) to significantly reduce the error; and
(3) re-executing F may require re-initialization through some
call to an additional function, which then introduces a new
uncertainty:

time start = get_current_time()
Repeat N times:

initialize_parameters()
Execute F

time end = get_current_time()
// execution time = (end - start) / N

In this case the measured time corresponds to
the execution time of F plus the execution time of
initialize_parameters() and it is not possible to determine
either of the two values.

Other mitigating approaches include profiling the execution
time of the get_current_time() facility. For example, mea-
sure the execution time of a null fragment, and the measured
average value corresponds to the systematic error or overhead
in get_current_time():

Repeat N times:
start = get_current_time()
end = get_current_time()
sum = sum + (end - start)

overhead = sum / N

This approach, however, can be ineffective for modern
architectures where low-level hardware aspects such as cache
and pipelines can cause a difference in the execution time of
get_current_time() when executed in succession vs. when
executed with other code in between calls.

Embedded engineers often measure execution time by ob-
serving a signal at an output pin. They instrument the code
with an output port instruction to toggle a pin, and measure
time between edges to obtain execution times. Though this
mechanism in general yields higher accuracy, it is still subject
to the same types of measurement errors discussed above.

2

II. RELATED WORK

To the best of our knowledge, no concrete effective approaches
have been suggested to get around these issues related to
measurement errors. Some common ideas and themes seem to
be present, some of them oriented to measuring variations in
timing parameters (see for example [1]). The effect of outliers
is a recurrent theme. Typical approaches involve statistics that
are immune to the effect of outliers, such as the median.

Jain [2] and Laplante [3] both discuss performance analysis
including estimation of execution times and statistical analysis
of experimental data. Oliveira et. al [4] proposed a system
where statistically rigorous measurements are extracted under
carefully controlled environment, effectively getting around
some of the issues that can disrupt the parameters being
measured. These works, however, focus on the extraction and
analysis of experimental data for performance evaluation, and
not on the actual measurement of execution times.

Stewart [5] covers basic techniques for measuring execution
time and applicability to WCET and performance analysis.
Lilja [6] also covers some of the basic techniques. It provides
a good set of definitions, terminology, and modeling of mea-
surement errors and their sources. In particular, [6] presents
a good discussion on the notions of accuracy, precision, and
resolution. CPU clock cycle counters in modern processors
(e.g., Intel [7] and ARM [8]) can provide high resolution,
but they don’t necessarily avoid the measurement artifacts that
reduce accuracy and precision in the measurements.

In the context of WCET analysis, hybrid approaches [9] use
static analysis to determine WCET in terms of execution times
of fragments. These times are measured with pin-toggling
instrumentation, assisted by a special logic-analyzer hardware.
Our proposed approach exhibits important advantages over
the pin-toggling instrumentation approach, yet it can benefit
from the static analysis component that can compensate for
complex hardware features that introduce a relationship where
execution paths affect the execution times being measured.

III. GETTING AROUND MEASUREMENT ERRORS

We start by addressing the systematic error only. In the next
sections we include the random part (noise) in the analysis.

For N consecutive executions of F , the measured execution
time T corresponds to T = NTe + ϵ, where Te is the
execution time of F and ϵ is the overhead from the invocations
of get_current_time(). We notice that it is impossible to
determine Te, since we have two unknowns.

The key observation is that with an additional measurement
for a different number of consecutive executions, we obtain
two independent equations for the two unknowns Te and ϵ
(since ϵ is the systematic error, thus common to all measure-
ments). This allows us to completely eliminate the effect of ϵ
and thus determine the actual execution time of F :

T1 = N1Te + ϵ
T2 = N2Te + ϵ

⇒ Te =
T1 − T2

N1 −N2
(1)

The simplest strategy to implement this idea, namely Dif-
ferential Measurements, derives directly from Equation (1),
choosing N1 = 1 and N2 = 2. The resulting measurement,
as discussed above, eliminates the systematic error but is

subject to noise. However, we can reduce the effect of noise
by repeating this differential measurement multiple times.
We remark that coding these repetitions as a for loop is
not an issue, since the loop overhead occurs outside of the
measurements. The idea is illustrated below:

Repeat N times:
time T1 = get_current_time()
Execute F
time T2 = get_current_time()
Execute F
Execute F
time T3 = get_current_time()
total += (T3 - T2) - (T2 - T1)

// execution time = total / N

This technique is simple to implement, and by choosing
a sufficiently large N , we can make the effect of the noise
arbitrarily low. However, as our experimental results confirm,
the technique presented in the next section produces mea-
surements with higher precision for the same total number
of measurements.

IV. STRAIGHT LINE FITTING

We now present a technique that is more efficient in terms of
reduction of the noise for a given total number of measure-
ments. Without loss of generality, we assume a zero-mean
model for the measurement noise.1 In the simpler case where
no re-initialization is necessary before each invocation of F ,
a statistical estimate of Te can be obtained through a straight
line fitting given the multiple points (Nk, Tk), where Tk is the
measured time when executing F Nk times. The slope of this
line corresponds to Te.

We can set up a scheme where M measurements are taken,
where the first time we measure one execution of F , then two
executions, then three, and so on until measuring M executions
of F . Following the above notation (Nk, Tk), this would
correspond to the case where Nk = k, with 1 ⩽ k ⩽ M .

Since we do not require a large number of repetitions for
F (i.e., M can be a relatively low value), it is feasible to
execute this sequence without requiring a for loop. This
avoids the issue of introducing additional unknown overhead,
as mentioned in Section I.

The straight line y = ax+ b for a set of M points (xk, yk)
can be easily determined [10]. In our case, we obtain the
value of Te (the slope, a) substituting xk (= Nk) = k and
yk = Tk. Figure 1 shows an example with M = 20 using
POSIX’s clock_gettime() to measure a ≈40 ns execution
time (best-fitting line is y = 40.4x + 18.8).

One of the important advantages of our method is its robust-
ness against sporadic measurements with large errors. These
could be caused, for example, by a timer or I/O interrupt that
occurs while executing the function F . The typical approach
of using the median of multiple measurements does indeed
provide robustness against these occasional large deviations,
but it cannot do anything about the systematic error. Averaging
multiple medians of multiple sets of measurements becomes
expensive in terms of the required experimental time for a
given level of accuracy, and it still only reduces the systematic
error, instead of eliminating it.

1 Any non-zero mean — a non-random parameter — can be seen as part of
the systematic error ϵ

3

 0

 200

 400

 600

 800

 1000

 5 10 15 20

E
xe

cu
tio

n
T

im
e

(n
s)

Measurement #

Measurements
Best-fitting Line

Fig. 1. Example of Straight Line Fitting

A key advantage for our technique is that when performing
the line fitting process, the mean square deviation of the points
from the best-fitting line quantifies how well the straight line
models the measurements; if the line closely models the points,
then the measurements are of good quality. Thus, if one (or a
small number) of the measurements is subject to a large error,
one can easily identify them, as one or a few points will exhibit
a deviation from the straight line much larger than the median
deviation;2 thus, this or these few points can be discarded and
the straight line is determined with the remaining points.

The differential measurements technique described in Sec-
tion III also exhibits robustness with respect to outliers. The
measurements are already immune to the systematic error ϵ;
taking the median of multiple samples introduces immunity to
outliers.

V. OVERDETERMINED SYSTEM OF EQUATIONS

If the function or fragment F requires each invocation to be
preceded by some initialization function, then our measure-
ment corresponds to Te + Ti, where Ti is the execution time
of the initialization function, leading again the problem that
we can only determine the sum of these two values.

The key observation in this case is that the above problem
occurs because the multiple equations are not independent.
This linear dependency in the equations is a consequence
of the initialization function being executed exactly once per
execution of F . If at round k we execute F Nk times and
initialize_parameters() Mk times (Mk ⩾ Nk), then the
measured time Tk corresponds to:

Tk = NkTe +MkTi + ϵ+ δk (2)

where δk is the random error (noise) for the k-th measurement.
With suitable choices for Nk and Mk to ensure that the

equations are independent, we obtain a system of linear
equations. To reduce the effect of measurement noise, we take
K > 3 measurements to obtain an overdetermined system:

N1 M1 1
N2 M2 1

...
...

...
NK MK 1

 ·

Te

Ti

ϵ

 =


T1

T2

...
TK

 (3)

This system can be easily solved in the least-square error
sense, through standard numerical techniques [10].

2 Since the mean deviation is affected by the points with large deviations,
the median provides a more robust mechanism in this case.

This approach can also be suitable when measuring the
execution time of multiple blocks of code, for example the
blocks in the control-flow graph (CFG) of a given fragment.

A typical approach in this case is instrumenting the code
to toggle a pin at the beginning of each block. However, the
instrumentation disrupts the measurements in a way that may
be significant, depending on the application.

With our approach, we create an instrumented version of
the code and execute it offline to determine the number of
times each block executes (e.g., using print statements at
the beginning of each block). We also run the code in the
target, with pin-toggling only at the entry and exit points, to
measure the execution time of the entire fragment of code.
Each execution provides one linear equation, allowing us to
obtain an overdetermined system. Notice that both versions
must run with the same input data (e.g., using a pseudo-
random number generator initialized with the same seed).

VI. EXPERIMENTAL SETUP AND RESULTS

This section describes the experimental setup used to test our
techniques. The experiments were performed using an AVR
Atmega2560 [11] 8-bit microcontroller running at 1 MHz with
the clock signal generated by a crystal.

We performed a calibration phase to compensate for the
variations in the frequency of the crystals: a hardware timer di-
vides the system clock frequency to produce 1-second intervals
that were measured and used as a 1 second reference. Since
deviations in the crystals are due to manufacturing tolerance
and temperature variations, we assume that these frequencies
remain exactly the same throughout all the experiments. This
is the case because the devices were warmed up and thus their
temperatures did not change enough during the measurements
to have an observable effect on the frequency of the crystals.

In terms of notational convention, we adopt the terminology
presented in [6]: accuracy relates to the difference between
the measurement and the true value; precision relates to the
variation between multiple measurements of the same value;
and resolution relates to the size of the quantization step.

A. Differential and Straight-Line Fitting Measurements

Table I shows the results of our measurements using our
differential and straight line fitting techniques, as well as the
conventional technique of multiple measurements. In all cases,
the measurements were based on pin-toggling. We measured
the execution time of an assembler-coded routine that takes
exactly 100µs (exactly 100 clock cycles).

The results are consistent with the intuition that the line
fitting technique eliminates the systematic error while the
commonly used technique of measuring the time for multiple
executions only divides the error by the number of executions.
Indeed, we observe in Table I the inverse proportionality
relation between the error and the number of measurements for
the direct multiple measurement approach (≈ 8 for 1 measure-
ment, ≈ 0.8 for 10 measurements, ≈ 0.4 for 20 measurements,
etc.). The differential measurement technique also provides
good accuracy, but we see that its precision (as suggested
by the variance in the measurements) is low compared to
the straight line fitting method for the same total number of

4

TABLE I
EXECUTION TIME FOR A REFERENCE 100 µS TIME

Technique Execution Time (µs) Std. Deviation (µs)

Line fitting 1× – 10× 99.986 0.125
Line fitting 1× – 20× 100.001 0.044

Differential 55× 99.834 0.237
Differential 210× 100.009 0.121
Differential 1000× 100.003 0.05

Direct (1×) 108.521 1.119
Executing 10× 100.808 0.135
Executing 20× 100.412 0.068
Executing 55× 100.154 0.024
Executing 100× 100.087 0.012
Executing 210× 100.004 0.004

measurements. Increasing the number of measurements in the
differential technique can lower this variance, as shown by
the results for this technique with 1000 repetitions. Since
the differential measurement method is arguably simpler to
implement, practitioners could choose it if the experiment
duration is not too high.

Though the results show a higher precision in the con-
ventional method, its accuracy is so low that the intervals
determined by the variance do not include the true value. The
only exception is the last row, corresponding to the highest
number of repetitions. An analysis of the reasons for this
outcome is beyond the scope of this letter; however, the
proposed methods still show higher performance: we recall
that a large number of repetitions in this conventional method
makes the measurement less robust with respect to outliers,
since the probability of measurements with large deviations
increases with the number of repetitions. It also makes it hard
to code without a for loop, which would further reduce the
accuracy. Neither of these are issues with our proposed straight
line fitting or differential measurement methods.

B. Execution Time for CFG Basic Blocks
We implemented the technique described in Section V using
one of MiBench [12] functions. We chose adpcm_coder given
its non-trivial CFG. Given the CFG structure, some groups
of blocks are bound to execute the same number of times.
In those cases, we combined them to obtain the sum of
their execution times. This corresponds to identifying sets of
identical columns in the resulting matrix and leaving only one
instance for each set; the corresponding unknown represents
the sum of the execution times (which, if not combined, would
lead to a singular matrix given the repeated columns). A more
detailed discussion can be found in [13]. Each measurement
was done over 1000 executions of the function, each time
with different input data. We took 100 measurements, which
produced reasonably tight 95% confidence intervals. Notice
that this setup accounts for randomness in the equations’
coefficients that result from an individual experiment, and also
for the measurement noise. Table II shows the results for all
the unknowns; the first two values correspond to the sum of

several blocks. In all cases, the ± figures correspond to the
95% confidence intervals. Though we only verified blocks

TABLE II
EXECUTION TIME FOR CFG BLOCKS

Basic Block Execution Time (µs)

BB0 et al. 52.01 ± 0.044
BB1 et al. 98.98 ± 0.003
BB2 7.997 ± 0.005
BB4 6.994 ± 0.006
BB6 4.998 ± 0.003
BB8 3.000 ± 0.004
BB18 9.987 ± 0.016

BB2, BB4, BB6, and BB8 against the assembler code, the
fact that all of the values are extremely close to integer values,
with tight confidence intervals, suggests that the results exhibit
a good accuracy. We recall that execution times are quantized
with 1µs resolution, since the Atmega2560 MCU instructions
all execute in an integer number of clock cycles.

VII. CONCLUSIONS

In this letter, we proposed a practical approach to perform
precise measurements of short execution times or events
in programs or embedded systems. The approach is simple
and exhibits robustness with respect to outliers. Experimental
results confirm the validity and applicability of the technique.

ACKNOWLEDGEMENTS

This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada and the Ontario
Research Fund.

REFERENCES

[1] D. Brumley and D. Boneh, “Remote Timing Attacks are Practical,”
Proceedings of the 18th USENIX Security Conference, 2003.

[2] R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling.
Wiley, 1991.

[3] P. A. Laplante, Real-Time Systems Design and Analysis, Third ed.
Wiley-IEEE Press, 2004.

[4] Oliveira et al., “DataMill: Rigorous Performance Evaluation Made
Easy,” International Conference on Performance Engineering, 2013.

[5] D. B. Stewart, “Measuring Execution Time and Real-Time Perfor-
mance,” in Embedded Systems Conference (ESC), 2001.

[6] D. J. Lilja, Measuring Computer Performance – A Practitioner’s Guide.
Cambridge University Press, 2004.

[7] G. Paoloni, “How to Benchmark Code Execution Times on Intel IA-32
and IA-64 Instruction Set Architectures (White Paper),” 2010.

[8] “ARM1156T2F-S – Technical Reference Manual (§3.2.36),” 2007.
[9] Rapita Systems Ltd., “RapiTime Explained (White Paper),” https://www.

rapitasystems.com/system/files/RapiTime%20Explained.pdf.
[10] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes in C, Second ed. Cambridge University Press, 1992.
[11] Atmel Corporation, “AVR 8-bit and 32-bit Microcontrollers,” 2012,

http://www.atmel.com/products/microcontrollers/avr.
[12] Guthaus, M. R. et al., “MiBench: A free, commercially representative

embedded benchmark suite,” in IEEE International Workshop on Work-
load Characterization. IEEE Computer Society, 2001.

[13] C. Moreno and S. Fischmeister, “Accurate Measurement of Small Exe-
cution Times – Getting Around Measurement Errors. Extended Technical
Report,” https://uwaterloo.ca/embedded-software-group/publications.

