
A Comparison of Data Streaming Frameworks for
Anomaly Detection in Embedded Systems

Murray Dunne, Giovani Gracioli, and Sebastian Fischmeister
University of Waterloo, Canada

{mdunne,g2gracio,sfischme}@uwaterloo.ca

Abstract—As IoT devices are integrated into our daily lives,
verification and security become of increasing concern. Using
anomaly detection methods, we can identify damaged and com-
promised devices by examining traces of their activity. Collecting
these traces with minimal overhead is a core requirement of any
anomaly detection system. We evaluate four publish-subscribe
broker systems on their viability for trace collection in the context
of IoT devices. Our comparison considers ordering and delivery
guarantees, client language support, data structure support,
intended use case, and maturity. We run each system on orig-
inal Raspberry Pis and collect network performance statistics,
measuring their capability to collected traces in a resource-
constrained embedded systems environment. We conclude with
recommendations for designing an anomaly detection system for
IoT devices.

I. INTRODUCTION

Embedded systems, such as Internet-of-Things (IoT) and
autonomous vehicles, are present in our daily lives. Such
systems interact with the environment through several sensors
and actuators, usually controlling the operation of critical
processes. Moreover, these systems generate a huge volume
of data, which makes the task of verifying the system speci-
fication difficult.

In this context, trace-based anomaly detection can monitor
the system behavior and prevent or/and recover from fail-
ures [1]. Anomaly detection aims at detecting execution pat-
terns that do not conform with the expected system behavior. It
can be done online (during run-time) or offline (by analyzing
recorded traces). Online anomaly detection usually receives
a stream of data as input and incrementally adapts anomaly
scores for the analyzed system, thus providing early detection
of an anomaly (when compared to the offline approach).

Trace-based online anomaly detection requires a data
streaming infrastructure with minimal performance overhead.
Examples of general-purpose streaming frameworks are Zmq,
Mqtt, ActiveMQ, Apache Spark, Redis, NATS, Apache Kafka,
and RabbitMQ. Other data streaming frameworks, such as
ROS, Polysync, Qnx PPS, OpenDDS, RTI Connext, and
OpenSplice are designed as a for building an entire product,
rather than as an ancillary monitoring application.

Figure 1 shows an overview of a general data streaming
framework infrastructure for anomaly detection in embedded
systems. Sources are different embedded systems, such as a
smart building or an autonomous vehicle, and generate streams
of data at run-time. Data from these systems is sent to a data
streaming framework. Processors connect to the framework,

receive and process data. The processor output is either written
back to the framework (to be consumed by another processor)
or indicates an anomaly. Finally, sinks receive data and can
perform an action, such as storing the data into a file [2].

Fig. 1: Overview of general data streaming framework orga-
nization.

Several data streaming frameworks have been proposed
recently. However, to the best of our knowledge, a comparison
among them targeting embedded systems has not been made
yet. Two metrics are important for data streaming framework
performance: (i) low run-time latency (the time difference be-
tween the instant a data is generated by sources and the instant
it is received by processors or sinks); and (ii) throughput, the
rate of data transmission a framework can support.

In this paper, we present a comparison of existing data
streaming frameworks focusing on embedded systems. We
compare Redis [3], Kafka [4], NATS Streaming Server [5],
and RabbitMQ [6] in terms of characteristics and performance
(latency and throughput). We choose them because they have
been receiving wide attention by the scientific community
and represent different classes of streaming framework (i.e.,
implemented with different languages, targeted at different
platforms, and supporting different features). The performance
comparison is carried out using a standard embedded system
platform (Raspberry Pi). Our results indicate that Redis and
RabbitMQ are suitable frameworks for embedded systems in
both features and performance.

The rest of this paper is organized as follows. Section II
overviews the main features of the analyzed frameworks.
Section III presents the performance evaluation. Section IV
discusses related works and Section V concludes the paper.

II. OVERVIEW OF DATA STREAMING FRAMEWORKS

Redis. REmote DIctionary Server (Redis) is an open-source
in-memory key-value database. It supports several data struc-
tures, including list, sets, maps, and bitmaps. Redis can be used



as a data streaming framework because it provides a publish-
subscribe interface. Redis clients publish data into channels
using the REdis Serialization Protocol (RESP). Instances that
subscribe to channels receive data in the same order it was
published. Redis also supports the integration with on-disk
databases. Moreover, it has a small memory consumption; in
a 64-bit system, 1 million keys (hash values), representing an
object with five fields, use around 160 MB of memory [3].
This small memory consumption is adequate for embedded
systems, which usually have limited memory. Redis provides
a replication mechanism based on master-slave, in which slave
server instances are exact copies of master servers. To reduce
the network Round Trip Time (RTT) latency over transmitted
messages, Redis implements Pipelining, making it possible
to send multiple commands to the server without waiting
for individual replies [3]. These replies are instead batched
together into a single response.

Kafka. Apache Kafka is a distributed streaming platform
written in Java. Kafka runs as a cluster of one or more
servers. The cluster stores streams of records (key, value, and
a timestamp) in topics. A topic is a category or a name in
which records are published. For each topic, the Kafka cluster
maintains a structured commit log, formed by partitions. Each
partition within a topic is an ordered sequence of records that
is continually appended to the structured commit log. Log
partitions can be distributed over the cluster servers, providing
fault tolerance. Clients subscribe to topics to receive/write real-
time streams using a binary protocol over TCP. Kafka provides
APIs for sources, processors, and sinks. Moreover, Kafka
provides persistent storage by writing topic records to the disk.
As Kafka is written in Java, it requires a Java virtual machine
(JVM). This may not be appropriate for resource-constrained
embedded systems due to JVM memory requirements [4].

NATS Streaming Server. NATS is an open-source data
streaming server written in Go. NATS streaming server embeds
a NATS server. Thus, the streaming server is not a server, but
a client to a NATS server. Clients also communicate with the
streaming server through the NATS server. All the commu-
nication uses a NATS streaming protocol based on protocol
buffers. NATS streaming server provides a publish-subscribe
interface based on channels. Clients send and receive messages
to/from channels. Messages can be stored in memory or disk
files. NATS provides a message logging mechanism to save all
messages produced in a channel, allowing historical message
replay by subject. Clients may specify a playback start position
in the stream of messages stored for the subscribed subjects
channel. NATS streaming server does not support clustering
of servers. However, it supports fault tolerance by allowing
the initialization of a group of servers. Within the group, only
one server answers to clients requests, while the others monitor
the main server. When the main server fails, another one takes
control and acts as the main server [5].

RabbitMQ. RabbitMQ is an open source message bro-
kering server maintained by Pivotal software. It implements
the Advanced Message Queuing Protocol (AMQP) (ISO/IEC
19464:2014), a standardized protocol for message brokering

services [6]. AMQP defines a two-stage architecture where
messages are first transmitted to an exchange which forwards
them to different queues depending on the exchange selected.
Exchanges exist for broadcasting copies to multiple queues,
addressing queues by name, or pattern matching. Messages in
AMQP queues are acknowledged upon receipt by the server,
and clients must acknowledge a message before it is removed
from the queue. Queues must be declared before use and may
be saved to disk, so their contents are not lost on restart.
There is no inbuilt mechanism for replaying a message history,
but RabbitMQ may be configured to store logs of message
activity. RabbitMQ supports clustering where queues exist on
only one node at a time, but are reachable from all nodes.
A configuration option enables replication of entire queues.
Nodes that store their data entirely in memory are available.

Table I summarizes the discussed features for each frame-
work. The four framework are mature; they all provide clients
in several languages, support disk storage, publish-subscribe
interface, and message ordering. They differ in how they
organize and process data internally, the languages in which
they are written, and communication protocol.

III. PERFORMANCE EVALUATION

A. Experiment Description
The evaluation compares the four frameworks on publisher-

to-subscriber latency and throughput. We compare messages
differing in size and frequency. To mimic an IoT installation
we use two first version Raspberry Pis (single 700MHz
ARM11 core, 512M RAM) for the subscriber and the pub-
lisher. The server is a Raspberry Pi Version 2 (quad-core ARM
Cortex-A7, 1G RAM). Figure 2 details the experimental setup.

Fig. 2: Overview of the experimental setup.

We consider message sizes of 256 bytes, 1 KiB, 100 KiB,
and 1 MiB. The 256 byte messages are analogous to command
or status update packets from simple IoT devices such as
thermostats or light bulbs. The larger messages represent
outputs from more complex devices, such as cameras, lidar,
and smart sensors for Industry 4.0. We generate messages with
a CSPRNG to eliminate effects from any internal compression.
We publish messages at 30Hz, 60Hz, and 100Hz. The lower
frequencies resemble routine status updates from passive IoT
devices (which are often much slower than 30Hz). The 60Hz
rate is a common camera FPS measure, and the 100Hz rate
may be used for high-frequency sensors.

We consider three factors: (i) choice of framework; (ii)
message size; and (iii) message frequency. All frameworks are
configured with persistence disabled because we are targeting
online anomaly detection. The clients and server are synchro-
nized using PTP, a network level time synchronization protocol



TABLE I: Features comparison among the analyzed frameworks.

Feature / Framework Redis Kafka NATS RabbitMQ

Supported data structures strings, hashes, lists
sets, bitmaps Structured commit log Queue Queue

Message ordering Yes Yes Yes Yes

Client-side languages About 49 different
languages

About 17 different
languages C#,Go,Java,Node.js,Python About 30 languages

Storage In-memory dataset
and saving in disk Disk In-memory or disk In-memory (saving logs in files)

Written in C Scala/Java Go C
Message publication Pub-Sub Pub-Sub Pub-Sub Pub-Sub
Replication Master-slave Replicated cluster Fault Tolerance/Partitioning Clustering

Protocol REdis Serialization
Protocol (RESP) Binary protocol over TCP Based on Google protocol buffer AMQP

capable of microsecond accuracy [7]. Latency is measured by
including the timestamp at which a message is sent within
the message itself. The subscriber then notes the timestamp at
which it receives the message and subtracts to find the latency.
Throughput is measured by multiplying the current message
size by the time it takes all the messages in a single run to
arrive, then dividing by the total time for that trial.

One sample of our experiment consists of one idealized
minute of message transmission. That is, at 100 Hz we expect
6000 messages to be transmitted in a minute. If transmission
takes longer than a minute, the experiment waits for all mes-
sages to be transmitted. For each configuration (4×3×4 = 48),
the experiment is run five times. Due to the large startup time
of these services, experiments on each framework were run in
order: Redis, Kafka, NATS, and then RabbitMQ. Therefore,
this is not a fully randomized experiment.

B. Results and Discussion

Consider the latency and throughput results in Figures 3
and 4. In our setup, both Kafka and NATS were unable to
transmit large messages. The subscribers hung after a handful
of messages were received for all 1 MiB messages to Kafka
and NATS, and also for the 100 KiB messages at 100 Hz to
Kafka. At high frequencies, Kafka dropped 15% of messages
(note that Kafka was configured to keep messages 1 ms, so
they would not persist to disk) and NATS dropped 3%. Redis
also dropped 0.16% of the 1 MiB messages at 60 Hz and
100 Hz. RabbitMQ dropped no messages.

Redis and RabbitMQ behave comparably in all analyzed
scenarios for both metrics. At small message sizes (256 bytes
and 1 KiB) throughput is comparable across all four systems.
This points to the networking capability of the platform as
the primary bottleneck for small messages. Even at high
message sizes, the throughput values remain comparable for
all frameworks except NATS. This is likely due to the NATS
Streaming server connecting to the main NATS server, adding
a level of indirection. This indirection also impacts the latency
of messages sent through NATS. The primary differences
between the frameworks are observed in the latency results.
RabbitMQ and Redis maintain lower and more consistent
latencies across all message sizes; Kafka is significantly slower
but still consistent, but NATS is more than an order of magni-
tude slower and more variable than the other frameworks for

all message sizes. We also observe an increase in the variance
of message latencies as the data size increases. Especially for
Kafka and NATS at 100 KiB and 1 MiB. This is likely due
to longer waiting times in buffers.

As an application of a data streaming framework in embed-
ded systems, consider the LIDAR sensor on an autonomous
vehicle. The autonomous vehicle could publish the current
power consumption of the sensor into the framework and
a detector would continuously analyze its state. When the
power state goes to off and other sensors are still on, then
an anomaly is reported. Alternately, the vehicle could pub-
lish the gear pattern from the autonomy software into the
data streaming framework. Detectors would then monitor this
stream for driving irregularities. The data streaming server
would not run on the same platform as the autonomy software;
it would run on a smaller, low power system solely tasked
with motoring the vehicle. The choice of embedded system
to run the framework is constrained by the operating system
requirements, the amount of data collected, and the complexity
of the anomaly detector. A cloud server may be needed as the
number of clients and detectors grows.

IV. RELATED WORK

There are comparisons between data streaming frameworks
available online, but they often lack scientific rigor (i.e., do
not entirely describe the experimental environment) and do
not target embedded systems. For instance, Yigal discusses
the throughput in Kafka and Redis but does not execute both
on the same platform [8]. Treat compares the throughput and
latency in Kafka and NATS, using a high-performance server.
They find that Kafka and NATS present a similar performance
in both metrics [9].

Data streaming frameworks have been used in several works
to detect errors and anomalies in different systems. Lopez et
al. discuss the characteristics and compare three stream pro-
cessing platform (Apache Spark, Flink, and Storm) in terms of
throughput using a threat detection application [10]. Solaimani
et al. used Apache Spark to detect anomaly for multi-source
VMware-based cloud data center [11]. Subramaniam et al.
proposed a framework to online detect anomalies (outliers
detection) in wireless sensors networks [12]. However, the
authors only implemented the framework in a simulator. Du
et al. proposed a network anomaly detector based on Apache



256 bytes 1 KiB 100 Kib 1 MiB
Packet size (bytes)

10 3

10 1

101

103

La
te

nc
y 

(s
ec

on
ds

)
Latency by message size and framework at 30Hz

Redis Kafka NATS RabbitMQ

(a) Latency at 30Hz.

256 bytes 1 KiB 100 Kib 1 MiB
Packet size (bytes)

10 2

100

102

La
te

nc
y 

(s
ec

on
ds

)

Latency by message size and framework at 60Hz
Redis Kafka NATS RabbitMQ

(b) Latency at 60Hz.

256 bytes 1 KiB 100 Kib 1 MiB
Packet size (bytes)

10 2

10 1

100

101

102

La
te

nc
y 

(s
ec

on
ds

)

Latency by message size and framework at 100Hz
Redis Kafka NATS RabbitMQ

(c) Latency at 100Hz.

Fig. 3: Experimental latency results.

256 bytes 1 KiB 100 Kib 1 MiB
Packet size (bytes)

10 2

10 1

100

Th
ro

ug
hp

ut
 (

M
b/

s)

Throughput by message size and framework at 30Hz
Redis
Kafka

NATS
RabbitMQ

(a) Throughput at 30Hz.

256 bytes 1 KiB 100 Kib 1 MiB
Packet size (bytes)

10 1

100

Th
ro

ug
hp

ut
 (

M
b/

s)

Throughput by message size and framework at 60Hz
Redis
Kafka

NATS
RabbitMQ

(b) Throughput at 60Hz.

256 bytes 1 KiB 100 Kib 1 MiB
Packet size (bytes)

10 1

100

Th
ro

ug
hp

ut
 (

M
b/

s)

Throughput by message size and framework at 100Hz
Redis
Kafka

NATS
RabbitMQ

(c) Throughput at 100Hz.

Fig. 4: Experimental throughput results.

Storm [13]. Shi et al. implemented an online fault diagnosis
system based on Apache Spark for power grid equipment [14].

V. CONCLUSION

As security becomes a growing concern in IoT systems, we
turn to anomaly detection techniques to monitor the correct-
ness of devices. Collecting traces for such systems requires an
efficient data collection framework that will run on embedded
devices. We compared Redis, Kafka, NATS, and RabbitMQ as
publish-subscribe brokers on original Raspberry Pis.

Both Redis and RabbitMQ performed nearly identically.
They are both C programs designed with the specific goal
of lightweight message transmission, making them suitable
for embedded systems. Clients for both Redis and RabbitMQ
are widely available and require little more than an open
network socket. We would recommend either of these systems
for supporting trace-based anomaly detection in embedded
systems. However, we would not recommend Kafka or NATS.
Both are designed for web-based usage, focusing on delivery,
concurrency, and fault-tolerant guarantees, rather than raw
performance. These guarantees may not be required for an
anomaly detection system for IoT devices.

As future work, we plan to integrate and evaluate several
embedded system anomaly detectors, such as SiPTA [15] and
arrival curves [16] in a data streaming infrastructure based on
Redis targeting IoT and embedded systems. Other future work
could consider additional low-level publish-subscribe brokers,
and use a true real-time operating system.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection for discrete
sequences: A survey. IEEE Transactions on Knowledge and Data
Engineering, 24(5):823–839, May 2012.

[2] Gianpaolo Cugola and Alessandro Margara. Processing flows of infor-
mation: From data stream to complex event processing. ACM Comput.
Surv., 44(3):15:1–15:62, June 2012.

[3] Redis website, Jan 2018. Available online: https://redis.io/.
[4] Apache kafka website, Jan 2018. Available online:

https://kafka.apache.org/.
[5] Nats website, Jan 2018. Available online: https://nats.io/.
[6] Rabbitmq website, Jan 2018. Available online:

http://www.rabbitmq.com/.
[7] J. Han and D. K. Jeong. A practical implementation of ieee 1588-2008

transparent clock for distributed measurement and control systems. IEEE
Trans. on Inst. and Meas., 59(2):433–439, Feb 2010.

[8] Asaf Yigal. Kafka vs. redis: Log aggregation capabilities and perfor-
mance, Nov 2016. Available online: https://logz.io/blog/kafka-vs-redis/.

[9] Tyler Treat. Benchmarking nats streaming and apache kafka, Dec
2016. Available online: https://dzone.com/articles/benchmarking-nats-
streaming-and-apache-kafka.

[10] M. A. Lopez, A. G. P. Lobato, and O. C. M. B. Duarte. A performance
comparison of open-source stream processing platforms. In 2016 IEEE
GLOBECOM, pages 1–6, Dec 2016.

[11] M. Solaimani, M. Iftekhar, L. Khan, B. Thuraisingham, J. Ingram, and
Sadi E. Seker. Online anomaly detection for multi-source vmware using
a distributed streaming framework. Softw. Pract. Exper., 46(11):1479–
1497, November 2016.

[12] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, and
D. Gunopulos. Online outlier detection in sensor data using non-
parametric models. In Proc. of the 32Nd VLDB, pages 187–198, 2006.

[13] Y. Du, J. Liu, F. Liu, and L. Chen. A real-time anomalies detection
system based on streaming technology. In 2014 Sixth IHMSC, volume 2,
pages 275–279, Aug 2014.

[14] W. Shi, Y. Zhu, T. Huang, G. Sheng, Y. Lian, G. Wang, and Y. Chen.
An integrated data preprocessing framework based on apache spark for
fault diagnosis of power grid equipment. Journal of Signal Processing
Systems, 86(2):221–236, Mar 2017.

[15] Mohammad Mehdi Zeinali Zadeh, Mahmoud Salem, Neeraj Kumar,
Greta Cutulenco, and Sebastian Fischmeister. Sipta: Signal processing
for trace-based anomaly detection. In Proc. of the EMSOFT, pages 1–6,
New Dehli, India, Oct. 2014.

[16] M. Salem, M. Crowley, and S. Fischmeister. Anomaly detection using
inter-arrival curves for real-time systems. In ECRTS, France, 2016.


