Power-efficient Multiple Producer-Consumer

Ramy Medhat
Dept. of Elec. and Comp. Eng.
University of Waterloo, Canada
Email: rmedhat@uwaterloo.ca

Abstract—Power efficiency has been one of the main objectives
of hardware design in the last two decades. However, with the
recent explosion of mobile computing and the increasing demand
for green data centers, software power efficiency has also risen
to be an equally important factor. We argue that most classic
concurrency control algorithms were designed in an era when
power efficiency was not an important dimension in algorithm
design. Such algorithms are applied to solve a wide range
of problems from Kkernel-level primitives in operating systems
to networking devices and web services. These primitives and
services are constantly and heavily invoked in any computer
system and by larger scale in networking devices and data
centers. Thus, even a small change in their power spectrum
can make a huge impact on overall power consumption in long
periods of time.

This paper focuses on the classic producer-consumer problem.
First, we study the power efficiency of different existing imple-
mentations of the producer-consumer problem. In particular, we
present evidence that these implementations behave drastically
differently with respect to power consumption. Secondly, we
present a dynamic algorithm for the multiple producer-consumer
problem, where consumers in a multicore system use learning
mechanisms to predict the rate of production, and effectively
utilize this prediction to attempt to latch onto previously sched-
uled CPU wake-ups. Such group latching results in minimizing
the overall number of CPU wakeups and in effect, power con-
sumption. We enable consumers to dynamically reserve more pre-
allocated memory in cases where the production rate is too high.
Consumers may compete for the extra space and dynamically
release it when it is no longer needed. Our experiments show that
our algorithm provides up to 40% decrease in the number of CPU
wakeups, and 30% decrease in power consumption. We validate
the scalability of our algorithm with an increasing number of
consumers.

Keywords-Concurrency control; Green computing; Power; En-
ergy; Synchronization

I. INTRODUCTION

Designing low-power computing system architectures has
been an active area of research in the recent years, partly due
to increasing cost of energy as well as the high demands on
producing and manufacturing environment-friendly devices.
While the former is an explicit financial cost-benefit issue,
the latter is attributed to green computing. However, with the
recent explosion in mobile computing and incredible popular-
ity of smart-phones and tablet computers, power efficiency in
software products has become a prime concern in application
design and development and in fact as important as energy-
optimal hardware chips.

Borzoo Bonakdarpour
School of Computer Science
University of Waterloo, Canada
Email: borzoo@cs.uwaterloo.ca

Sebastian Fischmeister
Dept. of Elec. and Comp. Eng.
University of Waterloo, Canada

Email: sfischme@uwaterloo.ca

Another area where power efficiency plays an important
role is in large-scale data centers. In fact, power and cooling
are the largest cost of a data center. For example, a facility
consisting of 30,000 square feet and consuming 10MW, for
instance, requires an accompanying cooling system that costs
from $2-$5 million [10], and the yearly cost of running this
cooling infrastructure can reach up to $4-$8 million [11].
These numbers simply mean that even a small improvement
in power usage leads to significant cost reduction. Hence, it
is quite evident that we are undoubtedly in pressing need to
design and implement power-efficient hardware and software
artifacts in order to keep up with the increasingly high demand
in mobile as well as big-data applications.

Classic algorithms in computer science are heavily used in
virtually any computing system ranging from web services and
networking devices to device drivers and operating systems
kernels. However, these algorithms were designed in an era
when power efficiency was not an important dimension in
algorithm design. For example, Dijkstra’s shortest path algo-
rithm fails in the context of energy-optimal routing problems,
as simply evaluating edge costs as energy values does not
work [12]. Thus, we argue that many of such classic algorithms
need to be re-visited and re-designed, so that power constraints
are treated as a first-class citizen. Some of these algorithms are
applied in such a high capacity that even small improvements
in their power consumption behavior may have a huge impact
in the power profile of large-scale systems and mobile devices
in long periods of time.

Producer-consumer is a classic problem in concurrent com-
puting, where two processes, the producer and the consumer,
share a common bounded-size memory buffer as a queue. The
producer process generates data items and puts them into the
buffer and starts again. Concurrently, the consumer process is
consuming the data by removing them from the buffer, one
item at a time. Since the two processes work concurrently, an
algorithm has to synchronize them, so that (1) the producer
does not attempt to add data into the buffer if it is full, (2)
the consumer will not try to remove data from an empty
buffer, (3) access to a buffer location is mutually exclusive, and
(4) deadlock scenarios do not occur. The producer-consumer
problem is applicable to a multitude of real-world scenarios
in many systems around us. Examples include:

o Operating systems primitives. Such primitives provide

developers with high-level system calls to read and con-
sume data received from I/O devices, e.g., in device



drivers.

o Web servers. HTTP requests produced by web browsers
are stored in buffers that are consumed and processed by
multiple threads in a web server.

e Runtime monitoring. In runtime monitoring, events
produced by the environment or internal system processes
are consumed and processed by a runtime monitor.

e Networking. In most networking devices (e.g., routers),
data packets received from the network need to be re-
moved and processed from internal buffers of the device.

In this paper, we propose a novel power-efficient algorithm
for the multiple producer-consumer problem for multicore
systems, where each consumer is associated with one and
only one producer. To the best of our knowledge, this is the
first instance of such an algorithm. To better understand the
vital contributing factors to the power consumption behavior
of the problem, we first conducted a study to analyze the
power profile of existing popular implementations of the sin-
gle producer-consumer problem. The implementations in our
analysis consist of a busy-waiting algorithm, two algorithms
based on synchronization data structures (i.e., semaphores and
mutexes), and three algorithms that employ batch processing.
We observed that these implementations behave drastically
differently with respect to power consumption. While the busy-
waiting algorithm is the worst in power efficiency due to high
CPU utilization, the algorithms, where the consumer processes
data items in batches are the most power-efficient due to lowest
number of CPU wakeups. In particular, batch processing
results in up to 80% reduction in power as compared to
busy-waiting and up to 33% as compared to the semaphore-
based implementations. This is validated by a strong positive
correlation between wakeups and power consumption. Such a
dramatic shift in power profile clearly motivates the need for
designing a power-aware solution for the producer-consumer
problem.

Roughly speaking, our proposed algorithm exploits
bounded-time dynamic batch processing. It interprets time as
a track with periodic slots. To minimize core wakeups, it
dynamically constitutes track slots, so consumers can latch
on and exploit a CPU wakeup in groups. Given a set of
cores, since each core may host a set of consumers, a core
manager component targets aligning consumers to the slots
in that core’s track. The core manager is responsible for
managing the slot allocations on the track of its respective
core. Consumers are designed so that they can dynamically
predict production rate of data items to compute and request
appropriate latching time. Furthermore, consumers may lend
each other buffer space, so that a consumer dealing with a
producer with high production rate can continue latching on
other consumers and not cause new wakeups.

We argue that our dynamic batch processing approach is
in particular highly beneficial in web services. According to
a Google study [5], servers are rarely completely idle and
seldom operate near their maximum utilization, instead oper-
ating most of the time at between 10 and 50 percent of their

maximum utilization levels. Moreover, CPU contributes to
more than 50% of Google server power consumption. In such
servers, our approach results in periods of high CPU utilization
and periods of complete idleness, which saves a great deal
of energy. We validate this claim by conducting thorough
experiments on a data set from a web server’s incoming HTTP
requests log [4]. Our results show that our algorithm can
lower power consumption by up to 30% compared to a mutex
implementation. In fact, it provides up to 13% improvement
over the most power efficient implementation in our study.
We experiment with increasing the number of consumers and
the results validate the effectiveness of our approach and its
scalability.

Organization: The rest of the paper is organized as follows.
In Section II, we describe the background concepts on CPU
power states. Section III presents our findings on power
profile of various implementations of the producer-consumer
problem. We formally state the power optimization objective
for the multiple producer-consumer problem in Section IV.
Our power-efficient solution to multiple producer-consumer is
described in Section V, while Section VI analyzes the results
of experiments. Related work is discussed in Section VIL.
Finally, we make concluding remarks and discuss future work
in Section VIIIL.

II. BACKGROUND

Power management technologies approach power efficiency
from different perspectives:

e Static power management (SPM) simplifies the power
management problem by providing support for low-power
modes at the hardware level. A system can statically tran-
sition to the low-power modes on demand. An example
of this is a cell phone going into idle mode when it is
locked, or a sensor periodically sleeping at a predefined
period.

e Dynamic power management (DPM) employs dynamic
techniques at runtime that determine which power state
the system should be in. DPM uses different techniques
to infer whether a transition to a more efficient state is
worthwhile or not, and which efficient state to transition
to.

In DPM, hardware with scalable power consumption is
combined with management software to achieve improved
efficiency. Hardware support comes in multiple flavores, e.g.,
Dynamic Voltage Scaling (DVS) and Dynamic Frequency
Scaling (DFS). DVS scales the voltage at which the CPU
operates, and, thus, controls its power consumption. This is
based on the basic Watt’s law

P=V-I

DVS is becoming more prominent in disk drives, memory
banks, and network cards [7]. DFS scales the frequency at
which the CPU operates, such that when a high demand
occurs, the frequency is raised to meet that demand, at a higher
energy cost. When the CPU utilization drops, so does the



operating frequency, causing a decrease in power consumption.
This is because dynamic power is calculated by

szc.v2.f

where C is the capacitance switched per cycle, V is the
voltage, and f is the current CPU frequency. DVS and DFS are
often combined into DVFS, where both techniques are used
to scale CPU power consumption. CPUs generally support a
predefined set of frequency/voltage combinations performance
states, known as P-states. These states define the performance
of the CPU in terms of power and throughput.

A relatively different approach to power saving is utilizing
CPU C-states. C-states are modes at which the CPU operates,
differing mainly in their power consumption. This is achieved
by turning off parts of the CPU that are needlessly consuming
energy. This may include gradually turning off internal CPU
clocks, cache, the bus interface, and even decreasing the CPU
voltage (DVS). C-states generally start at CO which indicates
the CPU is fully active, and gradually increases the number
(C1, C2, ...) until the idle state or in some cases the hibernate
state.

Race-to-Idle is a well-known power saving concept based
on the premise that it is more power efficient to execute the
task at hand faster (a higher P-state) and then go to idle mode
(i.e., a deeper C-state). Race-to-idle is based on the fact that
idle power is significantly lower than active power even at a
low frequency. Furthermore, recent CPU chipsets such as the
Intel Haswell are even more optimized to save a significant
amount of power in idle mode. This indicates that hardware
manufacturers are moving towards approaches that attempt to
increase CPU residency in deeper C-states.

Although race-to-idle is a valid approach, it cannot be used
as a standalone strategy. The reason for this is the cost of
processor wakeup; i.e., the energy needed for reactivating the
CPU. Thus, even though fast transition to idle implies saving
power during the idle period, the wakeup cost may not be
worth it. In other words, a certain delay must occur in order for
idle mode to be advantageous. Figure 1 illustrates that more
contiguous idle time is more efficient. Thus, a valid power
saving strategy is to minimize the number of wakeups that
a CPU undergoes. This approach should be combined with
race-to-idle to ensure that a power management strategy targets
more idle time with minimum wasted power due to idle-active
and active-idle transitions.

III. PRODUCER-CONSUMER POWER PROFILE

In this section, we present experimental evidence that shows
that different implementations of a widely used concurrency
control algorithm exhibit drastically different power consump-
tion profiles.

A. Producer-Consumer Implementations

The producer-consumer problem is a classic multi-process
synchronization problem, where a producer process produces
data items and places them in a memory buffer, and a
consumer process consumes the items from the same memory

Power
A

v .

>
Time

Fig. 1. Overhead due to waking up and idling the CPU. If both peaks are
grouped, wakeup overhead becomes lower.

buffer. Since these processes work concurrently, they need to
synchronize to prevent deadlocks and race conditions. Most of
the implementations we study in this section rely on the use
of circular buffers.

We study the following implementations:

o Busy-waiting (BW). This is the most trivial implemen-
tation, where the consumer simply busy-waits until the
tail is not equal to the head of the buffer; i.e., meaning
at least one item has been inserted.

e Yield. This is similar to the busy-waiting implementa-
tion, except the consumer yields the CPU voluntarily.

o Mutexes and conditional variables (Mutex). This im-
plementation uses a mutex to ensure mutually exclusive
concurrent access to a non-circular buffer. Thus, reading
and writing from it requires atomicity to be able to track
the number of items inside. We use conditional variables
to signal when data is available for the consumer and
when space is available for the producer.

o Semaphores (Sem). This implementation uses a cir-
cular buffer and two semaphores used for synchronizing
emptiness and fullness of the buffer.

« Batch processing (BP). This implementation is similar
to the semaphore-based implementation, except that the
consumer waits until the buffer is full and then processes
all items in the buffer in one batch.

o Periodic batch processing (PBP). This implementation
is similar to the batch processing implementation, except
that the consumer processes the batch within fixed time
intervals (using the nanosleep() system call) instead of
whenever the buffer gets filled. The period for this
experiment is 100us.

« Signal-based periodic batch processing (SPBP). This
implementation is identical to periodic batch processing
except it uses UNIX signals instead of nanosleep().

B. Experimental Settings

We study the power consumption of the different producer-
consumer implementations using two methods: (1) PowerTop,
and (2) measuring voltage drop across a resistor. The results
of these two methods are combined to provide insight into the
power consumption trends of the different implementations.



PowerTop! is a popular Linux tool that uses the ACPI
subsystem and CPU performance counters to estimate the
power consumption of every running processes in the system.
We use PowerTop to measure the number of wakeups per
second that a process causes, and the percentage of CPU
time that the process consumes. The unit for CPU usage in
PowerTop is milliseconds per second, meaning the number of
milliseconds the process spends executing every second. For
a process that is executing non-stop, this would be 1000 ms/s.

Our power measurement setup uses a resistor in series on the
live power feed of the system. The resistor is chosen to support
sufficient power as per the requirements of the system, and low
enough resistance to not prevent the system from booting (see
Figure 2). We measure the voltage drop across the resistor and
use it to determine the amount of power consumed using the
following formula:

V2
R

where R is the known resistance of our resistor, V' is the
voltage drop across the resistor, and P is the power in watts.

P

Infiniium
Scope

Vin
N> Embedded
Board

Fig. 2. Schematic of the power measurement circuit.

We use an Agilent Infiniium 54853A scope to measure the
voltage drop across the resistor. The Infiniium is a powerful
machine that supports sampling up to 20GS/s. The system
under inspection is an Arndale Samsung Exynos 5 board that
hosts a dual-core ARM A-15 Cortex M3 chip. The board runs
the Linaro operating system, which is essentially Ubuntu for
ARM. The reason for choosing Linaro is because it includes a
powerful dynamic power manager, with extensive optimization
including and not limited to efficient use of the Wait For
Interrupts (WFI) command. This board is frequently used to
build prototype Android devices and comes preloaded with
Android.

Finally, each implementation of producer-consumer is tested
using a non-linear dataset of a web server request logs [4]. This
dataset exhibits sporadic changes in the rate of production of
items. Each experiment executes for 50 seconds. We execute
3 replicates of each experiment for statistical confidence. 95%
confidence intervals are calculated for all measurements. We
measure three metrics in each experiment:

o Power (watts). The number of extra watts consumed
by the system when the respective implementation is
executed.

Thttps://01.org/powertop/

o Wakeups/s. The number of CPU wakeups per second
due to the respective implementation.

o Usage (ms/s). The number of milliseconds out of every
second that the CPU spends executing the respective
implementation.

C. Experimental Results

1) Sanity Checks: We perform the following set of sanity
checks to ensure our experimental setup is valid:

o Ensuring that measured voltages are reasonable consid-
ering the voltage rating of the embedded board and the
size of the resistor.

e We execute a test with a busy waiting multithreaded
program running on both cores of the processor, and we
ensure that no experiment reaches the power consumption
found in that implementation.

o We execute a test where no background processes are
running except kernel tasks, and we measure the power.
We ensure that the power consumed in this experiment
is less than any other experiment we run.

o We measure the statistical confidence interval to ensure
that our conclusions are not based on outliers.

2) Effect of CPU Usage on Power Consumption: CPU
usage demonstrates a significant effect on power consumption
across all seven implementations (see Figures 3 and 4). This is
strongly apparent in BW and Yield implementations. For BW,
the CPU spends 99.5% of its time executing the consumer
process. The number of wakeups is significantly lower than
every other implementation. However, a highly utilized CPU
is bound to consume more significant amount of energy. The
Yield implementation uses slightly less power and that is
attributed to DVES setting the CPU frequency to a smaller
value due to the yield instructions.

Upon excluding BW and Yield from the comparison, the
results seem dramatically different. CPU usage has a weak
positive correlation with the power consumed (12%), and in
fact, it exhibits a significant amount of noise as seen in the
larger error bars of the latter five implementations. Since these
five implementations are similar in the sense that they are
fundamentally based on idling the CPU one way or another,
it is more reasonable to compare them collectively.

3) Effect of wakeups on power: Upon comparing all seven
implementations in Figures 3 and 4, the number of wakeups
per second has a strong negative correlation of —79.6% with
power. However, this result is biased by the huge CPU usage
that BW and Yield impose. In fact, the latter five implemen-
tations show a strong positive correlation of 74% between
wakeups and power consumption. Since the usage is similar
for these implementations, wakeups/s is the stronger deciding
factor affecting power. SPBP exhibits the least number of
wakeups/s and in effect offers a 33% reduction in power
consumption over the more popular Mutex implementation. To
validate our hypothesis, we run the following hypothesis test:
Hy : Wakeups have a significant effect on power. We manage
to accept the hypothesis with 99% confidence.



OWakeups/s BUsage (ms/s)
995.47  996.67
250 1000
198.80  199.83 198.90
200 185.67
100 —~
2 3
§ 150 134.50 13
% 100 99.6 99.1] 10 %
123
= 30 20 97 90 6 2
50 !
0 0.1
BW Yield Mutex Sem BP PBP SBPB

Fig. 3. A plot of wakeups/s versus usage ms/s for all seven implementations.

BP has the second lowest number of wakeups and the
second lowest power consumption. In fact, all three batch-
based implementations are the most power efficient. This is
particularly remarkable since the more popular implementa-
tions of producer-consumer (i.e., Mutex and Sem) are the least
power-efficient among the five latter implementations. On the
contrary, batch-based implementations require more complex
synchronization, and in case of periodic batching, it requires
logic to handle the overflow of the buffer before a period
expires, which makes the implementation more complicated.
However, a 33% reduction in power is a highly significant
gain, specially when applied to a fundamental and widely used
problem such as producer-consumer.

Another important observation is the decrease in the number
of wakeups from periodic batching to periodic batching with
signals. We believe that this improvement is due to the
accuracy of SIGALRM signals compared to the sleep() system
call. The jitter associated with sleep() causes more buffer
overflows and thus, more wakeups.

Thus, with the exception of BW and Yield, the results
indicate the significance of the number of wakeups in power
consumption. Despite the fact that all implementations con-
sume the same number of data items, batch processing pro-
vides a reduction in power up to 33%. Batch processing has
its drawbacks, mainly of which is the latency in responding
to items. Mutex and Sem implementations have much lower
latency. However, when energy efficiency is a main concern,
a batch-based implementation with a bounded latency can
provide a power-efficient and acceptable solution.

In summary, the lesson learned from this simple study of a
fundamental problem is the following:

We believe that the power profile and reduction level
in power consumption observed in our experiments
strongly justify the pressing need to re-visit the design
and implementation of classic algorithms to make them
power efficient.

BEPower (watts)

1-034
1031

1 0.884
0
E
©
E 0.331 0.321
5 0.279
H 0.233 0.226
n- I I
0.1
BW Yield Mutex Sem BP PBP SBPB

Fig. 4. A plot of the power consumption in watts for all seven implemen-
tations (log scale).

IV. FORMAL PROBLEM DESCRIPTION
A. System Assumptions

As observed in Section III, minimizing the number of
wakeups in a CPU may lead to decreased power consumption.
We begin by stating the assumptions on which the problem is
based:

e Multicore system. The system we attempt to optimize for
power is a multicore system, which supports core parking.

o Simplified power model. For simplicity, the system does
not support frequency scaling and operates at two states:
idle and active.

o Multiple producer-consumers. The system hosts a set of
producer-consumer pairs where each consumer has its
own buffer.

e Independent producer rates. Each producer produces data
elements at its own non-linear and non-constant rate,
independent of other producers.

o Maximum response latencies. Each consumer defines the
maximum time allowed for a data item to be buffered and
not processed. Any data item must be processed before
or at the maximum response latency.

o Consumer isolation. All consumers are isolated from
background processes by being locked to a set of cores
on which no background process is allowed to execute.
This assumption is to isolate the effect of background
processes that can potentially wakeup a core on which
a consumer is executing. We also assume producers are
either processes on separate cores or external events, such
that they do not interfere with consumers.

B. The Optimization Problem

We formalize the multiple producer-consumer power effi-
ciency problem by defining a multicore system that consists
of a set of CPU cores a = {a,a2,...,a4}.

A set of producers P = {p1,p2,...,pm} produce data
items at their independent varying rates. Each producer p;,
1 <7 < M, produces the data items dy,ds,...,dy,, where
N; is the total number of items produced by producer p;. For
producer p;, the time at which it produces data item d; is



v;,;. Note that IV; should not conflict with infinitely running
producers. Yet we simplify this by requiring minimum power
consumption during a finite period of time.

The consumers in the set C' = {c¢1,¢a,...,cpr} consume
data in batches. That is, they are idle for a period of time until
they process all buffered data items in one batch, after which
they become idle again. For each consumer ¢;, 1 < < M,
let the invocation times of the consumer be 7; 1, 7; 2, .- ., Ti k;>
where k; is the number of invocations of the consumer. k;
depends on the time of the invocations and the number of
events in between. To clarify this, let us define the function
as follows:

Yi (Tiym—1,Tiom) ={dj | Tim—1 <Vij < Tim} (1)

Thus, for a consumer c;, ~; is the set of data items produced
by the producer p; between times 7; ,,—1 and 7; ,,. Using v,
we can define k; as the index of the consumer invocation that
processes the last data item produced by the producer. In other
words, k; is the invocation such that

dn; €% (Tiks—15Tiks) ()

Every core «; hosts a set of consumers C,, C C, where
Coy N Cq, = (), for all distinct [ and I’. We define the f :
C — « as a function that maps every consumer to a core. The
function s : @ x N — {idle, active} returns the (idle or active)
state of a core in o at a point of time in N.

Based on our assumptions, a core f(c;) is idle unless the
consumer c; is activated and is processing data. If a core is idle,
and an invocation 7; ; of ¢; occurs, then the core is activated
with a cost w, which is the wakeup cost (in terms of power)
of that core. This leads to defining the function w as follows:

_J w s(f(ci), i) =idle
w(ri ;) = { 0 s(f(ci), ;) = active

Thus, the optimization objective to build a power-efficient
multiple producer-consumer is the following (to minimize the
number of wakeups):

3)

M kK

min ¢ > > w () (4)

i=1 j=1

V. POWER-AWARE MULTIPLE PRODUCER-CONSUMER
ALGORITHM

This section presents the design of our algorithm to solve the
multiple producer-consumer problem presented in Section IV.
Figure 5 illustrates the building blocks of our solution for a
multicore system. Roughly speaking, our algorithm interprets
time as a track with periodic slots. To minimize core wakeups,
it dynamically constitutes track slots, so consumers can latch
on and exploit a CPU wakeup. Given a set o of cores, since
each core in « hosts a set of consumers C,,, we introduce
a core manager component that targets aligning consumers
to the slots in that core’s track (S;). The core manager is
responsible for managing the slot allocations on the track
of its respective core. Consumers are designed so that they

Core Manager || Core Manager Core Manager

03] % A

Fig. 5. The architecture of the proposed solution.

can predicate production rate of data items to compute an
appropriate latching time.

In the rest of this section, we describe our wakeup mini-
mization technique and design choices for core managers and
consumers in Subsections V-A, V-B, and V-C, respectively.

A. Minimizing Wakeups

As established in Section III, the number of wakeups
strongly affects power consumption. Recall that in Section III,
we identified batch processing as a more power-efficient
implementation of the producer-consumer problem. Now, con-
sider three consumers: A, B, and C' that are invoked when their
respective buffer is full. Since the amount of time it takes to fill
the buffer depends upon the rate of the data item production, a
possible invocation pattern of these three consumers could be
as shown in Figure 6(a). As can be seen, the CPU is activated 8
times, which can potentially impose significant overhead. Our
idea is to group the invocations together, so that one CPU
wakeup handles multiple consumers.

Our algorithm attempts to group consumer invocations
dynamically. We begin with interpreting time as a track with
periodic slots. This is based on the metaphor of a race track
with markings every X number of meters. In our case, this is
denoted as the slot size A. The default slot size is equal to
the minimum of all maximum acceptable response latencies
defined by the producer-consumer pairs. Figure 6(b) presents
this idea. Observe that upon grouping, the number of wakeups
is reduced to 3. This example illustrates the potential impact
of grouping on the number of wakeups. Let the timestamps of
the start of these slots be the set S = {s1, $2,83,...00}. The
initial objective of the algorithm is to ensure that all consumer
invocations are aligned to the slots:

Vi,j: 1i; €8 (5)

Although this objective is ideal, it is not realistic, since a
buffer overflow can occur at any time. To reach a realistic
objective, we first define the function g : N — N that returns
the slot closest to a certain consumer invocation, with the
condition that it is earlier than that invocation, since if it is
later it implies that a buffer overflow has occurred.

g(t)=inf{s e S|s <7} (6)

Thus, a realistic optimization objective is to minimize the
difference between an invocation and its nearest slot across
all consumer invocations on all cores.



[AMBMCL  JAMB] B]

Time

(a) Uncontrolled wakeups of multiple consumers.

| [ATB]C) [A]B] 'AEE
1 1 1 -

Slot Size \ Slfize/ Time

(b) Aligned wakeups with consumer latching.

Fig. 6. Uncontrolled vs. aligned wakeups of 3 consumers A, B, and C.

M Kk
min ZZ'T”J_Q(”J)‘ (7)

i=1 j=1

Obviously, this minimum is equal to 0, if all invocations 7; ;
are aligned to slots.

Although achieving this objective for an appropriately sized
A would result in a decrease in the number of wakeups,
there is still more room for improvement. To this end, we
consider the actual gain from realigning a consumer invocation
to a certain slot instead of aligning blindly. We use this to
determine the optimum slot to select. The basic principle
of this optimality is based upon the fact that if the CPU is
already awake at a specific point in time, then it is beneficial
to schedule consumers to be invoked at that same time. In that
sense, consumers are latching on a wakeup caused by another
consumer. This is further explained in the consumer design in
Subsection V-C.

A second optimization objective that arises from attempting
to apply the idea of consumer latching is buffer utilization.
Latching manages to decrease the number of wakeups across
multiple consumers, yet decreasing the number of wakeups
within one consumer is also an important objective. Recall that
in Equation 2, k; is the number of invocations of consumer c¢;.
Decreasing this number has a direct effect on the number of
wakeups. To minimize k;, maximum utilization of the buffer
should be achieved at every invocation since the value of k;
depends on +; (see Equation 1).

B. Core Manager Design

The core manager accepts reservation requests for specific
slots made by the consumers. It maintains a list of consumers
to invoke at every slot, and supports deregistering if a con-
sumer decides a slot is no longer appropriate. Figure 7 presents
the sequence of operations performed at every scheduled CPU
wakeup. The core manager performs the following steps:

o Upon a scheduled wakeup, the core manager looks up the
registered consumers for the current slot, and activates
them. This can be achieved by, for instance, signaling a
semaphore.

o After all registered consumers finish executing, the core
manager determines the next slot to wake up. Note that

‘ idle

Core Activated

Activate

€1 Co |-+ C; | Consume

. Update

P P P Predictions
Resize /

R R R Reserve slot
Next Slot

Fig. 7.
wakeup.

The sequence of operations performed at every scheduled CPU

this does not necessarily have to be at time s; + A where
s; is the current slot. The core manager will schedule the
next slot with at least one reservation, thus ensuring that
the CPU is not activated needlessly.

It is worth noting that the core manager does not use a
significant amount of memory in storing the reservations, since
it only needs to maintain the set of reservations in the near
future. Past reservations are replaced and future reservations
are limited to only the next invocation of every consumer.

C. Consumer Design

The fundamental part of the proposed solution is the design
of the consumer. On a principal level all consumers behave
identically and are designed to be autonomous. The scheduling
aspect of the consumer invocation should not be dictated by the
system. This assists in maintaining flexibility and scalability
in the design. Figure 7 illustrates the functions performed by
each consumer after it is activated by a core manager. In short,
a consumer attempts to (1) predict the rate of items produced,
(2) reserve a slot for latching, and (3) dynamically resize the
shared buffer, only if greater power saving can be achieved.

We now discuss the functions in detail:

e Prediction. The consumer attempts to predict the rate
of items produced by the producer based on the recent
past. We use a moving average estimation to determine
the upcoming rate of items.

R Z;:Fhﬂ T

Ti4+1 = 7]1
where ¢ is the current consumer invocation, r; is the
rate recorded at invocation j, and h is the number of
previously recorded rates used by the moving average to
estimate the future rate #; . r; is calculated as follows
for consumer c;:

N AGNER)

rj
Tij = Tij—1



where ~; is defined in Equation 1. The reason for select-
ing the moving average is the simplicity of its calculation,
imposing very low overhead on the processing involved,
which is a desirable characteristic when attempting to
minimize power consumption.

Reservation.  After predicting the upcoming rate of
items, the consumer attempts to reserve a slot. The pro-
cess of selecting a slot to reserve is based on minimizing
the cost function p over the set of possible slots:

w(s;) + e (Fiv1 - (55 — si))
p(s;) = - —

L (53 - 32)
where s; is the slot being evaluated, s; is the current slot,
e (z) is the energy consumed by processing z data items,
and w is defined in Equation 3. Naturally, the cost of
a wakeup w is much higher than the cost of processing
one data item. 7,41 - (s; —s;) is used to calculate the
number of events predicted to have been buffered in slot
s;. The cost function p is normalized to represent the cost
per data item. This gives consumers perspective on the
tradeoff between latching on a slot with a low predicted
number of items versus reserving a new slot with a high
predicted number of items.

Let the size of the buffer that the consumer reads from
be B, thus, given that the current time (slot) is s; and the
predicted rate is 7; 1, the time expected to fill the buffer
is s;+ B/7;4+1. The consumer starts evaluation at the slot
determined by ¢g(s; + B/#;+1) and backtracks until it is
impossible to find a slot with lower p. If the j*" slot being
evaluated has higher p than its predecessor j—1, then it is
safe to assume that no better slots can be found by further
backtracking. The reason for this is that if the j** slot has
a higher cost than j — 1 (since we are backtracking, j — 1
occurs later than j), this implies that the added cost is
due to a wakeup, since it is impossible for the cost per
item to increase when we decrease the time period. Using
a helper function in the core manager that backtracks to
the next slot with reservations, the backtracking process
only consumes one iteration and is, hence, a lightweight
operation taking constant time and energy.

Dynamic buffer resizing. Consider the case where the
predicted rate of items is too high to be accommodated
within one slot. This implies that a buffer overflow
may occur before the closest slot triggers. Figure 6(b)
demonstrates such a problem. The third ‘A’ and second
‘C’ invocations occur earlier than the closest slot. This
implies that a buffer overflow will occur prior to the
activation of the next slot. Our algorithm attempts to
resolve this issue by dynamic buffer resizing solution.
Figure 8 shows how dynamic resizing works. Initially,
each consumer is provided with a preallocated buffer
space of size By. This buffer space is in fact part of what
we call a global buffer (B,): a preallocated buffer of size
By = By x M, where M is the number of consumers.
When a consumer selects a slot to reserve, it calculates
the predicted number of items to be found when that

®)

By B, Bu
—> |« — | —> |«
C1 C9 | .. CMm
|- e «~|—
Dynamic Sizing Dynamic Sizing
By
Fig. 8. Dynamic buffer resizing.

slot is triggered. This prediction is used to downsize
the consumer’s buffer such that it is only sufficient to
accomodate the predicted items and not more. Thus, for
consumer c;, the downsizing of buffer size B; is as
follows:

Bi = i1 (Tij1 = Tij)

where 741 is the predicted rate, 7; ; is the current time
slot and 7; ;1 is the next slot that has just been reserved.
When another consumer fails to find a slot that can
support its expected high rate of items, it requests to
resize its buffer according to the space available. This
upsizing is calculated as follows:

M

By =min{ By — Y By, i1 (Tiji1 — 7ij)
q=1

This virtually causes the walls between the consumer
buffers shown in Figure 8 to be elastic, providing more
memory to the consumers in need. This is implemented
using linked lists and is, hence, not actual contiguous
resizing as shown in the figure.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

This section presents the results of the experiments to
compare our algorithm with other standard implementations
of the multiple producer-consumer problem. The experimental
settings are identical to the ones presented in Subsection I1I-B

A. Experimental Parameters

The experiments are based on executing producer-consumer
pairs in parallel. The producers use the web server log data set
mentioned in section III with different phase shifts, namely,
each consumer is shifted one M'" further into the dataset,
where M is the number of consumers. The reason for this
is to create more variation among the producers and their
production rates.

We evaluate the multiple producer-consumer version of 4
implementations discussed in Section III: Mutex, Sem, BP, and
our proposed algorithm in Section V, periodic batch processing
with latching (PBPL). We chose Mutex and Sem because they
are popular implementations and BP because it showed the
best performance in our study in Section III.

Furthermore, we experiment with 2, 5, and 10 producer-
consumer pairs. For the batch processing based tests (BP and
PBPL), we experiment with three different buffer sizes: 25,
50, and 100.



DOWakeups/s BPower (mWatts)
100 300
90
80 250
0 200
"n.' 60 £
3 50 150 E
3 40 5
; [
30 10 3
o
20 50
10
0 0
Mutex Sem BP PBPL

Fig. 9. A plot of wakeups/s versus power (mWatts) for all four implemen-
tations running 5 consumers.

B. Experimental Metrics

The following is the set of metrics measured for the exe-
cuted experiments:

e Power. The power consumption in milliwatts. This is not
the total consumption of the system, it is, however, the
increase in power consumption measured upon executing
the experiment.

o Wakeups/s. The number of wakeups/sec measured by
PowerTop.

o Upper bound wakeups. The number of wakeups
we estimate internally in the batch processing based
implementations.

o Average buffer size. This metric is the average buffer
size in batch processing-based implementations. Recall
that local buffers may change in PBPL when dynamic
buffer resizing is operating.

e Number of buffer overflows. The number of buffer
overflows in the batch processing based implementations.

C. Experimental Results

Figure 9 shows the average power consumption as well
as the average wakeups/s of all four implementations when
the number of consumers is 5 and the buffer size is 25.
As the graph demonstrates, wakeups/s is directly correlated
with power consumption. PBPL offers the lowest power
consumption of all four implementations, mostly due to its
lower number of wakeups/s. Compared to Mutex, PBPL low-
ers the number of wakeups/s by 39.5%, and lowers power
consumption by 20%. Compared to simple batch processing,
it lowers the number of wakeups/s by 37.8% and lowers
power consumption by 7.4%. When applied system-wide, this
improvement becomes a major contributor to power savings.

An interesting observation is that although the reduction in
wakeups is dramatic, it does not necessarily translate into the
same order of reduction in power consumption. We attribute
this to the background processes running on the system. There
are multiple kernel processes executing including drivers,
schedulers, timers, and other kernel daemons. Any processing
caused by these processes affects power consumption. This
shows that the power saving achieved from optimizing an ap-
plication can always be potentially diminished by background

wu
o
1<)
I
N
IS}

mxrwn Mutex Power

-
~
o

==2 Sem Power

=
o
s}

Z «» = BP Power
o
= 80 @
€ 3 PBPL Power
- x
“g' 60 g -=-¢--Mutex W/s
&
40 - ® -SemW/s
-« =BPWI/s
20
«ee@e PBPL W/s

Fig. 10. A plot of wakeups/s versus power (mWatts) for all four implemen-
tations when the number of consumers is 2, 5, and 10.

300 120

100 mm BP Power

— 80

:":’ U
‘;" E_ === PBPL Power
E 150 60 3
5 B | R $
H
S = - & =BPW/s
a 100 —+ 40

50 —+ 20

«--®-- PBPL W/s

0
100

Fig. 11. A plot of wakeups/s versus power (mWatts) for BP and PBPL when
the buffer size is 25, 50, and 100.

processes. However, even in these circumstances, we show that
PBPL improves power consumption. Also, generalizing the
approach in PBPL to be implemented system-wide would sig-
nificantly impact total power consumption, since the producer-
consumer problem is a fundamental problem that can be used
to model many software processes.

Figure 10 shows the effect of changing the number of
consumers on the power and wakeups/s of all four implemen-
tations. The buffer size for this set of experiments is 25. As
can be seen, power consumption increases consistently with
increasing the number of consumers, which is an expected
result since the amount of work done is increased. However,
the wakeups/s consistently decrease at the higher consumer
count. This is due to the fact that CPU becomes more busy
at a higher number of consumers, rendering it less idle, and,
hence, less wakeups. Observe that in this figure as the number
of consumers increase, the gap between the implementations
increases too. For instance, the improvement of PBPL over
Mutex is 7.5%, 20%, and 30% for consumer counts 2, 5, and
10, respectively. This shows that PBPL scales with a larger
number of consumers, and in fact, performs better. Intuitively,
this is a predictable result since PBPL is based on latching
consumer invocations, and thus, it prospers when there are
more consumers and more possibilities for latching.

Figure 11 shows the effect of changing the buffer size on
power consumption and wakeups in BP and PBPL. As shown
in the figure, increasing the buffer size causes a decrease in
power consumption as well as wakeups, which is expected due
to the ability of both implementations to buffer more items and



thus, wake up less. The gap between PBPL and BP decreases
as the buffer size increases. This is due to the saturation of
these implementations at a higher buffer size, rendering them
more similar in their operation with only minor differences in
the number of wakeups.

Our PBPL implementation counts internally a high level
upper bound on the number of scheduled wakeups during its
run, as well as the number of unscheduled wakeups (buffer
overflows). For BP, every wakeup, or in other words every
consumer invocation, is essentially a buffer overflow. On av-
erage, PBPL scores 5160 scheduled wakeups, and 1626 buffer
overflows. In comparison, BP scores 9290 buffer overflows.
This amounts to a 25% decrease in total wakeups, and an
overflow conversion percentage of 82.5%.

The average buffer size in PBPL fluctuates depending on
the rate of incoming data items. Although a buffer of size 50
is allocated for each consumer, PBPL uses on average only 43
buffer locations. This is achieved by dynamic resizing, causing
the entire setup to use memory more efficiently. The unused
space in the buffer is granted to consumers suffering from a
high production rate, so that they can maintain their latching
duties.

VII. RELATED WORK

Research in scheduling with energy efficiency as an objec-
tive demonstrates interesting results as in [1], [2], [6]. In these
papers, the general approach is the analytical construction of
an algorithm that provides an improved competitive ratio. This
work is interesting in constructing a more effective dynamic
power manager.

The work presented in [8], [13] is closer to the work
presented in this paper in the sense that prediction is used
to optimize the dynamic power manager. The concept of
grouping events is presented in [3] among others. This paper
approaches power efficiency from the perspective of improving
the power profile of a fundamental concurrency problem.

The work in [9] presents PowerNap: an energy efficiency
approach that targets minimizing idle power and transition
time. The objectives for this paper are based on [9], however
this paper attempts to contruct autonomous consumers capable
of optimizing their behavior to decrease overall system power
consumption.

VIII. CONCLUSION

In this paper, we proposed a novel power-efficient algorithm
for the multiple producer-consumer problem for multicore
systems, where each consumer is associated with one and
only one producer. To our knowledge, this is the first instance
of such an algorithm. Our approach is based on dynamic
periodic batch processing, such that consumers process a set
of items and let the CPU switch to idle state, hence, saving
power. Consumers make prediction about the rate of incoming
produced data items and group themselves together, so that the
number of CPU wakeups is minimal.

We validated the effectiveness and efficiency of our algo-
rithm by conducting a set of experiments. We observed that

10

our algorithm can lower power consumption by up to 30%
compared to popular mutex and semaphore-based implementa-
tions. In fact, it provides up to 13% improvement over the most
power efficient implementation in our study. We also observe
that our algorithm excels with the increase in the number of
consumers, making it scalable and robust.

For future work, we are currently working on other tech-
niques such as using Kalman filter for estimating producer
rate with better accuracy. We are planning to adapt and test
our approach in other domains, such as operating system ker-
nels and in runtime monitoring. Another interesting research
direction is to design a generic resource-aware producer-
consumer algorithms, where power, memory, CPU overhead,
throughput, timing, constraints, etc., need to be taken into
account simultaneously.

IX. ACKNOWLEDGMENTS

This research was supported in part by NSERC Discovery
Grant 418396-2012, NSERC Strategic Grant 430575-2012,
NSERC DG 357121-2008, ORF-RE03-045, ORF-RE04-036,
ORF-RE04-039, CFI 20314, CMC, and the industrial part-
ners associated with these projects.

REFERENCES
[1]

Susanne Albers. Energy-efficient algorithms. Communications of the
ACM, 53(5):86-96, 2010.

Susanne Albers and Antonios Antoniadis. Race to idle: new algorithms
for speed scaling with a sleep state. In Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1266—
1285. SIAM, 2012.

Hrishikesh Amur, Ripal Nathuji, Mrinmoy Ghosh, Karsten Schwan,
and Hsien-Hsin S Lee. Idlepower: Application-aware management of
processor idle states. Proceedings of MMCS, in conjunction with HPDC,
8, 2008.

Martin Arlitt and Tai Jin. 1998 world cup web site access logs, 1998.

L. A. Barroso and U. Holzle. The case for energy-proportional
computing. IEEE Computers, 40(12):33-37, 2007.

Jessica Chang, Harold N Gabow, and Samir Khuller. A model for
minimizing active processor time. In Algorithms—ESA 2012, pages 289—
300. Springer, 2012.

R. Ge, X. Feng, and K. W. Cameron. Improvement of power-
performance efficiency for high-end computing. In Proceedings. 19th
IEEE International Parallel and Distributed Processing Symposium
(IPDPS), page 8, 2005.

Chi-Hong Hwang and Allen C-H Wu. A predictive system shutdown
method for energy saving of event-driven computation. ACM Transac-
tions on Design Automation of Electronic Systems (TODAES), 5(2):226—
241, 2000.

David Meisner, Brian T Gold, and Thomas F Wenisch. Powernap:
eliminating server idle power. In ACM Sigplan Notices, volume 44,
pages 205-216. ACM, 2009.

J. D. Moore, J. S. Chase, P. Ranganathan, and R. K. Sharma. Making
scheduling “cool”: Temperature-aware workload placement in data cen-
ters. In USENIX Annual Technical Conference, General Track, pages
61-75, 2005.

P. Ranganathan, P. Leech, D. E. Irwin, and J. S. Chase. Ensemble-
level power management for dense blade servers. In Proceedings of the
33rd International Symposium on Computer Architecture (ISCA), pages
66-77, 2006.

M. Sachenbacher, M. Leucker, A. Artmeier, and J. Haselmayr. Efficient
energy-optimal routing for electric vehicles. In Proceedings of the 25th
Conference on Artificial Intelligence, (AAAI), 2011.

Hao Shen, Ying Tan, Jun Lu, Qing Wu, and Qinru Qiu. Achieving
autonomous power management using reinforcement learning. ACM
Transactions on Design Automation of Electronic Systems (TODAES),
18(2):24, 2013.

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]



