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Abstract. Safety-critical distributed real-time systems, such as networked
medical devices, must operate according to their specification, because in-
correct behaviour can have fatal consequences. A system’s design and archi-
tecture influences how difficult it is to provide confidence that the system
follows the specification. In this work, we summarize and discuss three design
choices and the underlying concepts that aim at increasing predictability and
analyzability. We investigate mandatory resource reservation to guarantee
resource availability, separation of resource consumptions to better man-
age resource inter-dependency, and enumerative reconfiguration. We use the
example of a distributed monitoring system for the human cardiovascular
system to substantiate our arguments.

1 Introduction

Networked medical devices are good examples of distributed real-time systems with
safety-critical functionality. They assist medical staff by automatically measuring
physiologic parameters such as blood pressure, oxygen level, and heart rate, or
actively influence the patient’s parameters by means of infusion pumps for analgesia
and insulin or breathing support. As a consequence, incorrect behaviour of the
system can result in fatal outcomes for the patient. As such, patients must have
confidence that the devices operate according to their specification. One way to
establish confidence in the system is by making systems predictable and analyzable,
which permits developers and certification authorities to inspect the system before
deployment.

Many researchers have looked into the problem of how to make a system pre-
dictable and analyzable. By predictable, we mean that an external observer, for
example the developer, can predict the system’s behaviour with respect to input
values and their timing without knowing the internal state. This allows the devel-
oper to build a system that implements a specification with strict constraints. By
analyzable, we mean that the system can be subjected to formal analysis methods
such as model checking which allows the developer to formally check the correct
behaviour of the system.

In this work, we summarize and discuss three design choices made in previous
and related works that aim at raising the predictability and analyzability of real-
time systems. Our contribution is to abstract from these systems and provide a
general description of the concept underlying the design choices. This allows devel-
opers to quickly understand the choices and adapt the concept for their own system.
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The following paragraphs introduce the necessary concepts of resources, resource
reservation, and resource consumption. We then discuss the three design decisions:
mandatory resource reservation (in Section 2), separation of resource consumptions
(in Section 3), and enumerative reconfiguration (in Section 4). We illustrate all three
concepts with an example of a distributed patient monitoring system for the human
cardiovascular system.

Applications require resources to execute. Classical resources include computa-
tion time (i.e., access to a processing unit to execute instructions), memory (i.e.,
temporary or permanent data storage), and communication bandwidth (i.e., access
to a shared medium to transmit information to remote stations). One can extend
this concept to logical resources such as locks or peripherals.

Before an application can use such resources, it must acquire them. A resource
broker mechanism usually provides resources to applications. For some resources,
the system implicitly allocates resources to applications. For example, when con-
sidering computation time, the dispatcher in the operating system decides at each
scheduling point which process is ready to execute. For other resources, the appli-
cation must explicitly request them. For example, programs usually make system
calls to request memory during their execution or to statically request memory at
their start time.

Systems can include mechanisms to reserve resources for applications. In such
systems, the developer can specify that the system must provide a certain amount of
resources to an application. For example, the developer might specify that a station
can always receive 50kB/s of communication bandwidth to guarantee that the sta-
tion can communicate the video stream of the surgical device or other patient data.
Resource reservation schemes are well studied across the different resource types
and come in great variety. For example, for computation time there are scheduling
algorithms (e.g. [8, 23, 26]) and for communication bandwidth there is quality of
service (e.g. [10, 22]).

For this work, we assume that the resources are reservable, meaning that we
can build a resource reservation policy. For all examples involving networking, we
assume that the system consists of a set of stations (e.g., patient monitors, biometric
sensing devices, nurse workstation) and they are interconnected through a shared
bus network.

2 Mandatory Resource Reservation

Using resources without an appropriate reservation scheme can make systems un-
predictable. For example in networks without resource reservation, message trans-
mission time can be unbounded. In Ethernet [28], developers are unable to predict
the duration it will take to send an updated value from the sensor to the monitor or
an alarm message from the monitor to the nurse station. One problem causing this
is the Ethernet capture effect [32] that results in transient or short-term unfairness.
This effect leads to incorrect behaviour, because Ethernet was designed to provide
fair access to all stations, and during these periods of unfairness a single station can
monopolize the channel. Thus, the developer is unable to predict how long it will
take to transmit a message and thus is unable to know whether the system correctly
implements a specification that requires a time bound on the transmission delay.
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Bandwidth reservation as a means of resource reservation can solve this problem.
Using bandwidth reservation, the developer can allocate bandwidth for each station
and bound the transmission delay. Several different real-time protocols on top of
Ethernet have demonstrated that this is technically feasible by extending the drivers
in the stations [11, 15, 29, 38] or switches [9, 21, 36].

Resource reservation can thus increase the predictability of medical device soft-
ware. Using resource reservation, developers can rely that sufficient resources will
be available for the application whenever it needs these resources. Therefore, the
application will never have to wait for the system to free up resources.

Resource reservation can be either mandatory (driven by the system) or discre-
tionary (driven by the applications). Mandatory means that the system guarantees
the resource reservation for applications, and applications are unable to alter these
reservations. In contrast to this, discretionary resource reservation allows applica-
tions to request more or less resources at run time. For example, the partitioning
scheme specified by ARINC 653 [3] and cyclic executives [26] implement mandatory
resource reservation. Works such as FTT-Ethernet [29] and RETHER [38] provide
discretionary resource reservation, since applications can choose to request changes
for their present reservations.

Mandatory resource reservation fits well for networked medical devices. Since
mandatory resource reservation prohibits applications from changing their reserva-
tions, it is easier to provide evidence on the behaviour of such systems than systems
with discretionary resource reservation. Mandatory resource reservation remains
static and provides a complete specification of how the broker will distribute re-
sources at run time. The resource reservation itself can then become evidence for
establishing confidence in the system’s correctness. Examples of this type can be a
fully specified time-triggered schedule as found in TTP [22], the dispatch table of a
cyclic executive [26], or the tree schedule encoded in a Network Code program [15].

We now exemplify the concept of mandatory resources reservation by looking at
our previous work on tree schedules [5, 15]. We assume a set of network stations that
exchange messages with each other. Stations store messages in queues before they
can transmit them. A message can either contain arbitrary contents or a specific
variable v. Message ordering in queues is local to each station.

We assume that time is given in discrete units, and that time is measured on a
global clock. The communication medium provides an atomic broadcast service, so
either all of the stations or none of them receive a message. All messaging behaviours
for which developers want to give guarantees are known a-priori.

An informal description of a tree schedule is then a tree structure with a root
and a set of leaves where each vertex in the structure specifies a messages to be
transmitted and each edge a possible state transition. Edges contain enabling con-
ditions. At run time, for each vertex exactly one edge is enabled at any given time.
Whenever an execution reaches a leaf of the tree, it will loop back to the root. For
a formal definition, we refer the reader to related work [5, 15].

Figure 1 shows a tree schedule. Labels on vertices show which variable needs to
be communicated. An assignment of ε means that nobody will transmit. To simplify
the example, we assume that each location has a duration of one time unit and that
the system is already synchronized.
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The system executes the tree schedule as follows: First one station transmits v1

followed by a message containing v2. Then, the enabling condition g1 determines
which edge to follow. If ¬g1 holds, then v3 will be transmitted; otherwise, the system
will leave the medium idle for one time unit.

ǫ

¬g1

g1

g1 := (v1 < vthr ∧ v2 < vthr)∨

(v1 ≥ vthr ∧ v2 ≥ vthr)

v1 v2 v3

Fig. 1: Example of a tree schedule.

Tree schedules can still lead to unbounded communication delays, because the
tree schedule itself may encode collisions on the medium and thus force retrans-
missions. Developers must choose the right type of communication to prevent this.
Tree schedules can model and execute two different types of traffic: guaranteed and
best effort. Also, developers can increase the level of detail by either communicating
individual variables or using general message passing. The difference between these
types of communication lies within the ownership of the queues, meaning which
stations know the different types of queues.

For example, the communication type of guaranteed variable updates will occur,
if only one station transmits in that state of the tree schedule, and the transmission
is specifically bound to a variable. The update is guaranteed since no other station
will transmit and thus the communication will be free of collisions. On the other
hand, best effort messaging will occur, if more than one station is permitted to
transmit data from their send queue in the state of the tree schedule. If more than
one station has a message in its send queue, then communication problems such
as collisions or packets drop might occur. These different types of communication
are visible from the specification of the tree schedule, and the system also directly
executes the tree schedule as it gets encoded in the Network Code language [15].

Since the system will execute the tree schedule at run time, developers can use
the tree schedule itself and state-space exploration on the schedule as evidence that
the system works correctly. In the later sections, we will demonstrate the advantages
of hard coded enabling decisions. Here, we only argue that the schedule enables
developers to, for example, provide upper bounds on the resource allocations for
specific applications. For the tree schedule in Figure 1, the developer can claim
that the variables v1 and v2 will always receive bandwidth and stations will always
receive updated values every three time units.

3 Separation of Resource Consumptions

Another element reducing predictability and analyzability is the high degree of inter-
nal dependencies of resources within programs. A program requires many different
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resources and uses them as the program code specifies. Consequently, consecutive
lines in the program code can use different resources. This causes a dependency
between the resources that is hidden in the program. While such dependencies are
of no concern in traditional systems, they become a major concern for safety-critical
systems, because variations in the use of resources in one line can affect subsequent
lines.

1 thread_run ( ) {
f loat ∗d=NULL ;

3 while ( 1 ) {
d = malloc ( s izeof ( f loat )∗10 ) ; // mem: allocating memory

5 acquireFilteredValues ( d ) ; // cpu: computing
msg_send ( d ) ; // net: communicating

7 free ( d ) ; // mem: deallocating memory
milliSleep ( 1 0 0 ) ; // time: controlling time

9 }}

Listing 1.1. Sample C program for computing a value and transmitting it.

Listing 1.1 shows a short example of a program that performs a simple task,
but it is hard to predict the timing behaviour. The program first allocates memory
to read some sensor values. Then, it sends them to another station through the
network, and frees the memory again. The program then delays for 100 milliseconds
before it repeats this behaviour. Now, the interesting question is: Does the program
really send a new message every 100 milliseconds?

Unfortunately, several plausible scenarios can prevent the program from sending
a message every 100 milliseconds. The scenarios range from memory allocation to
preemption, to collisions on the network to the clock granularity. For example, in
Lines 4 and 7, the program executes memory operations. Depending on the current
state of the memory manager, allocating memory might take more or less time. For
example, the memory manager might need to swap out processes to free a memory
frame, it might decide to flush buffered pages, or it might change the resident set
sizes for processes. In Line 8, the exact time of the delay depends on the clock
granularity supported by the operating system and the actual crystal. The actual
duration of the milliSleep() call varies depending on these factors. Worst of all, the
individual effects influence each other, so for example, the program might send the
message late (see Line 6), because of a delay in the memory allocation. Individual
small modification can cause ripple effects throughout the system and manifest at
parts of the program. This complicates tracing the effect back to the source.

Industry and academia know this problem and provide approaches for individual
effects. For example, work on synchronous languages [17] addressed the precision
problem by reducing reaction intervals to reaction instants. Another work investi-
gated jitter of conventional sleep functions in operating systems [14]. Other work
addresses the problem of predictability of execution at the hardware level [25]. In-
dustry uses static allocation of memory and other resources to minimize the depen-
dencies. The Ravenscar profile [13], RavenSPARK [37] and work on MISRA-C [27]
provide evidence for this.

With the observation that resource dependencies cause problems, we argue for
factoring out the reservation and consumption parts into separate programs. While
overall, the number of inter-dependencies remains the same, encapsulating them
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and joining them through a well-defined mechanism makes the program predictable
and more analyzable. The approach mimics divide-and-conquer in that it splits the
whole program into several pieces where each piece has a minimal set of resource
dependencies—in the optimal case only dependencies for one resource—we make
the programs easier to understand and analyze. After the developers specify the
pieces, they can join them together for example through specified timed interac-
tions such as timed interfaces [12] and retain predictability. For medical system
software, this means that the developers write independent pieces of code with lit-
tle resource interdependencies and then, for example, join them through a pipe and
filter architecture with well-known temporal behaviour.

Several systems have already tried to lower the resource interdependency by
encapsulating resource use in separate layers. For example, Giotto [19] separates
the value and execution domain. In this system, the reading and writing of values
is independent of the program execution. Changing one does not necessarily require
changes in the other. TTP [22], similar to other communication protocols, separates
the communication from the execution domain. A schedule defines when nodes
send and receive messages which are independent when tasks running on the nodes
produce new values. In PEACOD [6], the authors provide a framework for specifying
resource consumptions for small pieces of code to provide compositionality and
predictable behaviour for multiple resources.

In the following, we show how we separate computation and communication in
the Network Code framework [15] that implements tree schedules. Figure 2 pro-
vides the overview of the architecture. Computation tasks on the top implement
the application logic. The communication tasks on the bottom implement the com-
munication behaviour. Both layers interact through buffers and queues. The typical
data flow is as follows: the computation tasks produce new data and write it into
the buffers. The communication tasks read and encapsulate this data in messages
and transmit them on the communication medium. At the remote station, the com-
munication tasks will receive the messages and write their contents into the buffers.
Finally, the computation tasks at the remote station will process the new data.

The computation tasks can only use computation and associated resources such
as memory. Computation tasks never directly access the medium. Communication
tasks only use the communication medium as a shared resource, all other resources
need to be provided separately.

Building such a system is feasible and robust [16] as the hardware implementa-
tion shows. It isolates the computation part from the communication part in the
program. Since we use tree schedules to specify the communication tasks, we can
verify the communication behaviour on the shared medium and for example per-
forming static checks for collisions, buffer underrun, buffer overruns, sender/receiver
pairing, and incorrect messaging lifecycle.

For the example shown in Listing 1.1, the developer will specify a communication
task on the sending station that reads the value of d from the buffers and transmits it
precisely every 100 milliseconds. The receiving stations will run the matching tasks
that receive the transmitted value and store it in the buffers. On the computation
layer, tasks will now only be concerned with memory and computation resources,
which the developer can easily resolve by statically allocating the memory and then
performing schedulability analysis for the computation parts. We acknowledge that
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Fig. 2: Overview of the Network Code framework.

such a system still contains jitter caused by, for instance, hardware effects, however,
we argue that the developers can place more confidence in the system. This increase
in confidence originates from the better handling of the dependencies and using the
interaction between the tasks and the buffers as well as the tree schedule as evidence.

4 Enumerative Reconfiguration

Reconfiguration in systems has been shown to allow developers to build systems that
can adapt to new use cases, increase system survivability [35], and improve efficiency
in the use of system resources [7]. Any mass-produced safety-critical device benefits
from these properties. Medical devices also benefit, as reconfiguration enables an
integrated clinical environment [34] which improves service quality and reduces
cost. However, the increase in complexity by providing a reconfiguration mechanism
must not compromise the system’s correctness, so an important question is how to
provide the reconfiguration mechanism and still establish confidence in the system’s
correctness.

We want systems to be reconfigurable, but without knowing whether the system
works in a different configuration, the system will be unusable for safety-critical ap-
plications. Reconfigurable systems can either be space constrained (bounded state-
space) or unconstrained (unbounded state-space). In general, space unconstrained
reconfiguration schemes provide more flexibility but are unable to provide evidence
that the system behaves as it should, which makes it hard to provide guarantees on
the behaviour of the systems. For this reason, we argue that reconfiguration must
be bounded by constraints.

Bounding the reconfiguration space can either use a constraint-based or an enu-
merative approach. In the constraint-based approach, the developer specifies con-
straints at a high-level within which the system can choose its point of operation.
For example, the developer can specify a range of acceptable data rates for trans-
mitting the patient’s parameters to the monitor. Then at run time depending on the
actual situation the system will choose a data rate within the range. The advantage
of constraint-based reconfiguration is that it provides a large state space within
which the system can choose the best point of operation for the current situation.
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In the enumerative approach, the developer exhaustively lists all possible configu-
rations and the system picks one configuration at run time. In the example with
the data rates, the developer will, for instance, specify three possible data rates and
the system will select one of the three rates. Systems with multiple modes of oper-
ation usually provide exhaustive lists in which a mode usually realizes a system’s
functionality for a particular configuration.

One advantage of using the enumerative approach instead of the constrained-
based approach is the guarantee that the system supports reconfiguration but re-
mains analyzable. If system’s state-space is small, then verifying the system will be
tractable. However, the size depends on the constraints and the application, and a
system with loose constraints can easily run into the state-space explosion problem.
In the enumerative approach, the state space is automatically constrained by the
requirement to list all possible reconfigurations.

Note that fast checks for safe reconfiguration are available [33, 4], however, they
only apply to the resource reservation parts and developers still need to establish
confidence in the functional correctness for all possible configurations once they
have sufficient resources.

Several systems support reconfiguration. For example TTP/C [22] supports up
to 30 modes with a safe mode-change protocol. Tree schedules [15] can encode modes
in the structure that can have safe transitions. Endochronous clocked graphs [31]
can encode different modes similarly to tree schedules.

Section 2 demonstrates how we can encode different configurations in tree sched-
ules. The tree schedule shown in Figure 1 includes two modes of operation: one where
values v1 and v2 agree and the other where the two values disagree. Similar to this
configuration, we can encode the list of configurations in the tree structure and
verify properties as already mentioned in the previous sections.

5 Illustrative Example

We use the following example to summarize and substantiate our point about the
three concepts mentioned in the previous sections. The aim is to integrate all three
concepts into one example and show how one can provide evidence using formal
verification. We go through the following steps of building the system: (1) we build
the resource reservation scheme using tree schedules, (2) we provide evidence that
the resource reservation works by means of formal verification enabled by the sep-
aration of resource consumptions and the enumerative reconfiguration, and (3) we
show the simulation framework for tree schedules in Matlab Simulink to test tree
schedules before deployment.

5.1 Overview

We assume a distributed patient monitoring system in which body sensors transmit
physiological parameters to the patient monitor. When the pulmonary vascular
resistance (PVR) of the patient passes a given threshold, the patient monitor will
send an alarm message to the nurse station within bounded time.
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PVR [2] is the resistance in the pulmonary vascular bed against which the right
ventricle must eject blood. To calculate the pulmonary vascular resistance, the pa-
tient monitor requires the left atrial pressure (LAP) or the pulmonary capillary
wedge pressure (PCWP), the pulmonary artery pressure (PAP), and the cardiac
output (CO). PCWP provides an indirect estimate of LAP. PCWP is measured by
wedging a catheter into a small pulmonary artery tightly enough to block flow from
behind. LAP can be measured by placing a special catheter into the right atrium
and then pushing through the inter-atrial septum. Since the patient monitor only
requires the LAP or the PCWP, we can create several modes for the operation of
the monitor:

– Configuration 1: The patient monitor uses the PAP, CO, and LAP.
– Configuration 2: The patient monitor uses the PAP, CO, and PCWP.
– Configuration 3: The patient monitor uses the PAP, CO, and LAP. If an alarm is

pending, then the monitor will make a safety check and also acquire the PCWP,
before signaling the nurse alarm. This will lower the number of false alarms as
it eliminates the problem of incorrect LAP measurements.

– Configuration 4: This is similar to configuration 3 but the patient first uses
PAP, CO, and PCWP, and then uses LAP for the fail safe.

We treat calculating the pulmonary vascular resistance as a single transaction.
This means that the system should always complete all data transmissions that the
patient monitor requires before reconfiguring (e.g., changing configuration). This
assumption is important, because we model setting the configuration with a physical
button which the nurse can press with a frequency of at most once in a fixed amount
of time. In addition, the patient monitor must signal the nurse alarm within a
bounded time when the pulmonary vascular resistance exceeds a specific threshold.

5.2 Developing the Tree Schedule

Based on the specification in Section 5.1, we can develop the tree schedule for the
resource reservation. We assume that communicating one value takes one time unit,
and the inter-arrival time of button pressed events is set accordingly. Figure 3 shows
the tree schedule that implements the specification (or so we claim). A vertex labeled
ε takes zero time and we use it to encode branches with more than two choices or
for early termination of the schedule. The PVR monitoring station can operate in
four configurations. In any of the four configurations, the monitoring system at first
receives the value of the PAP from the circulatory system to calculate the PVR. If
the received value is out of the normal range for PAP values (i.e. 10-20 mmHg),
the system will enter the safety interlock state. In the safety interlock state, the
system checks the important functions of the human cardiovascular system such as
the patient’s pulse rate while resting (60-100 beats per minute) to determine the
patient’s safety. This assumption is implicit and not shown in the Figure 3. After
receiving the value of CO within the normal range (4 L/min-8 L/min), the system
can either receive LAP (normal range 6-12 mmHg) or PCWP (normal range 6-12
mmHg) based on the current configuration. The patient monitor will receive PCWP
after PAP, if the system uses configuration 3. On the other hand, the monitor will
receive LAP after the PAP, if the system runs in the default configuration (i.e.,



10

any configuration other than 1, 2, and 3). The system will enter into the safety
interlock state for out of the normal range of CO, LAP, or PCWP. The system will
generate an alarm and notify the nurse, when the PVR exceeds normal value (>
250 dyn.s/cm5). The nurse can change the configuration of the monitoring system
at any point in time, but not in the middle of a transaction.

Guards g1 and g2 define the enabling conditions whether the PVR value of the
patient exceeds the defined threshold thr. Guards g3 to g6 are enabling conditions
depending on the configuration setting. We assume configuration 4 to be the default
configuration.

For demonstration purposes, we walk through one configuration for which we
assume conf = 4 and PVR ≥ thr. In the root location labeled ε0, only g6 will be
enabled. The tree schedule specifies that the next three messages on the bus will be
PAP, CO, and PCWP. At that point PV R exceeds the threshold thr (PVR ≥ thr),
so g1 is true and the patient monitor will also receive the LAP measurement. Finally,
g1 will again be true and the patient monitor will signal the nurse alarm before the
tree schedule restarts at its root location.

g3 ← (conf = 1)

g1

g1

g1

g5

g4

g3

g6

g2

g2

g2

g2

g1

g2

g1

g2

ǫ1

ǫ2

ǫ4

ǫ3

ǫ5

ǫ6

ǫ0

LAP

g4 ← (conf = 2)

g5 ← (conf = 3)

g6 ← (conf 6= 1) ∧ (conf 6= 2) ∧ (conf 6= 3)

PAP

PAP

PAP

PAP CO

CO

CO

CO LAP

PCWP

LAP

PCWP

PCWP

Nurse

Nurse

Nurse

g1

Nurse

g2 ← (PVR < thr)

g1 ← (PVR ≥ thr)

Fig. 3: The tree scheduling for the patient monitoring system.

5.3 Verifying the Tree Schedule

To provide evidence that our system meets the specification with respect to the com-
munication requirements, we provide the following guarantees for our reservation
mechanism. Note that we can verify these properties, because we separate commu-
nication from computation in our framework (see Section 3) and we can enumerate
all configurations (see Section 4).
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– P1: In every t time units and in all configurations, the PVR monitoring system
will receive all data necessary to compute and display the new PVR value.

– P2: When PVR ≥ thr, then the nurse will be notified no later than x time
units in all configurations.

– P3: Calculating PVR is atomic and when the system is in a particular config-
uration mode, it is not possible to switch to different modes.

– P4: The system will always make progress and never gets stuck.

Fig. 4: Modeling PVR monitoring system in UPPAAL

To provide evidence that these properties hold in our system, we encode the
tree schedule in a timed automaton and check the properties using UPPAAL. UP-
PAAL [1] is a timed-automata based model checker that allows formal verification
of temporal logic properties in finite systems. Figure 4 shows the tree schedule part
of the UPPAAL model. The whole system comprises three different processes: one
modeling the tree schedule, one modeling the nurse, and one modeling the alarm
condition. All three processes run in parallel. The nurse process can alter the conf

variable at most once every time unit. The nurse alarm will sound, if the variable
nurse is set to one. We use channel a to synchronize the alarm process with the
tree schedule process. The alarm process implements the non-deterministic choice
whether an alarm happened or not. In Figure 4, the clock c constraints state changes
(one transmission requires one time unit), the clock t counts for the cycle, and the
clock tall always increases. We use t and tall for verification purposes only. We can
now check the properties defined above using UPPAAL’s query language:
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– P1: A�(P.end → (pap = 1 ∧ co = 1 ∧ lap = 1) ∨ (pap = 1 ∧ co = 1 ∧ pcwp =
1)) ∧ (P.end → (t ≤ 5)): Whenever the system reaches the end, PAP, CO, and
LAP or PCWP have been transmitted. And, the system always reaches the end
withing five time steps.

– P2: A�((adly ≥ 3) ∧ (adly ≤ 4) → ((alarm = 0) ∨ (nurse = 1))): The system
will notify the nurse within three to four time units after an alarm happened.

– P3: A�((pap conf1 = 1) ∨ (co conf1 = 1) ∨ (lap conf1 = 1)) →
¬((pap conf2 = 1) ∨ (co conf2 = 1) ∨ (pcwp conf2 = 1) ∨ (pap conf3 = 1) ∨
(co conf3 = 1) ∨ (lap conf3 = 1) ∨ (pcwp conf3 = 1) ∨ (pap conf4 = 1) ∨
(co conf4 = 1) ∨ (lap conf4 = 1) ∨ (pcwp conf4 = 1)): When the system
is in configuration 1, the system cannot enter into configuration 2, 3, or 4.
Therefore, The system cannot be switched to different configurations while it is
in a configuration mode.

– P4: A�¬deadlock: The system will always make progress and not deadlock.

Note, compare the complexity involved in checking such properties for general
programs that mix computation and communication in a programming language
like C. We can easily now connect the communication layer with the computation
layer through buffers and a specification when values get read and written in these
buffers (as we have done in [15]). Also note that we generate the schedule from
high-level specifications [30].

5.4 Simulating the System

We use Simulink to simulate our patient monitoring system. We implement the
patient monitor and connect it to a model of a human cardiovascular system [20]
using TrueTime [18]. TrueTime supports simulating network communication for
real-time control systems. The human cardiovascular system implements a heart
model and produces different physiological parameters of the heart.

In our simulation, we implement the tree schedule defined in Section 5.2. Fig-
ure 5(a) provides an overview of the Simulink model and Figure 5(b) shows the
resulting PVR value of a sample run of the simulation. The human cardiovascu-
lar system abstracts the implanted body sensors that report PAP, LAP, CO, and
PCWP to the external PVR monitoring system. The tree schedule runs inside the
network code machine (NCM) implemented on top of TrueTime. We can implement
the tree schedule inside a state machine using the StateChart block.

The human cardiovascular system components connect with the TrueTime net-
work, and the monitoring system receives the physiological parameters through the
network. The basic elements of TrueTime are the TrueTime send block, the True-
Time network block, and the Network Code Machine block that implement the tree
schedule. The monitoring system use TrueTime receive blocks to receive data over
the network. If we enter the subsystems of the system model, we will see the de-
tailed interactions of Matlab, Simulink, and TrueTime elements for each subsystem.
Before starting the simulation, we set the parameters of different elements of the
system model such as network type, number of nodes, data rate and frame size in
the TrueTime network block.
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Fig. 5: Simulation of tree schedules for the human cardiovascular system example.

6 Conclusion

In this work, we discussed three useful concepts following design decisions that
aim at increasing the predictability and analyzability of real-time systems: resource
reservation, different types of resource consumptions, and constrained reconfigu-
ration. Our work on tree schedules created the guiding example for each of these
three mechanisms. Finally, we showed an illustrative example of a distributed pa-
tient monitoring system in which we went through the phases of specifying, checking,
and finally simulating the system.

The mentioned concepts open up many avenues for future work. One can ex-
plore each of the mentioned concepts in more detail for different resource types and
investigate how to join them together into one framework for multiple resources.
Another interesting problem is compositionality of resource consumptions and ev-
idence. This points to the question of how can one place confidence in the whole
system from having evidence that all the individual modules work as specified.
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