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Abstract

In this article, we propose Palisade, a distributed framework for streaming anomaly detection. Palisade is
motivated by the need to apply multiple detection algorithms for distinct anomalies in the same scenario.
Our solution blends low latency detection with deployment flexibility and ease-of-modification. This work
includes a thorough description of the choices made in designing Palisade and the reasons for making those
choices. We carefully define symptoms of anomalies that may be detected, and we use this taxonomy in
characterizing our work. The article includes two case studies using a variety of anomaly detectors on
streaming data to demonstrate the effectiveness of our approach in an embedded setting.

Keywords: Anomaly detection, real-time embedded systems, software architecture, streaming-based
architecture.

1. Introduction

Real-time embedded systems are part of mod-
ern daily life and are integral components of safety-
critical devices in the automotive, aerospace, and
medical device fields. Failure of these critical com-
ponents may mean the loss of millions of dollars or
even human lives. Increasingly, these systems require
online anomaly detection to mitigate risks for opera-
tors from failures caused by faults and attacks.

Failures may be caused by logical faults, which can
be avoided with good design principles, or execution
faults, which can be difficult or impossible to detect
at design time [1]. Execution faults may be caused by
software errors such as memory leakage or deadlocks,
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or hardware errors like degraded sensors. Malicious
attacks may also cause execution faults, exploiting
weaknesses in hardware and software to cause un-
predictable behaviors. As real-time embedded sys-
tems become more ubiquitous and connected, such
attacks become more scalable and realistic [2]. Ex-
amples of attacks on embedded systems include dis-
abling a car’s braking system [3] and injecting a fatal
dose of insulin in an insulin pump [4].

Detection systems must be able to identify faults
and attacks quickly and accurately for their results
to be useful. If an anomaly is missed it cannot be
corrected, and if an anomaly is detected too late, the
correction may be unable to prevent a failure. To use
an analogy, anomalies such as faults and attacks can
be thought of as diseases in a system. To prevent
a disease from causing a system failure, it is neces-
sary to understand the disease’s symptoms, carefully
watch for them, and act quickly if any are detected.

In this article, we introduce a taxonomy of anomaly
symptoms and a framework for low-latency online de-
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tection of these anomaly symptoms called Palisade.
Our system is designed to monitor remote, real-time
embedded systems, and to provide a unified mech-
anism for responding quickly to faults and attacks.
Palisade is also designed to be extensible to facili-
tate the incorporation of new anomaly detection algo-
rithms to detect the symptoms of unforeseen anoma-
lies.

The main contributions of this article are:

• We describe a comprehensive taxonomy of symp-
toms of anomalies that may occur in embedded
systems and give examples of instances in the
literature where they occur. This taxonomy is
a valuable resource for anomaly detection work
as it supplies a shared language with which re-
searchers and practitioners can discuss their ca-
pabilities and requirements.

• We propose Palisade, a data streaming frame-
work that supports online anomaly detection for
embedded systems. We present its software ar-
chitecture, design choices, included anomaly de-
tectors, and two evaluations of its detection la-
tency and extensibility.

• We evaluate the applicability of Palisade through
two case studies: one using real data from an
autonomous car and a second using data gener-
ated from an autonomous driving development
platform. We show that, by integrating differ-
ent anomaly detectors, Palisade is able to detect
more anomalies than a stand-alone detector.

Palisade deviates from conventional anomaly de-
tection frameworks in that it is designed to moni-
tor remote, embedded systems and to provide online
verdicts with low latency. Many anomaly detection
algorithms have been proposed in recent years but
the vast majority are designed to operate offline, by
analyzing recorded traces [5, 6, 7, 8, 9, 10]. Offline
anomaly detection is useful for post mortem analy-
sis of problems, but not to prevent failures at run-
time. To monitor remote systems, events and read-
ings must be transmitted to detection algorithms us-
ing a data streaming architecture. Palisade uses the
publish-subscribe interface from the Redis in-memory
database [11].

Our contributions improve on the state-of-the-
art of both taxonomies of anomalous behavior and
anomaly detection frameworks. We propose a finer
grained and more extensive taxonomy of anomalies
from prior works, including symptoms of anomalies
in an event series. Ours is also the first framework
that unifies many algorithms into an online anomaly
detection system that can be applied to remote, em-
bedded systems.

The rest of this paper is organized as follows. Sec-
tion 2 presents the notation used in the paper. Sec-
tion 3 describes anomaly symptoms in both continu-
ous signals and event series. Section 4 introduces and
discusses the Palisade architecture. Sections 5 and 6
present the two case studies and performance results.
Section 7 discusses a number of ways to evaluate the
framework. Section 8 summarizes prior work related
to this article. Section 9 concludes the paper.

2. Notation

We denote the set of all natural numbers by N and
the set of all real numbers by R. We write A×B to
denote the cross product of A and B, and A→ B to
denote the set of total functions from A to B.

A sequence σ of n values is written σ = [x1, · · · , xn]
where both xi and σ(i) mean the i’th item in the se-
quence. A subsequence of σ beginning at and includ-
ing the ith index and ending at and including the jth
index is denoted σ[i,j]. A value x is in σ, denoted
by x ∈ σ iff ∃ i ∈ N such that σ(i) = x. A time
series is a sequence where each successive item of the
sequence represents a sample taken at a regular time
interval after its predecessor. The alphabet of a se-
quence denotes the set of possible items in a sequence
and, given an alphabet Σ, the set of all possible finite
sequences of its members is denoted Σ∗. Given an
alphabet Σ, a string is of type Σ∗, meaning it is a
finite sequence of members of Σ of length ≥ 0.

We use N to denote the type of names, which are
also called topics, and are used as a kind of identifier.
For clarity of notation, we use Clock for the type of
dense clock time which is defined as Clock = R. The
type of values is denoted by V, which can be any of
strings, numbers (natural or real), and Booleans. We
denote the type of maps by M = N 7→ V, where a
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map is a partial function from names to values with
a finite domain. The empty map is given by ∅. An
event is a three-tuple of type E = N ×Clock×M, that
is, it contains a name (a topic), a clock time, and a
map. A sequence of events is called a trace (or event
series) and is of type T.

The arithmetic mean, sometimes just called the
mean, of n values σ = [x1, · · ·xn] is σ = 1

nΣni=0xi.
The mean of a sequence σ is denoted σ. The variance
of n values σ = [x1, · · · , xn] is var(σ) = 1

nΣni=0(xi −
σ)2 and the standard deviation (stdev) is the square
root of the variance stdev(σ) =

√
var(σ). The abso-

lute value of a number n, denoted |n| is n if n ≥ 0 or
−n if n < 0.

The standard normal distribution is given as the
probability density function N(x) = 1√

2π
e−

1
2x

2

. The
general normal distribution is the standard normal
distribution with the domain stretched to a specified
stdev and translated to a specified mean. We de-
note the general normal distribution as N (x|m, s) =
1
sN(x−ms ).
The Discrete Fourier Transform (DFT) of a time

series is a sequence of the same length of the fre-
quency components of the time series. Given a time
series σ with length N , its DFT X is defined by
Xk = ΣNn=1σne

− 2πi
N k(n−1). We write F(σ) to denote

the DFT of σ.

3. Anomaly Symptoms

This section logically groups the anomaly symp-
toms that are present in the observable outputs of a
system. These symptoms represent the realization of
a perturbation in an internal, unobserved state ma-
chine. These symptoms do not prove an anomaly by
their mere presence, but an anomaly may cause one
or more symptoms, hence the disease-symptom anal-
ogy. The list in this section is not exhaustive, but
categorizes common anomaly symptoms.

This taxonomy relates to Mitre’s Common
Attack Pattern Enumeration and Classification
(CAPEC) [12], in that both CAPEC and this taxon-
omy can be used to classify capabilities and behav-
iors. They differ substantially in that CAPEC de-
scribes possible attacks, while this section simply de-

scribes symptoms of attacks or other, non-malicious
anomalies.

Many of the symptoms defined in this section are
expressed in relation to a set of parameters. Exam-
ples include the constant factor c expressing the spike
height for spike symptoms, or the difference ` express-
ing the difference required to define a level change
symptom. For a given system, a user can determine
these constants using a system simulation based on
prior knowledge, or traditional parameter-finding ap-
proaches such as grid search [13, 14].

3.1. Continuous-Signal Anomaly Symptoms
For the purposes of anomaly symptoms, we define

a continuous signal as a digitally sampled signal with
a constant sample rate, represented here as a time
series. This signal is expected to be the result of
readings from a single sensor, not an amalgamation
of many sources. The constant sample rate means
that the sample time of each value is known from its
index in the time series.

3.1.1. Spikes and S-waves
We define a Spike (Figure 1(a)) as a subsequence of

contiguous samples that lie farther than a given num-
ber of standard deviations from the current mean of
the signal. To account for signals with means that
change over time, we consider the distance to the
mean of a window of samples prior to the subse-
quence. More formally, given a time series y, a win-
dow size n, and a constant factor c, the subsequence
y[p+1,q] is a spike iff

∀yt : p < t ≤ q, |yt − y[p−n,p]| > c · stdev(y[p−n,p])

We define S-waves (Figure 1(b)) as spikes with an
additional deviation in the opposite direction imme-
diately following the spike. S-waves can mimic spikes
if the counter-spike is sufficiently dampened.

Example: A flooding attack over a vehicle Con-
troller Area Network (CAN) may falsely indicate that
the collision prevention system issued a command to
engage the brakes [15]. Such an attack falls under the
category of 〈CAPEC-125: Flooding〉 [12] and could
be detected by monitoring for Spike anomalies in the
volume of CAN packets.
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3.1.2. Drifting
A Drift (Figure 1(c)) is a slow movement of the

signal mean over a period of time. We consider only
linear drift here; logarithmic and sub-linear drifts are
rare, and higher order drifting encroaches on the def-
inition of level changes or spikes. Mathematically, a
continuous signal y is offset by tc, where t is the time
index and c is a constant representing the slope of
the drift. Formally, given a time series y, a nominal
version of that time series ŷ, and a slope c, a subse-
quence y[p,q] has linear drift iff

∀yt : p ≤ t ≤ q, yt = ŷt + tc

Example: An infrared combustible sensor, when
functioning over the operational temperature limit,
may drift or fail [16]. Such a failure could be de-
tected by monitoring temperature readings for Drift
anomalies.

3.1.3. Noise
Noise (Figure 1(d)), an expected component of any

signal, is considered a symptom of an anomaly only
when it is more pronounced than is typical. We de-
fine noise as a normally distributed offset around the
true value of the signal. Given a time series y, some
noisiness coefficient n and nominal time series ŷ, a
subsequence y[p,q] is noisy iff

∀yt : p ≤ t ≤ q, yt = ŷt +N (0, n)

Where N (0, n) is a standard normal distribution cen-
tered at zero with standard deviation n.

Example: Compressed air in truck brakes may
generate acoustical interference and cause metallic
friction noise from track vehicles in ultrasonic sen-
sors [17]. Brake failure could be detected by corre-
lating Noise anomalies in ultrasonic sensors with air
brake usage.

3.1.4. Clipping
We define Clipping as a loss of data at the extrema

of a signal range (Figure 1(e)), where a signal is of
a higher amplitude than is supported by the sensor
or transmission medium. Thus a clipped signal can
be represented by a series of identical samples at the
maximum or minimum extent of the sample medium.

Example: A partially blinding attack on a cam-
era of a vehicle by emitting light can hide objects [18].
This light can exceed the input range of the camera
and would appear as clipped. This attack is an exam-
ple of 〈CAPEC-607: Obstruction〉 [12]. Such blind-
ing light attacks could be detected by monitoring for
Clipping anomalies.

3.1.5. Loss
While Loss (Figure 1(f)) may more typically refer

to high noise levels making it difficult to decode a
signal, here we use loss to indicate a complete loss of
a signal. Although trivially an anomaly, a total loss
of signal may be a symptom of temporary network
disruption without any more dangerous cause. We
represent a total loss of signal as a sudden transition
to a fixed sample value. This can be observed as a
special case of Clipping, where the extrema of the
signal are identical for a short time.

Example: An attack sending a large volume of re-
quest messages over the J1939 protocol increases the
computational load of the recipient ECU until it is
not able to perform regular activities like transmit-
ting periodic messages [19]. Such an attack is an ex-
ample of 〈CAPEC-125: Flooding〉 [12] and could be
detected by monitoring CAN traffic for Loss anoma-
lies.

3.1.6. Smoothing
We define Smoothing to be a reduction in the short

term variance of a signal compared to recent history.
Smoothing (Figure 1(g)) is the rarest of the symp-
toms presented here, with few natural causes. Given
a constant k representing how far back the recent his-
torical signal variance should be considered, and the
factor threshold τ at which the signal is considered
smoothed, we say a subsequence of n samples y[t,t+n]
is smoothed iff

var(y[t,t+n]) < var(y[t−(nk)−1,t−1])τ

Example: In an attack of a control system, the
attacker may observe and record sensor readings and
then continuously repeat the recorded values during
the attack [20]. This is an example where the sen-
sor values are smoothed. Such an attack falls under
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the category of 〈CAPEC-148: Content〉 Spoofing [12].
Such spoofing attacks could be detected by monitor-
ing sensor readings for Smoothing anomalies.

3.1.7. Amplification
Amplification (Figure 1(h)) is a simple gain on the

target signal. For amplification of an original signal
we multiply every sample by some factor. Given the
magnitude of the amplification α, and an unamplified
time series ŷ, a sample yt is amplified iff

yt = αŷt

Example: Analog to Digital Converters (ADCs)
can be attacked by amplifying analog signals past
the dynamic range of the device. These attacks can
obscure other malicious behavior and damage hard-
ware [21]. This type of attack is an example of
〈CAPEC-153: Input Data Manipulation〉 [12]. It
could be detected by monitoring the analog signal
for Amplification anomalies.

3.1.8. Level Change
A Level Change (Figure 1(i)) symptom is observed

when the mean of a signal changes in a short period
and then remains consistent at the new level. Slower
changes may fall under drifting. Given a time series
y, an acceptable minimum level change threshold `,
and a minimum number of samples the mean change
must persist n, a level change has occurred over a
window of w samples y[t,t+w−1] iff

|y[t+w,t+w+n] − y[t−n−1,t−1]| > `

Example: An attack that increases the amount of
code execution will increase the power consumption
of the Central Processing Unit (CPU), which can be
observed as a Level Change [22, 23, 24]. Such an
attack could be an example of 〈CAPEC-175: Code
Inclusion〉, or 〈CAPEC-242: Code Injection〉 [12].
Many attacks with this profile can be detected by
monitoring the power consumption of the CPU for
Level Change anomalies.

3.1.9. Frequency Change
A Frequency Change (Figure 1(j)) occurs when the

primary frequency of a signal changes over a short

period. We say a Frequency Change occurs if the
primary frequency in a sliding window moves more
than some threshold over some time window. Given
a time series y, a function P which extracts the fre-
quency of the highest peak from a DFT (denoted F),
a threshold τ , and a minimum number of samples the
frequency change must persist n, a subsequence of w
samples y[t,t+w−1] experiences frequency change iff

|P (F(y[t+w,t+w+n]))− P (F(y[t−n−1,t−1]))| > τ

It may be useful to consider more frequencies, but we
restrict our definition to only consider the primary
frequency for simplicity.

Example: An attack inserting a burst of light into
a vehicle camera may change the tonal distribution
(light frequency) of the captured images, resulting in
misclassification [18]. This attack is an example of
〈CAPEC-607: Obstruction〉 [12] and it could be de-
tected by monitoring captured images for Frequency
Change anomalies.

3.1.10. Echo/Reflection
We consider an Echo (Figure 1(k)) to be a dupli-

cation of a previous series of samples on top of the
underlying signal at a later position. A Reflection is
identical to an Echo, except that the repeated signal
is inverted. Given a time series y, an echo length e, an
echo coefficient (the factor at which the echo is played
back) q, and the nominal form of the time series ŷ,
if we consider the subsequence y[t,t+e] as the origin
of the echo, we say that the subsequence y[t′,t′+e] ex-
hibits Echo iff

y[t′,t′+e] = ŷ[t′,t′+e] + y[t,t+e] × q

Example: A relay attack on the original signal
sent from the vehicle LiDAR creates fake echoes and
can make real objects appear closer or further than
their actual location, thus affecting the mission plan-
ning [18]. This attack is an example of 〈CAPEC-586:
Object Injection〉 [12]. Such an relay attack could be
detected by monitoring the LiDAR signal for Echo
and Reflection anomalies.

3.2. Event-Series Anomaly Symptoms
Symptoms of anomalies also appear in event series,

which are defined as a sequence of discrete events
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Figure 1: Time Series Anomaly Symptoms. The red line indicates the period of the described anomaly.

rather than a continuous signal. An event series
represents a trace of the execution of an automa-
ton where each event describes a state transition.
Event series differ from discretized continuous signals
in that their events are not required to occur at regu-
lar time intervals and they may carry more complex
data than only a single real value.

3.2.1. Event Frequency Change
When events of the same name are periodic or

semi-periodic, they have fairly consistent inter-arrival
times and, by extension, frequency. When that fre-
quency changes suddenly, it can be a symptom of a
system anomaly. Similarly, when the frequency of all
events in a trace change suddenly, it may be due to
an anomaly.

The inter-arrival time of an event is the difference
between the clock times of successive events of the

same name. It can be thought of as the period of the
event. More precisely, given a trace T ∈ T, an event
name µ ∈ N , and a non-empty time interval defined
by the end points t1, t2 ∈ Clock : t1 < t2, the inter-
arrival time is defined as interArrival(µ, (t1, t2)) ,
((max t : (µ, t, ·) ∈ S)−(min t : (µ, t, ·) ∈ S))/(|S|−1)
where S = {(µ, t, ·) ∈ T : t1 ≤ t ≤ t2}.
Event frequency measures how often events occur

in a given time span. It is given as the inverse of
inter-arrival time, or given a trace T ∈ T, an event
name µ ∈ N , and a non-empty time interval defined
by the end points t1, t2 ∈ Clock : t1 < t2, the event
frequency of µ is given as eventFreq(µ, (t1, t2)) ,
1/interArrival(µ, (t1, t2)).

A sudden change in event frequency, then, is when
the first derivative of event frequency is high. A
rapid change in event frequency can be found by
taking the difference between successive time inter-
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vals (or windows) in the trace. If the difference ex-
ceeds some threshold, then the change in event fre-
quency may indicate an anomaly. Given a trace
T ∈ T, an event name µ ∈ N , a window size w ∈
Clock, and a threshold ε, an event frequency change
may be defined as ∃t1, t2, t3 : eventFreq(µ, (t1, t2)) −
eventFreq(µ, (t2, t3)) > ε.

Example: Lin and Siewiorek introduced their Dis-
persion Frame Technique (DFT) to predict hardware
failures [25]. From analyzing the logs of file servers,
they observed that there exists a period of an increas-
ing rate of intermittent errors before most hardware
failures. Many such failures could be detected by
monitoring error reports for Event Frequency Change
anomalies.

3.2.2. Unexpected Event
Most traces only contain events with a limited vo-

cabulary of event names. While events themselves
are unique, due to their varying clock times, the event
names are repeated many times. When an event oc-
curs in a trace with a name that has not come earlier
in the trace, it may be a symptom of an anomaly.

Given a trace T ∈ T, an unexpected event may
be defined as an event (µ, t1, ·) ∈ T : @(µ, t2, ·) ∈ T
where t2 < t1. That is, we can think of an unexpected
event as the first event with a new name.

By this definition, however, most events at the be-
ginning of a trace will be considered unexpected. To
solve this problem, we can restate the definition in
terms of the probability that an event occurs. Given
a trace T ∈ T and a threshold ε, an unexpected event
may be defined as an event e ∈ T : P(e ∈ T ) < ε.

Example: Bellovin reported receiving broadcast
packets meant for local networks, requests to un-
used ports, and requests to unoccupied addresses over
the public Internet at AT&T in his classic whitepa-
per [26]. These types of requests are examples of
〈CAPEC-169: Footprinting〉 [12] and they could be
detected by monitoring network traffic for Unex-
pected Event anomalies.

3.2.3. Periods of Silence
A period of silence in a trace is a segment of time

where no, or few, events occur. Events may occur

more-or-less frequently during the operation of a sys-
tem as different behaviors result in different patterns
in the trace. However, nominal system behavior usu-
ally results in some events appearing. When a period
occurs where no events appear in the trace, it may
be a symptom of an anomaly.

Given a trace T ∈ T and a minimum number of
events ν, a period of silence may be defined as a non-
empty time interval defined by the end points t1, t2 ∈
Clock : t1 < t2 where |{(·, t, ·) ∈ T : t1 ≤ t ≤ t2}| < ν.

The threshold for when a time interval is consid-
ered a period of silence varies from system to sys-
tem. Some high priority tasks may monopolize sys-
tem resources while not emitting any events. To solve
this problem, we can restate the definition to spec-
ify a minimum length of the interval. Given a trace
T ∈ T, a minimum number of events ν, and a min-
imum length ` > 0, a period of silence may be de-
fined as a time interval defined by the end points
t1, t2 ∈ Clock : t2− t1 ≥ ` where the interval meets the
previous definition.

Example: Missing log messages can indicate
problems and failures in High Performance Comput-
ing (HPC) logs that are too large for humans to
manually analyze [27]. These types of failures can
be detected by monitoring logs for Periods of Silence
anomalies.

3.2.4. Sampled Value Anomaly Symptom
When an event trace includes sampled values from

a continuous signal, those sampled values may in-
clude the same trace anomalies defined in Section 3.1.
An event trace is not sampled at a fixed rate like
a time series, however. To test for sampled value
anomaly symptoms, it may be necessary to extrap-
olate the values between samples to approximate a
continuous signal.

There are several popular methods for recovering
a continuous signal from irregular samples. These
algorithms include, for example, the projections onto
convex sets (POCS) method [28], the Wiley/Marvasti
method [29], the Sauer/Allebach Algorithm (also
called the Voronoi method) [30], and the Adaptive
Weights Method [31]. These methods generally con-
struct an auxiliary signal from some sample values
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and then obtain an initial approximation by apply-
ing a low-pass filter. The error between this approx-
imation and the samples is then fed into an iterative
algorithm which can recover the signal if the sampling
density is high enough.

Example: Changes in byte frequency patterns in
network payloads to the same host and port can be
accurate predictors of network intrusions [32]. Such
attacks can be detected by monitoring for Sampled
Value Frequency Change anomalies.

4. Palisade Architecture

Palisade is motivated by the need to remotely de-
tect a dynamic range of anomaly symptoms in an
embedded system at the time they occur. We are
further motivated by the desire to combine multiple
anomaly detectors to leverage their different perfor-
mance characteristics into a single, more reliable, de-
tector. These motivations lead to the following re-
quirements:

1. the anomaly detection must have low latency,
2. it must be easy to implement and maintain de-

tectors,
3. the detectors must be able to be run on separate

machines,
4. multiple detectors must be able to run in parallel

on the same data, and
5. deployment of the system must be simple.

Requirement 1 is due to the need to respond to
anomalies with enough time to mitigate their effects.
Requirement 2 is important to any serious software
framework, since it should always be a goal to reduce
engineering costs. Requirement 3 allows Palisade to
run on separate machines from the monitored sys-
tem and to support anomaly detection appliances to
plug into existing networks. It also facilitates hori-
zontal scaling. Requirement 4 is related to Require-
ments 1 and 3, since operating multiple detectors in
series over multiple machines would delay detection
and require complex sequencing. Requirement 5 is to
reduce the barriers to adoption of the system: if it is
hard to install, no one will use it.

Palisade is designed as a set of distributed micro-
services built around a data streaming architecture.

These micro-services are implemented as three types
of nodes: sources, processors, and sinks. Nodes are
typically written in Python as Palisade provides a
Python Application Programming Interface (API) to
simplify their creation and maintenance. However,
it is also possible to integrate existing tools written
in other languages with Palisade. Figure 2 presents
an overview of the Palisade architecture through a
Unified Modeling Language (UML) information flow
diagram [33]. Each node uses the publish-subscribe
interface of the Redis data streaming infrastructure
to receive and send data. We do not discuss the
Graphical User Interface (GUI) in this article, as it
is out-of-scope.

Figure 2: UML information flow of the Palisade architecture.

4.1. Data Streaming

To support Requirements 1, 3, and 4, we needed to
find a distributed streaming architecture to transport
information between different nodes. We evaluated
the latency of four streaming frameworks while con-
sidering their inclusion in the Palisade architecture.
Latency is defined as the time difference between the
instant data is generated by a source and the instant
it is received by a processor or a sink [34]. As a re-
sult of this experiment we chose Redis as the data
streaming architecture for Palisade.

We designed a set of experiments to measure the la-
tency of four data streaming frameworks: Redis [11],
RabbitMQ [35], Kafka [36], and NATS [37]. We used
two first generation Raspberry Pis (single 700 MHz
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ARM6 core, 128 MB system RAM) for the subscriber
and the publisher and a Raspberry Pi 2 (quad-core
ARM Cortex-A7, 1G RAM) for the server. The
clients and the server were synchronized using Preci-
sion Time Protocol (PTP), a network level time syn-
chronization protocol capable of microsecond accu-
racy. We varied the transmitted message sizes (256
bytes, 1 KB, 100 KB, and 1 MB) and the publish-
ing frequency (30 Hz, 60 Hz, and 100 Hz). Latency
was measured by including the timestamp at which a
message was sent within the message itself. The sub-
scriber then noted the timestamp at which it received
the message and subtracted the sending timestamp
to find the latency. We ran each configuration of the
experiment five times and extracted the average and
standard deviation of the latency.

Table 1 shows the results for Redis latency. We
note that mean latency increases as the packet size in-
creases, as does the standard deviation. The through-
put also increases when both frequency and packet
size increase, reaching 6 MB/s at 1 MB and 100 Hz.
Redis presents the lowest latency of the four data
streaming frameworks. Refer to our previous work
for a complete comparison [34].

Table 1: Redis latency results in seconds.
Freq. (Hz)/Packet size 256 B 1 KB 100 KB 1 MB

30 0.0125
± 0.005

0.184
± 0.005

0.0731
± 0.035

0.315
± 0.3

60 0.0218
± 0.005

0.0213
± 0.005

0.0461
± 0.035

0.337
± 0.3

100 0.0425
± 0.005

0.0245
± 0.005

0.0946
± 0.035

0.365
± 0.3

REmote DIctionary Server (Redis) is an open-
source, in-memory, key-value database that provides
a publish-subscribe interface. Redis clients publish
data to channels using the REdis Serialization Proto-
col (RESP), and subscribers receive data in the same
order it was published. Redis also supports integra-
tion with on-disk databases. Moreover, Redis has
low memory consumption; in a 64-bit system, 1 mil-
lion keys (hash values), representing an object with
five fields, use around 160 MB of memory [11]. Re-
dis provides a master-slave replication mechanism in
which slave server instances are exact copies of mas-
ter servers. To reduce the network round trip la-

tency, Redis implements pipelining, making it possi-
ble to send multiple commands to the server without
waiting for individual replies [11]. These replies are
instead batched together into a single response.

4.2. Data Format

Formatting the data transmitted between Palisade
nodes requires choices to be made between the rel-
ative importance of the requirements listed in Sec-
tion 4. If Requirement 2 (implementation) and Re-
quirement 5 (deployment) are more important, then
a textual format is preferable due to its increased
interoperability and human readability. If Require-
ment 1 (latency) is the most important one, then
a simple, offset-based binary format is better be-
cause of its lower bandwidth requirements and pars-
ing costs. Palisade handles this conflict by support-
ing both JavaScript Object Notation (JSON) and a
custom binary format for data transmission between
nodes.

JSON is a standardized data format [38] with sup-
port in most programming languages [39], which
makes it easy to consume and produce messages com-
patible with Palisade from different tools. JSON is
a textual format, meaning the data is represented as
sequences of characters and, as such, must undergo
some processing to convert to-and-from internal pro-
gram state. While this does increase the process-
ing requirements of JSON formatted data, it has the
benefit of being human readable which substantially
eases debugging. Formatting with JSON also means
that new parameters may be added without break-
ing backward compatibility since a parser will ignore
JSON object keys that aren’t expected.

In contrast, an offset-based binary format needs to
be strictly specified and any changes require updates
to producers and consumers alike. Such a binary for-
mat has the advantage of transmitting less data and
does not require parsing since its fields may be found
by their memory offsets (like a C struct). Some bi-
nary formats, like Google’s Protocol Buffers, are more
complex and allow some modification without updat-
ing all uses. However these features always incur ad-
ditional costs that must be considered. For example,
it is only possible to extend a Protocol Buffer mes-
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sage if field numbers were previously allocated for
that purpose [40].

To support both sampled continuous value sig-
nals and discrete event series data, Palisade includes
JSON formats for both time series and event se-
ries content. Palisade only supports a binary format
for time series data. The time series binary format
also enables integration with high throughput data
sources such as a logic analyzer. Palisade does not
currently support more complex binary formats that
attempt trade-offs between extensibility and latency
as there are no current use cases for such a format.

Figure 3 shows different JSON formats for event
and time-series data. Time-series data (Figure 3(a))
contains the initial timestamp for the received mes-
sage as well as a frequency, which is used to calcu-
late the timestamp for each datum (by using the fre-
quency and the timestamp of the first data). For the
event-based format (Figure 3(b)), timestamp repre-
sents the instant in which the event is produced and
the data field can be composed of arbitrary subfields
(also in JSON format).

Figure 3(c) represents the binary format for time
series. There are three fields in little-endian format.
The first field is the millisecond component of the
message time, followed by the two magic bytes set
to zero, followed by the seconds portion of time, and
the data in 16-bit signed two’s complement integer
format. In Figure 3(c), there are 100 samples, which
makes the data field have 200 bytes (100 integers, 2
bytes each).

4.3. Source Nodes
Source nodes are responsible for streaming data

into Redis. These nodes select and transmit data
from a database, file, or an embedded system. Ex-
amples of source nodes are one that reads data from
a relational database instance, a node that reads
a Comma Separated Value (CSV) file, and a User
Datagram Protocol (UDP) sniffer that reads packets
from the network. Data might include system log
entries, aggregate network states, or commands from
an autonomous driving stack. Usually, a source node
should read data from some data source, change it to
JSON or binary Palisade formats, and publish it to
a Redis channel.

{
" timestamp " : 12345 .5678 ,
" data " : [ 0 . 3 , 0 . 1 , −0.5] ,
" frequency " : 100000

}

(a) Time-series JSON format.

{
" timestamp " : 12345 .5678 ,
" data " : {

" somefield " : 13 . 3 ,
" someotherval " : " t e s t "

}
}

(b) Event-series JSON format.

0x5D03 // 861 m i l l i s e c ond s
0x0000 // magic bytes
0x00100000 // 256 seconds
<data> // 200 bytes = 100 16−b i t s igned i n t s

(c) Time-series binary format.

Figure 3: Examples of data formats used in Palisade.

4.4. Processor Nodes
Processors in Palisade are responsible for detecting

anomalies and forwarding the results to sink nodes
(see Section 4.5). Each processor implements a dif-
ferent anomaly detection algorithm.

All processors are sub-classes of the abstract
Processor class. A processor object is instantiated
by the ProcessorLauncher class, which associates the
processor with an instance of the DataSource class,
which supplies data from either Redis or an offline
file source for unit testing purposes.

Individual processors must inherit from the
Processor class and implement an interface used
by the ProcessorLauncher to pass data from
the DataSource. The relevant methods required
are configure (which collected metadata) and
test_on_data (which is invoked when new data is
ready from the DataSource). Other optional meth-
ods that may be implemented by processors are:
begin (called on startup), end (called on shutdown),
load_model (called if a model is specified in configure
) and train (used to build models where applicable).

All non-source nodes subscribe to a channel, named
command. This is motivated by Requirements 3 and 5,
that deployment must be distributed and simple.
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Without this channel, each Palisade node would need
to be individually controlled from a local interface.
The command channel supports the control commands
for nodes (such as restart and info (a status com-
mand)) the are used for general system maintenance.

Once a detector finds an anomaly, it publishes
the timestamp at which the anomaly occurred, a
note about its cause, and the source channel of the
anomaly to a specific Redis channel. Figure 4 shows
an example of the JSON data format for anomalies
in Palisade. The timestamp field contains the time
at which the anomaly occurred. The anomaly field is
a measure of the confidence (c ∈ R : 0 < c ≤ 1) of the
detector that an anomaly has occurred, where 1 rep-
resents 100% confidence. The note field is a textual
description of the anomaly, and channel contains the
Redis channel in which the anomaly happened.

{
" timestamp " : 12345 .5678 ,
" anomaly " : 1 ,
" note " : " what happened " ,
" channel " : " input channel name "

}

Figure 4: JSON format used when an anomaly is detected.

4.5. Sink Nodes
Sinks are nodes that subscribe to Redis channels

to perform final processing and do not publish their
results. They usually serve as interfaces to other sys-
tems, such as GUIs, or alarm systems. Examples of
sink nodes include the insertion of received data into
databases, writing to I/O ports when an anomaly is
received, and storing results into files.

4.6. Example Anomaly Detectors
Palisade currently includes more than 20 exam-

ple anomaly detectors. All of these detectors are
based on existing methods and are distributed with
Palisade to provide out-of-the-box detection of the
anomaly symptoms listed in Section 3. Tables 2 and 3
show detectors in Palisade and the anomaly symp-
toms they are capable of detecting. Table 2 shows the
detectors for continuous-signal anomaly symptoms
(see Section 3.1) while Table 3 shows the detectors

for event-series anomaly symptoms (see Section 3.2).
In both tables the left-most column shows the de-
tectors while the top-most row shows the anomaly
symptoms. The intersection of row and column con-
tains a check mark (3) if the detector is sensitive to
the anomaly symptom and is blank otherwise.

For some detectors, the capability to detect an
anomaly symptom depends on the magnitude of the
symptom. For example, the spike detector can detect
the noise symptom as long as the noise falls outside
of the variance of the previous time window. Even
though multiple detectors may be able to detect the
same anomaly symptom, they complement each other
by detecting it in different situations. The distributed
nature of Palisade allows running multiple detectors
in parallel, increasing the robustness of the system
(we show such a situation in the Section 6).

Below is a brief description of each of the example
detectors. For the more complex detectors, see the
relevant citations for a detailed explanation of the
algorithm.

4.6.1. Continuous Signal Example Detectors
• Autoencoders uses a neural network that

can encode and then decode windows of non-
anomalous time series [41]. The network is
trained by comparing its input to its output and
trying to find an encoding that minimizes the
difference. Depending on the configuration, the
encoding can be on the order of 10 bits for a
window of hundreds of samples. When running,
the detector encodes and then decodes its input
time series using the same network it trained on
nominal data. If the network does a poor job of
producing output that matches its input (mea-
sured by a difference metric), then the detector
concludes that the network must not have seen
similar data during training, and therefore the
input contains symptoms of anomalies.

• Clip detect checks for a number of contiguous
identically valued symbols at the extremes of the
range of a time series. The detector assumes that
a sufficiently long sequence of such values is a
symptom.
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• SAX + HMM uses Symbolic Aggregate ap-
proXimation (SAX) to discretize a time series
into a sequence of symbols [42]. The symbols
are based on the distribution of a non-anomalous
time series where a new symbol is generated
based on thresholds in the learned distribution.
The sequence of those symbols are used to build
a Hidden Markov Model (HMM) approximating
the sequence [43]. The input to the detector is
encoded into symbols using the same distribu-
tions. Sequences that are sufficiently unlikely in
the learned HMM are considered symptoms of
anomalies.

• Sixnum tracks changes in six standard statis-
tical metrics: mean, standard deviation, maxi-
mum, minimum, upper hinge, and lower hinge.
Changes to these metrics above configurable
thresholds are considered symptoms.

• Spike detect continuously computes the vari-
ance of the most recent window of a configurable
number of samples. A new sample that falls too
far outside the variance of the current window is
considered a symptom of an anomaly.

• Spectrum detect stores a model of the fre-
quency distribution calculated from the Fourier
transform of a non-anomalous time series aver-
aged over time. Windows of the input time series
are transformed into the frequency domain and
compared to the average frequency model. Devi-
ations beyond a configurable distance metric are
considered symptoms of anomalies.

4.6.2. Event Series Example Detectors
• HMM is similar to the SAX + HMM detec-
tor, except that the input is already composed
of events that represent state change instead of
continuous samples of a signal, so there is no
need to transform them using SAX. Since events
have a variable time between them, the HMM
can consider the time between events, as well as
the type of the event when evaluating the likeli-
hood of the sequence against the learned model.

• Nfer is a recently introduced language and sys-
tem for inferring event stream abstractions [44,

45] that utilizes a syntax based on Allen’s Tem-
poral Logic (ATL) [46]. Nfer transforms an
event stream that represent state transitions into
a series of intervals that represent state. These
intervals create a hierarchy of abstractions that
simplify human and machine trace comprehen-
sion. If an interval has been designated as
anomalous, its generation is considered a symp-
tom of an anomaly. Palisade supports both
hand-written and mined nfer specifications [47].

• SiPTA uses the expected periodicity in events
from embedded systems to apply signal process-
ing techniques to compare the input traces to
non-anomalous data. For more information, see
Zedah et al.’s 2014 paper [48].

• TPG trains a Task Precedence Graph based on
a non-anomalous event stream. This method ex-
ploits the periodicity of tasks executed in an em-
bedded system. If the input event stream does
not follow the learned graph, it is considered a
symptom of an anomaly. For more information,
see Iegorov and Fischmeister’s 2018 paper [49].

• Timed Regular Expression (TRE) trains
Timed Regular Expressions based on a non-
anomalous event stream. If an event from the
input stream of the detector violates the learned
expressions, then it is considered a symptom of
an anomaly. For more information, see Narayan
et al.’s 2018 paper [50].

4.7. Fault Handling
Palisade is designed to detect anomalies in streams

of data from remote systems, not in its own opera-
tion. However, Palisade includes some failure han-
dling capabilities. All nodes in Palisade are moni-
tored by a system service and restarted in the pres-
ence of a failure. Detector node failures are inter-
preted as though an anomaly has been reported by
the failed detector, including failures to respond in
a configurable time window. This can lead to false-
positives, but it is a simple mechanism to alert op-
erators to a situation that deserves their attention.
Source node failures are interpreted as loss or period
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Table 2: Example detectors and their detected continuous-
signal anomaly symptoms.

Name A
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Spike 3 3 3 3 3
S-Wave 3 3 3 3 3
Drifting 3 3 3 3

Noise 3 3 3
Clipping 3 3 3

Loss 3 3 3 3 3 3
Smoothing 3 3 3

Amplification 3 3 3 3
Level change 3 3 3 3

Frequency change 3 3
Echo/Reflection 3

Table 3: Example detectors and their detected event-series
anomaly symptoms.

Name H
M
M

[4
3]

nf
er

[4
4,

45
,
47

]

Si
P
T
A

[4
8]

T
P
G

[4
9]

T
R
E

de
te
ct
or
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Event Freq. Change 3 3 3 3 3
Unexpected Event 3 3
Periods of Silence 3 3 3 3 3

Sampled Value 3

of silence anomaly symptoms by the relevant detec-
tors, and will be reported as anomalies. Sink node
failure handling varies depending on the node, but
many are obvious (GUI failures) or fail-warn (alarm
systems).

5. Case Study 1: Autonomous Vehicle

We evaluated the performance and applicability
of Palisade using the University of Waterloo’s au-
tonomous car as a case study. The vehicle was a
2016 Lincoln MKZ fitted with a range of sensor ar-
rays including LiDAR, a Global Positioning System
(GPS) receiver, Inertial Measurement Units (IMUs),
cameras, and radars. Figure 5 shows an overview of

the software and hardware organization in the ve-
hicle. Sensors, such as LiDAR and cameras, pro-
duce data that is the input of the autonomy soft-
ware stack. The output of the autonomy stack (con-
trol commands) is sent, for example, to actuators
controlling the steering and brakes. Two Renesas
automotive computers were installed on the vehi-
cle to run the autonomous driving software. Each
computer was equipped with two Systems-on-Chips
(SoCs) with multiple ARM CPU cores and a single
ASIL-D certified Micro-controller Unit (MCU).

Figure 5: Overview of the software/hardware organization in
the autonomous car.

The autonomous driving software was built using
Robot Operating System (ROS). ROS is an open
source framework for robotic application develop-
ment in C++ and Python for POSIX-based Oper-
ating Systems (OSs). ROS employs the concept of
nodes (a process that performs computation), which
provides modularity and development isolation. ROS
nodes operate on a periodic loop, are event-driven, or
both (they publish data at different frequencies into
topics). Like Palisade, ROS uses a publish-subscribe
model to communicate between nodes.

We implemented a new ROS node, named ros2redis
(see Figure 5), to receive messages published to ROS
topics and republish them to Redis channels. A Pal-
isade sink node received the command and sensor
data and stored them in a database. The stored data
were obtained from several ROS topics with different
publish frequencies. For instance, GPS information
was published at a frequency of 50 Hz, while throttle
and gear reports were sent at 20 and 10 Hz, respec-
tively. We logged the data during several autonomous
driving sessions and then replayed the recorded data
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as input to Palisade.
In the next sections, we present the results of run-

ning Palisade with the collected data from the au-
tonomous car in two scenarios: gear flip-flop and au-
tonomy mode flip-flop.

5.1. Gear Flip-Flop

The autonomous vehicle in the case study re-
ports its current gear in messages published to the
_vehicle_gear_report topic. The values reported
in the data item _vehicle_gear_report_cmd_gear
reflect the requested shift position of the
automatic transmission, and the values in
_vehicle_gear_report_state_gear reflect the
reported shift position. Both values are encoded as
integers with the following mapping: {0: No change,
1: Park, 2: Reverse, 3: Neutral, 4: Drive, 5: Low}.

The autonomous driving software sends gear
change requests over an Internet Protocol (IP)
network to a separate controller that interfaces
with the vehicle. The controller then con-
verts the requests into CAN messages that the
vehicle transmission understands, and also con-
verts messages from the transmission back into
IP packets sent to the driving software. Mes-
sages on the _vehicle_gear_report_cmd_gear
channel are only sent when the software re-
quests a change. The request is repeated over
a short interval until a message is received on
the _vehicle_gear_report_state_gear channel re-
porting that the new gear has been reached. Con-
versely, the transmission regularly reports its current
gear on the _vehicle_gear_report_state_gear
channel regardless of whether or not it has recently
changed.

The reports of the current gear from the transmis-
sion exhibit the Sampled Value Anomaly Symptom of
Noise. When the value of the gear is stable, the sig-
nal appears to be nominal. However, when the gear
is changing, the signal varies wildly before finally sta-
bilizing on the correct gear. While it is not clear if
intermediate gear values should be reported by the
transmission during a gear change, it is clear that
the transition should be approximately linear. The
fluctuations in the signal amount to noise, and are a

symptom that an anomaly has occurred in either the
transmission itself or in the CAN controller.

Figure 6 shows a brief sample of the two channels
over a period when a gear change into Drive was
requested. The _vehicle_gear_report_cmd_gear
messages (the blue points) begin at zero, indi-
cating no change is requested, then change to
four to request a change to Drive, then switch
back to No change once the gear change is com-
plete. The _vehicle_gear_report_state_gear
value (the red line) demonstrates the Noise Sam-
pled Value Anomaly Symptom as it transitions from
Park to Drive.
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Figure 6: Gear flip-flop anomaly example.

We used nfer to detect the Gear Flip-Flop
anomaly. To highlight the flexibility of Palisade,
we implemented two different integrations with nfer.
The first built Redis and JSON support directly into
the C implementation of nfer, and the second used a
Python processor node to call the nfer Python API.
The advantage of building support directly in C is
its execution speed, while the advantage of calling
the tool through its Python API is its simplicity: the
Python nfer processor is 42 lines of code.

Our nfer specification for detecting the Gear Flip-
Flop anomaly is given in Figure 7. The specifica-
tion contains one rule which defines conditions which,
each time they are met, cause a new interval ab-
straction to be produced with the associated label
(topic), timestamps, and data items also being speci-
fied by the rule. The rule says that a new interval ab-
straction should be published to the gear_flip_flop
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topic when there are three messages published to the
_vehicle_gear_report topic within 200 time units
(ms) such that the first and third specify the same
gear state, but the second specifies a different gear
state.

Line 1 specifies the topic of the resulting mes-
sage, while Lines 2 and 3 give the topics on which
the tool will listen for events. Lines 2 and 3 also
partially specify the temporal relationship of those
events, and assigns shorthand identifiers (g1, g2, and
g3) to each of the events. The where clause, from
Lines 4 through 9 specifies further conditions that
must be met to produce a new interval abstraction.
The map clause, from Lines 10 through 16 specifies
the data items associated with the published abstrac-
tion so that consumers of the message can access the
details of the anomaly.

1 gear_flip_flop :−
2 g2:_vehicle_gear_report during
3 (g1:_vehicle_gear_report before
4 g3:_vehicle_gear_report)
5 where
6 g1._vehicle_gear_report_state_gear =
7 g3._vehicle_gear_report_state_gear &
8 g3.begin − g1.end < 200 &
9 g1._vehicle_gear_report_state_gear !=

10 g2._vehicle_gear_report_state_gear
11 map {
12 first_gear → g1._vehicle_gear_report_state_gear,
13 anomalous_gear → g2.

_vehicle_gear_report_state_gear,
14 anomaly → 1,
15 note → "The gear changed and reverted within 200 ms",
16 channel → "_vehicle_gear_report"
17 }

Figure 7: nfer specification for detection of Gear Flip-Flops.

We ran nfer using our Gear Flip-Flop specifica-
tion with the minimality restriction disabled (--full
in the tool) and using the window optimization with
the window size set to 200. Disabling the minimality
restriction causes all matched intervals to be reported
instead of the default of only reporting the shortest
(minimal) intervals [44]. The window optimization
restricts reported intervals to those shorter than the
window size, instead of the default of no restriction
on interval length [45]. The results are reported in
Section 5.3.

5.2. Autonomy Mode Flip-Flop

The autonomous vehicle reports its current
autonomy state in messages published to spe-
cific topics, such as _vehicle_brake_report and
_vehicle_throttle_report. When the data item
enabled is true, the car is running in autonomy
mode. When enabled is false, the vehicle is con-
trolled by the human driver.

Once enabled, autonomy mode should remain en-
abled, as indicated by the enabled data item, for
the duration of a trip. However, in track testing, we
found instances when the vehicle would switch from
autonomy enabled back to autonomy disabled during
a lap, giving the driver control of the vehicle. We
discovered that the Dataspeed CAN module of the
autonomous vehicle would disable autonomy mode
if no command was given to the vehicle for at least
80 ms. This timeout was unexpected and caused an
unsafe driving condition. When the timeout occurs,
and autonomy mode is disabled, we call the condition
Autonomy Mode Flip-Flop.

We used TREs to monitor the Autonomy Mode
Flip-Flop anomaly. Regular expressions provide a
declarative way to express patterns for a system spec-
ification. TREs define timing constraints in a regular
expression [50]. For instance, a regular expression
specification of the form “state a is followed by state
b” can be modified to “state a is followed by state b
within t time units” to obtain a TRE specification.
The TRE processor uses a manual specification of a
TRE to monitor and detect anomalies. To integrate
with Palisade, we added Redis support to the C im-
plementation of the TRE detector.

The TRE specification used for detecting the Au-
tonomy Mode Flip Flop anomaly is the following

((〈P.S〉 [0, 3])||(〈S.P 〉 [0, 3]))+

P and S above represents the two Autonomy Mode
Flip-Flop states - Autonomy Enabled and Disabled
respectively. The above specification can be trans-
lated as the occurrence of patterns where the flip-flop
changes from enabled state to disabled state or vice
versa within 3 time units.
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5.3. Comparison with Siddhi
To evaluate Palisade’s rules-based capabilities, we

matched the nfer processor against the Complex
Event Processing (CEP) system, Siddhi. We devel-
oped a query in the Siddhi query language to find
all instances of the gear flip-flop anomaly described
in Section 5.1, then modified the nfer specification
in Figure 7 to exactly match the results from Siddhi.
By first configuring Siddhi, we were able to keep its
query short and natural, while the specification for
nfer to exactly match its result was more complex.
The purpose of this choice was to avoid biasing the
test results against Siddhi. The data and configura-
tion used for this comparison is available at [51]. In
this test, Palisade detected anomalies over 35 times
faster than Siddhi and with much lower variance in
the latency.

Siddhi is a good choice to compare with the nfer
processor of Palisade because it is a specification-
based stream-processing framework. Both Siddhi and
nfer require the user to write rules in a declarative
language to generate facts from a stream of input
events. Both languages are complex enough to de-
fine queries for the Gear Flip-Flop anomaly: nfer
is Turing complete when circular references are per-
mitted [45] and Siddhi is likely Turing complete, al-
though no complexity analysis is available [52]. Like
Palisade, Siddhi supports data streaming frameworks
where sources and sinks may be remote from the pro-
cessor. While Siddhi supports cloud-based installa-
tions, it can also be installed locally and deployed
where internet connections are not available. The
ability to install the software locally was important
both for automotive use cases and for our ability to
accurately measure the tool’s detection latency. Sid-
dhi is also easy to install, which is a requirement for
Palisade that many CEP systems fail to meet.

We used Siddhi and the nfer Palisade processor
to independently monitor events sent over a network.
We ran the test on a desktop computer with an In-
tel I5-5200U 2.7 GHz processor and 8 GB of memory
running Linux 3.10.0. For Palisade, we streamed the
data over Redis and for Siddhi, as it did not support
Redis, we sent the data directly over HTTP. For the
data, we chose a period of about 68 minutes during
which 73,079 events occurred. To simulate an online

environment, we delayed publication between mes-
sages for the same period as the difference in their
timestamps. For example, the difference between the
timestamps of sequential messages A and B was 75
ms, we would publish message A and then delay 75
ms before publishing B.

Figure 8 contains part of the Siddhi query to de-
tect the Gear Flip-Flop anomaly. In the query, Line 1
matches the input stream when three events occur
within 200 ms where the first and third event report
gear zero but the second reports a different gear. If
there is a match, the code in Line 2 is a select state-
ment for the data to be published, while Line 3 sends
the data on the output stream over HTTP where
we record the capture. The omitted portions of the
query repeat Lines 1-3, but replace the gear value of
zero in the first line with the other possible gears.
For more information on the Siddhi query language,
see the Siddhi documentation [53] and previous pub-
lication [52].

1 from every e1=dataInputStream[gear == 0], e2=
dataInputStream[gear != 0], dataInputStream[gear!=e1
.gear]∗, e3=dataInputStream[timestamp − e1.
timestamp < 200 and gear==e1.gear and timestamp >
e1.timestamp]

2 select e1.timestamp as Timea, e1.gear as Geara, e2.
timestamp as Timeb, e2.gear as Gearb, e3.timestamp
as Timec, e3.gear as Gearc, e3.pySendTime as
pySendTime, eventTimestamp() as
siddhiSendTimestamp

3 insert into outputDataStream ;

Figure 8: Partial Siddhi specification for detection of Gear
Flip-Flops.

To measure round-trip detection latency, we added
the time of publication to each event and then copied
those values to the output when a gear flip-flop
anomaly was detected. A second script monitored
the results and recorded the timestamp when the
anomaly report was received. We then subtracted
the passed-through publish timestamp of the message
that triggered the anomaly report (the most recent
message) from the timestamp when the anomaly re-
port was received.

The comparison in Table 4 shows that, in this case,
Palisade detects anomalies over 35 times faster than
Siddhi. In the table, lower lower values are better for
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both the mean and stardard deviation of the latency.
Not only is Palisade’s mean detection latency much
faster, but the standard deviation of its latency is
also about 2.4% of that of Siddhi.

Round-trip latency Siddhi Palisade
Mean (lower is better) 60.6 ms 1.58 ms
Standard deviation 20.9 ms 0.50 ms

Table 4: Results of comparing Palisade with Siddhi

6. Case Study 2: ADAS-on-a-Treadmill

Advanced Driver-Assistance Systems (ADAS)-on-
a-Treadmill is a research platform of the Real-time
Embedded Software Group of the University of Wa-
terloo [54]. The platform mimics the movement of
car on a straight road using a treadmill. A model
car with on-board ADAS features emulates various
driving conditions, such as Adaptive Cruise Con-
trol (ACC), Lane Keeping Assistance (LKA), Lane
Departure Warning (LDW), and Forward Collision
Detection and Avoidance (FCDA). As in the au-
tonomous vehicle case study, ADAS algorithms are
implemented on top of ROS. We have integrated Pal-
isade with the ADAS-on-a-Treadmill platform and
run four anomaly detection algorithms (spike, clip-
ping, loss, and range) in two different scenarios (GPS
spoof and dead spot). The next sections describe
each scenario and present an evaluation.

6.1. GPS Spoof Attack
The GPS spoof scenario simulates an attack on the

vehicle positioning system. In this scenario, one car
moves from one side of the treadmill to the other on
the Y-axis, while keeping the same position on the
X-axis. The GPS spoof attack changes the car’s Y
position by fooling the controller into correcting for
an inaccurate reading. In a real autonomous vehi-
cle, such an attack could result in an accident, for
instance. We performed three GPS spoof attacks in
a five minute period and ran two Palisade detector
nodes, spike and clipping.

The spike detector keeps each data point in a
buffer. Whenever the buffer is full and new data is

received, the detector discards the oldest data point.
Then, it compares the value of the newly received
data with the mean and standard deviation (std)
of the data in the buffer. If the received value is
greater or smaller then the std multiplied by a con-
stant plus the mean, then an anomaly is reported.
Once an anomaly is detected, the detector waits for
a period before starting to compute the mean again.
The buffer length considered was 50, the std mul-
tiplicative constant was 4.6, and the waiting period
was 8 seconds. These are all configurable parameters
in the detector. We chose these parameters because
they output anomalies without false positives (we dis-
cuss the choice of detectors parameters in Section 7).

The clip detector also buffers incoming messages to
avoid detection jitter. When the clip detector fills its
buffer, it counts how many data points in the buffer
are within a configured distance of new values (buffer
value + distance > received value and buffer value
- distance < received value). When there are ten or
more matching data points within the interval, a clip-
ping anomaly is reported. The buffer length used in
the experiment was 60 and the distance parameter
was 0.0005 (difference in the received Y-axis posi-
tion).

Figure 9 shows the car’s Y position when the at-
tacks were performed and the output from the two
detectors. The spike detector identifies two out of
the three anomalies, while the clip detector finds all
three inserted anomalies. The first anomaly is iden-
tified quickly by the spike detector because there is
a sharp jump in the received Y position. We also
ran both detectors with the same parameters using a
dataset without anomalies, and neither detected any
anomalies, as expected.

6.2. Dead Spot in a Platooning Formation
This scenario simulates a situation where a lighting

inconsistency in the environment causes “dead spots”
on the conveyor, causing any car that drives into the
spot to lose its positioning data. This is inspired by
a real experience running the University of Waterloo
autonomous car at CES 2018. In this scenario, two
cars drive on the treadmill in a platoon formation. A
dead spot is inserted in the treadmill and a command
is issued to move the first car forward on the X-axis.
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Figure 9: Car positioning with four inserted anomalies and the
anomaly detection points (Spike and Clipping detector).

The car then moves to the desired point, stays for a
while, and returns to its original position. We ran the
experiment for five minutes and inserted four dead
spots while executing two Palisade detector nodes,
loss and range check.

The loss detector keeps track of the average pe-
riod of message reception and, when a data point
takes longer to arrive than the average multiplied by
a constant factor, an anomaly is reported. The de-
tector checks for anomalies after a minimum number
of samples is received. In the experiment, we set
the minimum number of samples to 30 and the con-
stant factor to four. The range detector tests whether
a data point is between a maximum and minimum
value. If a received data point is outside the range,
then an anomaly is reported. We trained the range
check with a dataset without anomalies.

Figure 10(a) illustrates the expected behavior
(without anomalies) of the platooning formation for
the first car. For instance, around 100 seconds into
the experiment a command to move the first car for-
ward is issued, which causes it to move from the posi-
tion of about 1.0 to 1.5. When the vehicle reaches the
desired position, it takes a second or two to stabilize,
causing the small spikes after each acceleration.

Figure 10(b) shows the car X-axis position with
inserted dead spots. The first command to move for-
ward is issued around 25 seconds into the experiment.
The first car attempts to move to the desired point
but reaches a dead spot where it loses its position-
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Figure 10: Car positioning with inserted dead spots and the
anomaly detection points (Loss and Range detector).

ing signal for a short time. This causes the “shaking”
at the bottom of the figure as the controller tries to
reestablish the car’s position. The range detector is
able to identify such a situation because those values
are lower than the minimum in the dataset without
anomalies. The loss detector recognizes the loss of
communication while the car passes through a dead
spot. Around 140 seconds into the experiment, we
can see two lines that move up and down in a short
period. This happens because the first car passes the
dead spot by its side, corrects its trajectory by return-
ing to the dead spot, and then returns to its position
before the command to move was issued. This is an-
other scenario where Palisade improves the anomaly
detection by providing means to easily run two de-
tectors using the same input data. We discuss how
Palisade improves the anomaly detection in Section 7.
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6.3. Comparison with Beep Beep 3
We evaluated Palisade against the stream-

processing system Beep Beep 3. We developed
a Beep Beep 3 processor to find all instances of
the dead-spot anomaly described in Section 6.2.
To provide an accurate comparison, we used the
Beep Beep 3 HTTP palette to construct a distributed
detector, with events sent and anomalies reported
over a network connection. We found that Palisade
and Beep Beep 3 attained comparable anomaly de-
tection latency in this case, but that building such
a distributed processor with Beep Beep 3 was more
cumbersome than with Palisade. The data and con-
figuration used for this comparison is available at [51].

Beep Beep 3 is a good choice for a comparison with
Palisade because it is specifically designed for online,
streaming data processing. Futhermore, the tool is
highly flexible, supports arbitrary data types, and al-
lows distributed processors to be created using official
libraries. Like Palisade, Beep Beep 3 is more of an
architecture and set of APIs than a standalone tool.
However, unlike Palisade, Beep Beep 3 does not in-
clude out-of-the-box processors designed for anomaly
detection, although such extensions exist [55].

We used Beep Beep 3 along with the Palisade
RangeCheck and LossDetect processors to indepen-
dently monitor events sent over a network. We ran
all the detectors on a desktop computer with an Intel
I5-6300U 2.4 GHz processor and 16 GB of memory
running Linux 4.19.72. Palisade was run on Python
3.6.10 and Beep Beep 3 was executed using Open-
JDK 1.8.0_252 (IcedTea 3.16.0). For Palisade, we
streamed the data over Redis and for Beep Beep 3,
as it did not support Redis, we used the Beep Beep 3
HTTP Palette and its serialization library. For the
data, we used the same period of about 5 minutes
from Figure 10(b) during which the car’s position was
reported 7,030 times. To simulate an online environ-
ment, we delayed publication between messages for
the same period as the difference in their timestamps.
For example, the difference between the timestamps
of sequential messages A and B was 33 ms, we would
publish message A and then delay 33 ms before pub-
lishing B.

To measure round-trip detection latency, we added
the time of publication to each event and then copied

those values to the output when a loss or range
anomaly was reported. A second program monitored
the results and recorded the timestamp when the
anomaly report was received. We then subtracted
the passed-through publish timestamp of the message
that triggered the anomaly report (the most recent
message) from the timestamp when the anomaly re-
port was received.

To compare between Palisade and Beep Beep 3,
we constructed a Beep Beep 3 stream processor that
mimicked the behavior of both the RangeCheck and
LossDetect Palisade processors. Figure 11 shows an
outline of this processor, along with Beep Beep 3 pro-
grams for reading and printing events [56].

Figure 11 uses the official Beep Beep 3 drawing
guide to show how events are read, transmitted, fil-
tered, retransmitted, and printed. The top diagram
in the figure shows the events being read from a file
and transmitted using the HTTP palette to the cen-
tral processor. The central diagram in the figure
shows how events are filtered to only be included in
the output if they are out-of-range or occur after a
long delay. The events arrive via HTTP and are du-
plicated to follow two paths: in the lower path, they
are tested to see if they are out-of-range or occur af-
ter a long delay (there is more logic here, not shown
in the figure), in the upper path, they reach a filter
(shown as a traffic light) which is gated based on the
result of the lower path test. Events for which the
test is true are transmitted via HTTP to the final
program, shown as the third diagram. The third di-
agram shows how events that arrive are then printed
to the console.

Beep Beep 3 is not designed for distributed process-
ing, however. The only officially supported network-
ing mechanism is direct HTTP connections, which
necessitates tightly coupled components. That is,
the program that reads the events from a file must
know the address of the processor, which must, in
turn, know the address of the program that prints
the events. This is why the range and loss checks
are performed in one processor; if they were sepa-
rated into two processors, the file reader would need
to send events directly to both end points. That Pal-
isade components are loosely coupled is a fundamen-
tal advantage for distributed stream processing.
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Figure 11: Graphical representation of the Beep Beep 3 proces-
sor omitting the details of how Range and Loss were computed.

Although it was not necessary to write new Pal-
isade processors for the comparison, the existing pro-
cessors are much simpler than the equivalent pro-
cessor written with Beep Beep 3. The reason for
this disparity is that the programming model for
Beep Beep 3 is not aligned with the programming
language in which it must be implemented. That
is, Beep Beep 3 programs do not resemble Java pro-
grams. This can most clearly be seen in the code to
apply a function to check if an event is outside a fixed
range. In Palisade, this check is written in Python
and requires a series of three conditional statements
with inequality expressions. In Beep Beep 3, the
check requires the creation of 14 objects, essentially
requiring the author to create an abstract syntax tree
by hand. Beep Beep 3 does support the creation of
domain specific languages (DSLs) but intentionally
avoids providing one 1.

The comparison in Table 5 shows that, in this case,
Palisade and Beep Beep 3 had similar mean detec-

1The API provided by Beep Beep 3 could arguably be de-
scribed as a deep internal DSL

tion latency but the standard deviation of Palisade’s
latency was lower (lower is better). The higher stan-
dard deviation for Beep Beep 3’s detection latency
appears to be the result of the Java Virtual Ma-
chine’s Just-In-Time (JIT) compiler as a few anoma-
lies early in the experiment had many times longer
detection latencies than the rest. These longer de-
tection times could probably be avoided by imple-
menting a boot-strapping process for the Beep Beep
3 processor, but this would require another compo-
nent and added complexity not required by Palisade.

Table 5: Results of comparing Palisade with Beep Beep 3.
Round-trip latency Beep Beep 3 Palisade
Mean (lower is better) 2.87 ms 2.85 ms
Standard deviation 3.2 ms 0.66 ms

7. Discussion

This section discusses the Palisade results and de-
sign choices. We divide the discussion in three parts:
software architecture, performance, and anomaly de-
tection.

7.1. Software Architecture Evaluation
Evaluating software architectures is not a straight-

forward task. There is no common language to de-
scribe different software architectures and no clear
way to understand and compare different software
concerns, such as maintainability, portability, modu-
larity, and reusability [57]. Also, the effectiveness of
the software architecture is related to the experience
and knowledge of the development team, thus quality
must be considered in this context.

We examined two software architecture evaluation
methods, Software Architecture Analysis Method
(SAAM) [57] and Architecture Tradeoff Analysis
Method (ATAM) [58], to determine if we could ob-
jectively evaluate Palisade’s architecture. We found
that both methods are intended for evaluating mono-
lithic software projects that serve specific business
cases, and that they do not map well onto Palisade.
However, both SAAM and ATAM argue that mod-
ularity and extensibility are important metrics for

20



evaluating the quality of an architecture. While we
cannot quantitatively measure these metrics, here we
present an argument that they are well satisfied by
our design.

One measurement of the extensibility of software
is the number of lines of code that must be written
to meaningfully extend it. The most common way
to extend Palisade is to write a new processor node.
The average number of lines in the current Palisade
processor nodes (written in Python) is 144.25 lines
(including comments). Autoencoder is the longest
processor node with 601, while Clip detector is the
shortest with 72 lines. The Processor abstract base
class has 239 lines. The nfer detector, which uses
the nfer Python API, has only 42 lines of Python
code.

As discussed in Section 4.4, processor nodes are
independent modules that share infrastructure from
a base class. Editing a processor node has no ef-
fect on upstream or sibling processor nodes. Only
nodes dependent on the output of the edited node
may themselves require editing.

Constructing a new source node does not affect
other source nodes in the system. Only processor
nodes that will be subscribing to a new source may
need adjustment, and then only if the new source dif-
fers from those that already exist. Adding a new pro-
cessor node has a lesser impact than editing one, as
no downstream nodes should be affected, typically.
Instead a new processor node can be added to the
system without a single modification to any other
component.

For adding a new processor node, we consider the
basic code to extend the base class. A new processor
node requires at least 24 lines of code in Python. Ob-
viously, the total number of lines depends on the com-
plexity of the algorithm, but the processor abstract
base class makes extending Palisade straightforward.

We compared the extensibility of Palisade with the
CEP/Runtime Verification (RV) system Beep Beep 3
In Section 6.3. While it was possible to build pro-
cessors in Beep Beep 3 that mimicked those in Pal-
isade, they required tight coupling between compo-
nents. In Beep Beep 3, constructing a new processor
or sink node would require modifying the other nodes.
Palisade’s loose coupling between components means

that these similar modifications are not required to
support new or modified nodes.

Palisade can be used in any embedded system
that provides a network interface. As the core Pal-
isade functionality is built around the Redis publish-
subscribe interface, any system that has a network
interface can send data directly to Redis or to a server
that then sends to Redis. Also, RESP is simple and
would be easy to port to an embedded system with-
out Linux support. Consequently, we believe that the
integration of Palisade with any embedded system is
a straightforward task.

7.2. Performance Evaluation

Palisade is built for low latency anomaly detection
and this is evident from our comparisons with other
frameworks. In the case study evaluation in Sec-
tion 5.3, an nfer Palisade processor detected anoma-
lies over 35 times faster than a comparable detec-
tor using the CEP system Siddhi. In the case study
evaluation in Section 6.3, two Palisade processors de-
tected anomalies with similar latency to a compara-
ble detector using Beep Beep 3, which required tight
coupling between components and a using a compli-
cated API for performing simple data comparisons.

We looked for other appropriate frameworks to
compare against Palisade detectors such as the Au-
toencoder processor, but we discovered that no such
framework exists. It does not make sense to compare
Palisade’s performance against a framework which
does not support many of the same core features or
which is unusable in the same environments. Frame-
works such as Extendible and Generic Anomaly De-
tection System (EGADS) [59] and Datastream.io [60]
only support CSV input for offline detection, while
Palisade operates online. Other frameworks like Es-
per [61] and TeSSLa [62] support online stream pro-
cessing, but lack support for distributing processors
over a network. Detectors like Hogzilla [63], Stream-
Mill [64], and NiagaraCQ [65] are abandoned projects
that cannot be installed. Others, like Thirdeye [66],
can only be run in a cloud environment, making them
ill-suited for latency comparisons. The lack of online,
streaming, distributed, locally runnable anomaly de-
tection frameworks shows the need for Palisade, and
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we hope that our work motivates others to design
comparable tools.

An important design decision in Palisade regards
the copying of messages instead of passing message
IDs. Once data arrives into a channel, Redis copies
the messages to all nodes that subscribed to that spe-
cific channel. Another approach, found in Zero-Copy
message protocols [67] for example, would be to pass
just the message ID to all destination nodes. The
ID would then be used to access a central database
to retrieve the data. When most nodes require the
data, however, the ID passing approach causes a per-
formance bottleneck due to access serialization at the
central database (increased latency). We assume that
a node that subscribes to a channel needs the data
on that channel, so the message copying approach
reduces latency while not affecting the processing or
memory requirements. This is a reasonable assump-
tion given that it only requires different types of data
to be assigned separate channels. The ID passing ap-
proach is usually used in micro-service architectures
and is preferable when the target application needs
all of the data (good for batch processing) [68].

7.3. Anomaly Detection

The multiple anomalies detected by different pro-
cessors can be compared against each other to verify
anomalies and thereby decrease the false positive rate
of anomaly detection by Palisade (this could be done
by a voter sink node, for instance). There are also
cases where some anomalies are detected by only a
subset of the detectors. Palisade covers these cases
as a variety of detectors can be integrated with low-
development effort (due to our design choices - com-
mand channel, abstract base class, and data formats).

The choice of parameters in the detector nodes
plays a central role in the efficiency of such detectors.
In our experiments, we varied the detector parame-
ters until we found a configuration without false pos-
itives (Sections 5 and 6). This was possible because
we could repeat the execution of the detectors sev-
eral times. When the execution cannot be repeated,
we suggest tuning the detector parameters using a
system simulation.

8. Related Work

This section describes existing work related to
Palisade. We divide the discussion by subject
area: anomaly detection, Information Flow Process-
ing (IFP) systems, anomaly detection with stream-
ing frameworks, offline frameworks, and outdated or
commercial frameworks. Few existing works combine
the central features of Palisade: online, distributed
anomaly detection for both time series and event
streams. Our work is motivated by the lack of op-
tions in this niche area.

8.1. Anomaly Detection

Anomaly detection, sometimes called outlier detec-
tion, attempts to find unexpected or non-conforming
patterns in data [5, 6, 7, 8, 9, 10]. Anomalies are dis-
tinct from noise, in that noise is not of interest and
hinders analysis. The output of an anomaly detector
may be either a score or a label, but the purpose is
always to provide a verdict on whether an anomaly
was detected at a given time.

Anomaly detection has appeared in statistics lit-
erature for many decades [69, 70], but more recently
it has found application and been studied in other
fields. In healthcare, anomaly detection is used to
look for cardiac irregularities that might indicate
heart failure or patterns of disease outbreak [71, 72].
In computer network security, anomaly detection is
widely used in intrusion detection systems to look
for suspicious activity [43, 73, 74]. Banks, insur-
ance companies, and advertising firms, among oth-
ers, employ anomaly detection to search for instances
of fraud [75, 76, 77]. Heavy industry and safety-
critical systems operators like airlines use anomaly
detection for equipment damage detection [78, 79].
Recent work has shown how anomaly detection can
be applied to detect events in a power grid [80].

Lightweight Online Detector of Anomalies (LODA)
is a data streaming online anomaly detection sys-
tem [81]. LODA uses a collection of one-dimensional
histograms to improve the anomaly detection. The
rationale behind the use of a collection of weak clas-
sifier is because together they can form a strong clas-
sifier [82]. LODA presented the same performance in
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terms of precision of HS-Tress, but with better time
to process a data stream.

Weber et al. proposed a two-stage anomaly de-
tection framework for vehicle signals [83]. The first
stage is based on static checkers (for CAN messages)
and the second stage is based on machine learning
algorithms (named learning checks). The learning
checks stage implements a Recurrent Neural Network
(RNN) and LODA. In a performance evaluation us-
ing CAN messages from a vehicle, RNN had a false
positive rate of 0.065%. Palisade also supports both
static and machine learning-based algorithms. How-
ever, Palisade supports the execution of all detectors
in parallel or in any number of stages (not only two).
In the same work, the authors defined seven types
of anomalies that can occur in a sensor or Electronic
Control Unit (ECU) [83]. Table 6 compares the seven
types of anomalies propose in [83] with our nomen-
clature described in Section 3. We can note that the
seven types of anomalies are a subset of ours. In this
sense, we provide a more comprehensive overview of
anomaly symptoms that can occur in embedded real-
time systems.

Table 6: Anomaly symptoms defined in [83] compared to our
proposed symptoms.

Symptoms in [83] Our Symptoms
Sine anomaly S-Wave

Plateau stuck anomaly Loss
Peak anomaly Spike

Negative peak anomaly Spike
Noise Noise

Plateau rise/fall anomaly Clipping
Zero fall anomaly Clipping/Loss

8.2. Information Flow Processing Systems
Palisade processes flows of information online, de-

riving high level events and alerts from the flow as
data is received. This online flow processing has sim-
ilarities to the definition by Cugola and Margara of
a CEP system [84]. CEP systems are a kind of IFP
system that supports continuous and timely process-
ing of low-level event streams into high-level abstrac-
tions according to predefined rules. CEP systems are
differentiated from Data Stream Management Sys-
tem (DSMS) systems in that DSMS systems work on
generic data streams rather than event streams and

their output is similarly unconstrained. Palisade sup-
ports both event and non-event stream information
and includes processors, like nfer, that use prede-
fined rules, and learning-based processors that use
training data to construct behavioral models.

This section discusses some CEP systems in the lit-
erature that could be applied to some of the use cases
for Palisade. However, all of these systems require
predefined rules to construct their event abstractions,
which most Palisade processors do not. As a result,
these CEP systems should only be compared to Pal-
isade processors with the same requirements.

Gigascope is a DSMS designed for network moni-
toring, intrusion detection, and traffic analysis [85].
Gigascope uses a Structured Query Language (SQL)-
like query language called Gigascope Query Language
(GSQL) that uses data streams as its input and out-
put. Gigascope is explicitly aimed at intrusion de-
tection in networked systems and is not a general
solution for anomaly detection.

Triceps is an open source CEP system that does
not define its own SQL variant, but rather has the
user implement queries and operations directly in
C++ or Perl [86]. Triceps is unique in that it is an
embedded CEP. That is, Triceps is meant to be used
as a library and to be embedded into other programs.
This fills an interesting niche, but it is not a frame-
work for distributed anomaly detection like Palisade.
In the future it would be interesting to build a pro-
cessor using Triceps, similar to the already existing
nfer processor.

Esper is a CEP and DSMS for Java and .Net (Nes-
per) with a SQL variant called Event Processing Lan-
guage (EPL) that Esper compiles to byte code [61].
Esper is designed for low latency and high through-
put, as well as extensibility and low resource utiliza-
tion. These traits make Esper a good candidate for
online anomaly detection. Esper is designed to work
well running inside a distributed stream processing
framework and includes examples of integrations with
Java networking libraries. However, Esper is not it-
self a distributed stream processing framework, and
integrating Esper with Palisade would require build-
ing a variety of custom components to handle net-
working, serialization, and command.

Siddhi is an open source CEP system deployed by
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companies such as Uber, eBay, and PayPal for use
cases like fraud analysis and policy enforcement [52].
Siddhi uses a specification language called Streaming
SQL and supports input from a variety of streaming
sources such as Apache Kafka and NATS in diverse
formats like JSON and Extensible Markup Language
(XML). It supports streaming input and ouput, mul-
tiple end-points, and specification-based anomaly de-
tection, and is one of the existing works closest to
supporting Palisade’s requirements (defined in Sec-
tion 4). We compared the detection latency of Pal-
isade with Siddhi, where detection latency is defined
as the time difference between the instant data is
generated by a source and the instant it is reported
as anomalous by a detector. The results, reported
in Section 5.3, show that Palisade responds over 35
times faster on average than Siddhi for our case study.

8.3. Anomaly Detection with Streaming Frameworks
Several other works have used data streaming

frameworks for online detection of errors or anoma-
lies. Lopez et al. discuss the characteristics and
compare the throughput of three stream processing
platforms (Apache Spark, Flink, and Storm) using
a threat detection application [87]. Solaimani et al.
used Apache Spark to detect anomalies for a multi-
source VMware-based cloud data center [88]. Sub-
ramaniam et al. proposed a framework to detect
anomalies online (outlier detection) in wireless sen-
sor networks [89]. However, the authors only imple-
mented the framework in a simulator. Du et al. built
a streaming detector using Apache Storm that used
k-Nearest Neighbors (k-NN) to detect anomalies in
IP network traffic [90]. Shi et al. implemented an
online fault diagnosis system based on Apache Spark
for power grid equipment [91]. Song et al. proposed
an integrated system for explainable anomaly detec-
tion using Apache Spark called EXAD [92].

Thirdeye is an anomaly detection framework based
on Apache Spark [66]. It uses machine learning
and artificial intelligence algorithms for cybersecu-
rity, data analytics, and outlier detection. Third-
eye is designed for deployment on Amazon’s AWS
cloud computing platform. Palisade, by contrast, is
designed to run on a curated local area network to
reduce communication latency.

Beep Beep 3 is a stream-processing system that
combines some aspects of CEP systems with ideas
from RV [93]. Beep Beep 3 is primarily a set of Java
APIs to build synchronous processors for arbitrary
data types. The standard Beep Beep 3 APIs may
be augmented with modules called palettes that im-
plement interfaces such as network communication,
temporal logic, and plots.

Beep Beep 3 has been studied for use in online,
streaming anomaly detection [55]. However, Beep
Beep 3 has different goals from Palisade that make
it less well suited for distributed anomaly detection.
We compared the detection latency of Palisade with
Beep Beep 3, as well as the experience of building
anomaly detectors using the two frameworks, in Sec-
tion 6.3. The results show that the two tools have
similar detection latency, but that Palisade is better
suited than Beep Beep 3 for detecting anomalies in a
distributed environment.

TeSSLa is a stream-based specification language
and monitoring system designed for specifying and
analyzing the behavior of systems where timing is
important [62]. TeSSLa, like Beep Beep 3, combines
aspects of CEP systems with RV. However, unlike
Beep Beep 3, TeSSLa may only be used through an
external DSL and its interpreter only accepts input
via file arguments or standard in. While TeSSLa’s
language and theoretical foundation are exciting, its
lack of network support means that it cannot cur-
rently operate as a distributed, online anomaly detec-
tion framework. Integrating TeSSLa with Palisade is
also impossible because TeSSLa is only distributed as
a compiled binary.

8.4. Offline Frameworks

Datastream.io is an open-source anomaly detection
framework that allows users to integrate their custom
detectors for testing and training [60]. The project
plans to support online streaming but presently only
supports the use of CSV files as input to perform
offline detection.

EGADS is an open-source anomaly detection
framework by Yahoo [59]. EGADS is a self-contained
Java package developed for time-series anomaly
detection, providing access to multiple detectors.
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EGADS accepts input only in the form of CSV and
standard-input and is no longer actively maintained.

Frankowski et al. used a variety of CEP systems,
including Siddhi and their own SECOR CEP, to de-
tect intrusions and anomalies [94]. Their work com-
bined several CEP systems to periodically analyze log
files and store the results in a database. They showed
that it is possible to build an effective, signature-free
anomaly detection framework using off-the-shelf com-
ponents. However, they did not construct an online
detector.

8.4.1. Outdated or Commercial Frameworks
Other frameworks have been proposed in the past

but are unusable in practice because they are either
expensive to license or unmaintained. NiagaraCQ
was an early and influential continuous query sys-
tem, but the software has not been available for
at least a decade [65]. SASE was a stream pro-
cessing system designed to support complex queries
and high throughput, but it was last maintained
in 2014 [95]. Cayuga was a stateful publish-
subscribe system based on Non-deterministic Fi-
nite AutomatonNon-deterministic Finite Automata
(NFAs) that was adapted as an event monitoring sys-
tem, but it was last maintained in 2013 [96]. Stream
Mill was a DSMS that combines predefined rules with
statistical learning algorithms for mining queries [64],
but it was last maintained in 2012. GEM is a com-
mercial CEP vendor in the industrial space and, as
such, their software is not freely available [97].

Hogzilla is an open-source anomaly-based Intru-
sion Detection System (IDS) targeted towards net-
work communications [63]. Hogzilla purports to de-
tect a wide range of network attacks including zero-
day attacks. At the time of publishing, the software
no longer runs and has not been maintained for some
time. However, in October 2019 the project website
was updated to report that the tool will be main-
tained and supported by a commercial partner, so
Hogzilla may return to relevance in the area.

Many of the IFP systems Cugola and Margara re-
view are either no longer maintained or locked up be-
hind commercial licenses [84]. Other promising sys-
tems from their study that are unavailable or imprac-
tical include: the Borealis stream processor (aban-

doned 2008), StreamBase (commercial), SQLStream
(commercial), Oracle CEP (commercial), Tribeca
(disappeared), and TelegraphCQ (abandoned 2003).

Palisade is intentionally designed as a set of dis-
tributed micro-services built around a data stream-
ing architecture. Palisade provides a balance between
low latency anomaly detection and loosely coupled
services.

9. Conclusion

In this article, we presented Palisade, a software
framework for anomaly detection in embedded sys-
tems. We introduced a new taxonomy of anomaly
symptoms, and we designed Palisade to support their
detection using a variety of algorithms. Palisade
is built around the Redis publish-subscribe inter-
face, which allows running different anomaly detec-
tors with the same input data across a distributed
network. We demonstrated the viability of the pro-
posed framework using two case studies, one using
data from an autonomous vehicle and another one
using data from an ADAS platform. We argued that
Palisade is easy to operate and modify and that it
detects anomalies with low latency.

As future work, we plan to integrate Palisade with
the University of Waterloo’s autonomous car and
implement more learning-based anomaly detectors.
The datasets used in the experiments is available on-
line [51] and the Palisade source code is available
upon request.
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