Tracing Interrupts in
Embedded Software

Giovani Gracioli

Federal University of Santa Catarina
giovani@lisha.ufsc.br

Sebastian Fischmeister

University of Waterloo
sfischme@uwaterloo.ca

UNIVERSITY OF

Waterloo

.

uuuuuuuuuuuuuuuuuu

Motivation

uuuuuuuuuuuuuuuuuu

e Embedded => Interrupts

(Especially in low power systems)

Sunday, June 21, 2009

e Embedded => Interrupts

(Especially in low power systems)

¢ Interrupts => Complexity
(Non-linear program execution)

Sunday, June 21, 2009

¢ Embedded => Interrupts

(Especially in low power systems)

¢ Interrupts => Complexity
(Non-linear program execution)

o Complexity => Nasty bugs

(You only need one try, right?)

Sunday, June 21, 2009

Motivation

S echo 'int main() { printf ("Hello,
world\n"); }' | gcc -xc - -o out

Sunday, June 21, 2009

e Embedded => Interrupts

(Especially in low power systems)

¢ Interrupts => Complexity
(Non-linear program execution)

o Complexity => Nasty bugs

(You only need one try, right?)

® Nasty bugs require good debugging support

WS

Sunday, June 21, 2009

Next Gen Debugging Support!?

uuuuuuuuuuuuuuuuuu

Next Gen Debugging Support?

‘m&ooooooo

o.-.vb - 3

o0 |
ﬂtmtooooooog‘ |
. Uoomcoqoooco
i Oﬁttsccnncﬁ
| 90000000000
Obbtacoi.

‘““'* ﬁﬁﬁtﬁdiii'
D c’ 000000 :
weeP 04 2! 0 O P s
¥ i’(’i‘¢‘4*< <3 r R Bt B8 SN 2% 0% :
"o X B i"' <‘<?\”< oo oo o

SCSCRCRCRCR
'(/f'l: .
l

l

-/'—(-1-(-1
P
BT

o
-\-.&'~\ - v . e."
a’\»r ;--y'.‘
o Ml SN S PO e 3 i
L. S O~
.

Y
Y
3

‘ v
-~ LA R J

o

Sunday, June 21, 2009

Next Gen Debugging Support!?

£:0:0:0.9:0:0.00 0 o 6 o8
“‘*Q‘Q 000000 000000,
00:0:0:0/0: 0. 00 S 0 Q00000

e .

%x@mmwmaoooooooo

@QQ}Q‘QAQOAQO - -) 0 e ‘
: 0600000000000
Qmmwwuoaooeoo
' Owwoooooocoo
mecmooooqg

3030&Q°°9§9°5

HHE

hwowooooo

-

o8 S as e an .- -l A S L
TN I PP NN T SN T A s .\ " /,4':4'.'.--'..1

VAN AN \ ST T "/(\- o

'''''

....................

LU R

k2 on "'A‘&’
36 £ 4 IRIRISID.
: W“

...

Sunday, June 21, 2009

Replay Debugging

Recording at run time Replay offline (sim)

Replay Debugging

Recording at run time Replay offline (sim)

/v rustion
“° %

Recording at run time

Execute
instruction

/V

No

o>

Yes

Y

Log IRQ
(fingerprint)

!

Execute ISR &
return

Replay offline (sim)

Simulate
instruction

4

v

No

Calculate
fingerprint

!

<>

Yes

Y

Simulate
ISR

Sunday, June 21, 2009

Recording at run time Replay offline (sim)

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Recording at run time Replay offline (sim)

Ta_inA

X Non determinism happens (e.g., interrupt)

Sunday, Jun

Recording at run time Replay offline (sim)

Ta_inA

X

X Non determinism happens (e.g., interrupt)

Sunday, Jun

Recording at run time Replay offline (sim)

Ta_inA

~§
.h
~

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Recording at run time

Replay offline (sim)

Ta_inA

>

~§
.h
~

Store
fingerprint

DB

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Recording at run time

Replay offline (sim)

Ta_inA

>

~§
.h
~

Store
fingerprint

DB

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Recording at run time

Replay offline (sim)

Ta_inA

~§
.h
~

Store
fingerprint

>

DB

Ta_inA

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Recording at run time Replay offline (sim)

Task A Task A
i > i
ISR [A (X/ ISR
,*’7 Store > DB
x -’ fingerprint - <
‘ ~~~~~

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Recording at run time

Replay offline (sim)

Ta_inA

~§
.h
~

Store
fingerprint

>

DB

Task A
X |
L

<

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Recording at run time

Replay offline (sim)

Ta_inA

>

~§
.h
~

Store
fingerprint

DB

Ta_inA

B

<

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Recording at run time

Replay offline (sim)

Ta_inA

>

~§
.h
~

Store
fingerprint

DB

Ta_inA

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Recording at run time Replay offline (sim)

TaskA Task A
§B i A / §B
,x" Store > DB i‘: (
x ::.\ fingerprint - / ‘ﬁx

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Recording at run time Replay offline (sim)

Task A Task A
ISR 4 \/ ISR
7 Store . DB i{ 1 Pt
fingerprint - J » e
ingerpri % g

~§
.h
~

~§
.h
~

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Recording at run time Replay offline (sim)

Task A Task A
ISR 4 \/ ISR
7 Store . DB i{ 1 Pt
fingerprint - J » e
ingerpri % g

~§
.h
~

~§
.h
~

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Recording at run time

Replay offline (sim)

Ta_inA

>

~§
.h
~

Store
fingerprint

DB

22— IR
= 7

Ta_inA

C—

4
5 L 4
4
L
‘*ﬁ .
~~
.~
~
S

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Recording at run time Replay offline (sim)

Task A Task A
R) R
ISR 22— IR
e Store . DB i{ 1 Pt

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

® Benefits

® Communicate and document bugs
(Show the trace)

® Go forward and backwards in time
(Thoroughly analyze how the bug happened)

® Retest specific scenario for fixes
(Exercise the system with the specific trace)

Sunday, June 21, 2009

First try: record program counter

TEEIiA

4 > [DB

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

First try: record program counter

TEEIiA

4 > [DB

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

First try: record program counter

TEEIiA

4 > [DB

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

First try: record program counter

TEEIiA

i > DB

Second try: record program counter
and state information

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

First try: record program counter

TEEIiA

i > DB

Second try: record program counter
and state information

X Non-determinism happens (e.g., interrupt)

Sunday, June 21, 2009

Compress system state

System state 5|2+ bits

Fingerprint <32 bits
010010001001001001011110

Execution context s

Extraction
Selector of ra
v function g
Input V
components c Return address ra
Hash Reduction
v function h v function r
Raw fingerprint f~* Reduced RA ra*

~,

Fingerprint f
(ra)

Sunday, June 21, 2009

® [alse Input duplicates (selected bad subset)
s# s Ng(s)=g(s)
® [alse |OOP positives (falsely believe IRQ happened here)
s# s Ns.ra=s".rabut also (h-g)(s)=(h-g)(s)
® [alse RA pOSitiVeS (falsely believe IRQ happened here)

s # s Ns.ra+# s .ra but also

r(s.ra) =r(s'.ra) A (h-g)(s) = (h-g)(s)

Sunday, June 21, 2009

® [alse Input duplicates (selected bad subset)
s# s Ng(s)=g(s)
® [alse |OOP positives (falsely believe IRQ happened here)
s# s Ns.ra=s".rabut also (h-g)(s)=(h-g)(s)
® [alse RA pOSitiVeS (falsely believe IRQ happened here)

s # s Ns.ra+# s .ra but also

r(s.ra) =r(s'.ra) A (h-g)(s) = (h-g)(s)

Calls for good design of fingerprint

Sunday, June 21, 2009

— ,
Execution context s - .
Extraction

Selector of ra
function g

Input V

components ¢ Return address ra

Hash
tunction h

Raw fingerprint f* Reduced RA ra*

Reduction
function r

~,

Fingerprint f
(ra*, 1)

Sunday, June 21, 2009

— ,
Execution context s - .
Extraction

Selector of ra
function g

Input V
components c Return address ra
Hash Reduction
v function h v function r
Raw fingerprint f* Reduced RA ra*

~,

Fingerprint f
(ra*, 1)
|

3

Sunday, June 21, 2009

Selector Function

uuuuuuuuuuuuuuuuuu

¢ Many elements to choose from: data
registers, control registers, GPIO, O status,
general SDRAM, stack, heap, ...

Sunday, June 21, 2009

¢ Many elements to choose from: data
registers, control registers, GPIO, O status,
general SDRAM, stack, heap, ...

® Can’t take all:

® Joo much computation overhead

® Not all are used equally often

Sunday, June 21, 2009

Pick the most frequently used ones

uuuuuuuuuuuuuuuuuu

Pick the most frequently used ones
Register Usage (freq.>0.012)

0.25 —
>
S 0.20 —
<>
-
2 0.15 -
£ 0.10 -
I
< 0.05 —
=

0.00 —

<t O O O © N OO O O ™M O
N N — N N

— I~ O
) AN N N AN

™
N

Register

Sunday, June 21, 2009

Yes, quite well.

ADC Application

| | |
Percentage of false input duplicates —+—

100
g 80 I
5
§ 60
o,
Z
o 40 F
-
@
=
Q20 F
&
O_
0

5 10 15 20 25
Including x most frequently used registers

30

Sunday, June 21, 2009

Does it work?

ADC Application

100
Percentz;ge of false ilnput dupliczlltes —t
g U i R .
n
2
_§ (U e R .
=
=
~ 40 --]
=
2
k=
B 20 [T
5
| | | | |
0 5 10 15 20 25 30

Including = most frequently used registers

FuncsHeap Application FuncsHeapWithoutLoop Application

100 T

100 |

T T I
Percentage of false input duplicates —+— Percentalbge of false ilnput duplicla,tes —

e 7 80_3\< """
60 k- - LLJ\ _____________________________________
40 """""""""""""""""""""" "]

False input duplicates (%)
False input duplicates (%)

.. — 20_...._.-...-._-......_.-..--._-......_....-.._-......_....-.._-....._
T F= T T T T T = T 1 } 1 ! } | | | | | | b ! | 1 T 0 ---
| | | | | I I | | |
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Including = most frequently used registers Including x most frequently used registers

Sunday, June 21, 2009

Execution context s

Extraction

Selector of ra
v function g
Input V
components ¢ Return address ra
Hash Reduction
function h v function r
Raw fingerprint f* Reduced RA ra*

~,

Fingerprint f
(ra*, 1)
|

8

Sunday, June 21, 2009

Median count of hash collisions

100

500

400

300

200

Comparison of the Hash Functions

. Non-optimal selector function

@ —E—- - K
&%—%—«m—%—%—%—%—%—%

Non-optimal selector function
with RR hashing

W - -B--R-B-B -8 -B- -

5 10 15
Width of f*

Sunday, June 21, 2009

Return addresses tend to cluster

Clustering of Interrupt Return Addresses

10000 E | | | |
- Original +
+ Modified ©
O

o 1000 E
= : o 3
8 .
—
)
8 g
S
] L O |
: o
5 i g +
=) i
3 ¥
H- 10 % E

= O

B O $

) QO +

. @O0 +

| L @b | | | | |
0 1000 2000 3000 4000 5000 6000 7000

Return address

Sunday, June 21, 2009

Return addresses tend to cluster

uuuuuuuuuuuuuuuuuu

Return addresses tend to cluster

® Tight loops: busy waiting, iterative
calculations, array/matrix operations

uuuuuuuuuuuuuuuuuu

Return addresses tend to cluster

® Tight loops: busy waiting, iterative
calculations, array/matrix operations

¢ Blocking operations: non-preemptive
peripheral access, waiting for user input, costly
Instructions

Return addresses tend to cluster

® Tight loops: busy waiting, iterative
calculations, array/matrix operations

¢ Blocking operations: non-preemptive
peripheral access, waiting for user input, costly
Instructions

¢ Disabled interrupts: generic concurrency
control, I/O access

Return addresses tend to cluster

® Tight loops: busy waiting, iterative
calculations, array/matrix operations

¢ Blocking operations: non-preemptive
peripheral access, waiting for user input, costly
Instructions

¢ Disabled interrupts: generic concurrency
control, I/O access

Context specific hashing => RR hashing

uuuuuuuuuuuuuuuuuu

Idea 2: Round-Robin Hashing 22

uuuuuuuuuuuuuuuuuu

Idea 2: Round-Robin Hashing 22

® Use different hash functions to minimize
collisions

uuuuuuuuuuuuuuuuuu

® Use different hash functions to minimize
collisions

® |[nsert markers in the code for different hash
functions

Sunday, June 21, 2009

® Use different hash functions to minimize
collisions

® |[nsert markers in the code for different hash
functions

® |n the replay use the correct hash function for
according to the marker

Sunday, June 21, 2009

RR hashing works surprisingly well

Comparison of the Hash Functions

o
(a») —
LO
-
O —
<F
n \}
= \
. W
= ‘\$_ _ﬁ
© RO v Non-optimal selector function
© 2 4) ¥ - %
= M
= ﬂ——\ﬁ B
(-
S
=
S5 S -
o> &
()
=
=
.S
§ = Non-optimal selector function
=S 7 with RR hashing
TR R -R- BB - - -8R -
Opt1mal selector function
S B e

| | |
5 10 15
Width of f*

Sunday, June 21, 2009

Execution context s

Extraction
Selector of ra
v function g
Input V
components ¢ Return address ra
Hash Reduction
v function h function r
Raw fingerprint f* Reduced RA ra*

~,

Fingerprint f
(ra*, 1)
2

4

Sunday, June 21, 2009

® Give all to the hash value? (minimize hash collisions)

® Give all to the RA? (minimize false RA positives)

—

False RA positives

Hash collisions

Frequency

—
Width of ra* portion

Sunday, June 21, 2009

Trade-off Between ra* and f* Width

-
- incri_.RA O RA positives incr.tt_]ash
ortion o ortion
0 _ D A Hash collisions >
-
N
. ©
> S
z
S Optimal.ﬁ.nge.rprint
é partitioning
N < =~ |
-
- A NN AN
S T o—6B——B—FT—FT—F6——F—-0
-

Width of ra*

Sunday, June 21, 2009

® Debugging embedded systems is painful
=> Replay debugging can help [ST08]

® Frequency-based selection function ¥

® Round robin hashing

® Tradeoff engineering for RA vs hash

® [Future work: Lots, see discussion section

Sunday, June 21, 2009

Questions!

Work has been sponsored by:
Graduate Students' Exchange Program (GSEP) funded by Foreign Affairs and International Trade Canada (DFAIT),
Ontario Research Fund Research Excellence (ORF-RE) &
CIMIT under U.S.Army Medical Research Acquisition Activity Cooperative Agreement W81 XWH-07-2-001 |

28

Sunday, June 21, 2009

