
Tracing Interrupts in
Embedded Software

Giovani Gracioli
Federal University of Santa Catarina

giovani@lisha.ufsc.br

Sebastian Fischmeister
University of Waterloo
sfischme@uwaterloo.ca

1

Sunday, June 21, 2009

Motivation
2

Sunday, June 21, 2009

Motivation

• Embedded => Interrupts
(Especially in low power systems)

2

Sunday, June 21, 2009

Motivation

• Embedded => Interrupts
(Especially in low power systems)

• Interrupts => Complexity
(Non-linear program execution)

2

Sunday, June 21, 2009

Motivation

• Embedded => Interrupts
(Especially in low power systems)

• Interrupts => Complexity
(Non-linear program execution)

• Complexity => Nasty bugs
(You only need one try, right?)

2

Sunday, June 21, 2009

Motivation

• Embedded => Interrupts
(Especially in low power systems)

• Interrupts => Complexity
(Non-linear program execution)

• Complexity => Nasty bugs
(You only need one try, right?)

2

$ echo 'int main() { printf ("Hello,
world\n"); }' | gcc -xc - -o out

Sunday, June 21, 2009

Motivation

• Embedded => Interrupts
(Especially in low power systems)

• Interrupts => Complexity
(Non-linear program execution)

• Complexity => Nasty bugs
(You only need one try, right?)

• Nasty bugs require good debugging support

2

Sunday, June 21, 2009

3

Next Gen Debugging Support?

Sunday, June 21, 2009

3

Next Gen Debugging Support?

Sunday, June 21, 2009

3

Next Gen Debugging Support?

Sunday, June 21, 2009

Replay Debugging
4

Recording at run time Replay offline (sim)

Sunday, June 21, 2009

Replay Debugging
4

Recording at run time Replay offline (sim)

IRQ?

Execute

instruction

Log IRQ

(fingerprint)

Execute ISR &

return

No

Yes

Sunday, June 21, 2009

Replay Debugging
4

Recording at run time Replay offline (sim)

in DB?

Calculate

fingerprint

Simulate

ISR

No

Yes

Simulate

instruction

IRQ?

Execute

instruction

Log IRQ

(fingerprint)

Execute ISR &

return

No

Yes

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Recording at run time Replay offline (sim)

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A

Recording at run time Replay offline (sim)

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A

Recording at run time Replay offline (sim)

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A
ISR

Recording at run time Replay offline (sim)

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A
ISR

Recording at run time Replay offline (sim)

Store
fingerprint

DB

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A
ISR

Recording at run time Replay offline (sim)

Store
fingerprint

DB

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A
ISR

Recording at run time Replay offline (sim)

Task A
ISR

Store
fingerprint

DB

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A
ISR

Recording at run time Replay offline (sim)

?
Task A

ISR
Store

fingerprint

DB

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A
ISR

Recording at run time Replay offline (sim)

?
Task A

ISR
Store

fingerprint

DB

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A
ISR

Recording at run time Replay offline (sim)

?
Task A

ISR
Store

fingerprint

DB

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A
ISR

Recording at run time Replay offline (sim)

?
Task A

ISR
Store

fingerprint

DB

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A
ISR

Recording at run time Replay offline (sim)

?
Task A

ISR
Store

fingerprint

DB

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A
ISR

Recording at run time Replay offline (sim)

?
Task A

ISR
Store

fingerprint

DB

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A
ISR

Recording at run time Replay offline (sim)

?
Task A

ISR
Store

fingerprint

DB

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A
ISR

Recording at run time Replay offline (sim)

?
Task A

ISR
Store

fingerprint

DB

Sunday, June 21, 2009

Replay Debugging
5

Non-determinism happens (e.g., interrupt)

Task A
ISR

Recording at run time Replay offline (sim)

?
Task A

ISR
Store

fingerprint

DB

Sunday, June 21, 2009

Replay Debugging

• Benefits

• Communicate and document bugs
(Show the trace)

• Go forward and backwards in time
(Thoroughly analyze how the bug happened)

• Retest specific scenario for fixes
(Exercise the system with the specific trace)

6

Sunday, June 21, 2009

Recording Phase
7

Non-determinism happens (e.g., interrupt)

Task A
ISR

First try: record program counter

DB
PC val.

Sunday, June 21, 2009

Recording Phase
8

Non-determinism happens (e.g., interrupt)

Task A
ISR

First try: record program counter

DB
PC val.

Sunday, June 21, 2009

Recording Phase
8

Non-determinism happens (e.g., interrupt)

Task A
ISR

First try: record program counter

DB
PC val.

Sunday, June 21, 2009

Recording Phase
8

Non-determinism happens (e.g., interrupt)

Task A
ISR

First try: record program counter

DB
PC val.

Second try: record program counter

and state information

Sunday, June 21, 2009

Recording Phase
8

Non-determinism happens (e.g., interrupt)

Task A
ISR

First try: record program counter

DB
PC val.

Second try: record program counter

and state information

?

Sunday, June 21, 2009

Fingerprinting
9

Compress system state

System state

PC R1 R2

Rx
S 0x....

I/O Rx

010010001001001001011110

512+ bits

<32 bitsFingerprint

Sunday, June 21, 2009

System Model
10

ReductionHash
function h

components c
Input

Raw fingerprint f ∗

Fingerprint f
〈ra∗, f ∗〉

Reduced RA ra∗

Return address ra

of ra
Extraction

Selector
function g

Execution context s

function r

Sunday, June 21, 2009

Caveats

• False input duplicates (selected bad subset)

• False loop positives (falsely believe IRQ happened here)

• False RA positives (falsely believe IRQ happened here)

11

s != s′ ∧ g(s) = g(s′)

s != s′ ∧ s.ra != s′.ra but also
r(s.ra) = r(s′.ra) ∧ (h · g)(s) = (h · g)(s′)

s != s′ ∧ s.ra = s′.ra but also (h · g)(s) = (h · g)(s′)

Sunday, June 21, 2009

Caveats

• False input duplicates (selected bad subset)

• False loop positives (falsely believe IRQ happened here)

• False RA positives (falsely believe IRQ happened here)

11

Calls for good design of fingerprint

s != s′ ∧ g(s) = g(s′)

s != s′ ∧ s.ra != s′.ra but also
r(s.ra) = r(s′.ra) ∧ (h · g)(s) = (h · g)(s′)

s != s′ ∧ s.ra = s′.ra but also (h · g)(s) = (h · g)(s′)

Sunday, June 21, 2009

Designing the Fingerprint
12

ReductionHash
function h

components c
Input

Raw fingerprint f ∗

Fingerprint f
〈ra∗, f ∗〉

Reduced RA ra∗

Return address ra

of ra
Extraction

Selector
function g

Execution context s

function r

Sunday, June 21, 2009

13

ReductionHash
function h

components c
Input

Raw fingerprint f ∗

Fingerprint f
〈ra∗, f ∗〉

Reduced RA ra∗

Return address ra

of ra
Extraction

Selector
function g

Execution context s

function r

Sunday, June 21, 2009

Selector Function
14

Sunday, June 21, 2009

Selector Function

• Many elements to choose from: data
registers, control registers, GPIO, IO status,
general SDRAM, stack, heap, ...

14

Sunday, June 21, 2009

Selector Function

• Many elements to choose from: data
registers, control registers, GPIO, IO status,
general SDRAM, stack, heap, ...

•Can’t take all:

• Too much computation overhead

• Not all are used equally often

14

Sunday, June 21, 2009

Idea 1
15

Pick the most frequently used ones

Sunday, June 21, 2009

Idea 1
15

Pick the most frequently used ones

R
el

at
iv

e
fr

eq
u
en

cy

24 25 30 31 28 26 22 18 19 0 23 20 21 27 16

0.00

0.05

0.10

0.15

0.20

0.25

Register

Register Usage (freq.>0.012)

Sunday, June 21, 2009

Does it work?
16

0

20

40

60

80

100

0 5 10 15 20 25 30

F
al

se
in

p
u
t

d
u
p
li
ca

te
s

(%
)

Including x most frequently used registers

ADC Application

Percentage of false input duplicates

Yes, quite well.

Sunday, June 21, 2009

Does it work?
17

0

20

40

60

80

100

0 5 10 15 20 25 30

F
al

se
in

p
u
t

d
u
p
li
ca

te
s

(%
)

Including x most frequently used registers

FuncsHeap Application

Percentage of false input duplicates

0

20

40

60

80

100

0 5 10 15 20 25 30

F
al

se
in

p
u
t

d
u
p
li
ca

te
s

(%
)

Including x most frequently used registers

FuncsHeapWithoutLoop Application

Percentage of false input duplicates

0

20

40

60

80

100

0 5 10 15 20 25 30

F
al

se
in

p
u
t

d
u
p
li
ca

te
s

(%
)

Including x most frequently used registers

ADC Application

Percentage of false input duplicates

Sunday, June 21, 2009

18

ReductionHash
function h

components c
Input

Raw fingerprint f ∗

Fingerprint f
〈ra∗, f ∗〉

Reduced RA ra∗

Return address ra

of ra
Extraction

Selector
function g

Execution context s

function r

Sunday, June 21, 2009

All Perform Equally Badly
19

Comparison of the Hash Functions

5 10 15

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Width of f ∗

M
ed

ia
n

co
u
n
t

o
f
h
a
sh

co
ll
is

io
n
s

Optimal selector function

Non-optimal selector function

Non-optimal selector function
with RR hashing

Sunday, June 21, 2009

Observation
20

 1000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

Return address

Clustering of Interrupt Return Addresses

Original
Modified

 1

 10

 100

Return addresses tend to cluster

Sunday, June 21, 2009

Why?
21

 1000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

Return address

Clustering of Interrupt Return Addresses

Original
Modified

 1

 10

 100

Return addresses tend to cluster

Sunday, June 21, 2009

Why?
21

 1000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

Return address

Clustering of Interrupt Return Addresses

Original
Modified

 1

 10

 100

Return addresses tend to cluster

• Tight loops: busy waiting, iterative
calculations, array/matrix operations

Sunday, June 21, 2009

Why?
21

 1000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

Return address

Clustering of Interrupt Return Addresses

Original
Modified

 1

 10

 100

Return addresses tend to cluster

• Tight loops: busy waiting, iterative
calculations, array/matrix operations

• Blocking operations: non-preemptive
peripheral access, waiting for user input, costly
instructions

Sunday, June 21, 2009

Why?
21

 1000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

Return address

Clustering of Interrupt Return Addresses

Original
Modified

 1

 10

 100

Return addresses tend to cluster

• Tight loops: busy waiting, iterative
calculations, array/matrix operations

• Blocking operations: non-preemptive
peripheral access, waiting for user input, costly
instructions

• Disabled interrupts: generic concurrency
control, I/O access

Sunday, June 21, 2009

Why?
21

 1000

 10000

 0 1000 2000 3000 4000 5000 6000 7000

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

Return address

Clustering of Interrupt Return Addresses

Original
Modified

 1

 10

 100

Return addresses tend to cluster

• Tight loops: busy waiting, iterative
calculations, array/matrix operations

• Blocking operations: non-preemptive
peripheral access, waiting for user input, costly
instructions

• Disabled interrupts: generic concurrency
control, I/O access

Context specific hashing => RR hashing
Sunday, June 21, 2009

Idea 2: Round-Robin Hashing
22

Sunday, June 21, 2009

Idea 2: Round-Robin Hashing

• Use different hash functions to minimize
collisions

22

Sunday, June 21, 2009

Idea 2: Round-Robin Hashing

• Use different hash functions to minimize
collisions

• Insert markers in the code for different hash
functions

22

Sunday, June 21, 2009

Idea 2: Round-Robin Hashing

• Use different hash functions to minimize
collisions

• Insert markers in the code for different hash
functions

• In the replay use the correct hash function for
according to the marker

22

Sunday, June 21, 2009

Does it work?
23

RR hashing works surprisingly well
Comparison of the Hash Functions

5 10 15

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

Width of f ∗

M
ed

ia
n

co
u
n
t

o
f
h
a
sh

co
ll
is

io
n
s

Optimal selector function

Non-optimal selector function

Non-optimal selector function
with RR hashing

Sunday, June 21, 2009

24

ReductionHash
function h

components c
Input

Raw fingerprint f ∗

Fingerprint f
〈ra∗, f ∗〉

Reduced RA ra∗

Return address ra

of ra
Extraction

Selector
function g

Execution context s

function r

Sunday, June 21, 2009

How best to use the FP bits?
25

• Give all to the hash value? (minimize hash collisions)

• Give all to the RA? (minimize false RA positives)
Fr
eq
ue
nc
y

Hash collisions

False RA positives

Width of ra
∗ portion

Sunday, June 21, 2009

Engineering the Fingerprint
26

RA positives
Hash collisions

Trade-off Between ra∗ and f ∗ Width

F
re

qu
en

cy
[%

]

Width of ra∗

5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

partitioning
Optimal fingerprint

incr. RA
portion

incr. hash
portion

Sunday, June 21, 2009

Conclusions

• Debugging embedded systems is painful
=> Replay debugging can help [ST08]

• Frequency-based selection function

• Round robin hashing

• Tradeoff engineering for RA vs hash

• Future work: Lots, see discussion section

27

Sunday, June 21, 2009

Questions?

28

Work has been sponsored by:
Graduate Students' Exchange Program (GSEP) funded by Foreign Affairs and International Trade Canada (DFAIT),

Ontario Research Fund Research Excellence (ORF-RE) &
CIMIT under U.S. Army Medical Research Acquisition Activity Cooperative Agreement W81XWH-07-2-0011

Sunday, June 21, 2009

