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Motivation

S echo 'int main() { printf ("Hello,
world\n"); }' | gcc -xc - -o out
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e Embedded => Interrupts

(Especially in low power systems)

¢ Interrupts => Complexity
(Non-linear program execution)

o Complexity => Nasty bugs

(You only need one try, right?)

® Nasty bugs require good debugging support

WS
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Next Gen Debugging Support!?
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Next Gen Debugging Support?
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Next Gen Debugging Support!?
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Replay Debugging

Recording at run time Replay offline (sim)
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Recording at run time
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Recording at run time Replay offline (sim)

X Non-determinism happens (e.g., interrupt)
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Recording at run time Replay offline (sim)
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Recording at run time
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Recording at run time Replay offline (sim)
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Recording at run time Replay offline (sim)
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Recording at run time
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Recording at run time Replay offline (sim)
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® Benefits

® Communicate and document bugs
(Show the trace)

® Go forward and backwards in time
(Thoroughly analyze how the bug happened)

® Retest specific scenario for fixes
(Exercise the system with the specific trace)

Sunday, June 21, 2009



First try: record program counter

TEEIiA

4 > [ DB

X Non-determinism happens (e.g., interrupt)
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First try: record program counter

TEEIiA

i > DB

Second try: record program counter
and state information

X Non-determinism happens (e.g., interrupt)
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First try: record program counter

TEEIiA

i > DB

Second try: record program counter
and state information

X Non-determinism happens (e.g., interrupt)
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Compress system state

System state 5|2+ bits

Fingerprint <32 bits
010010001001001001011110




Execution context s

Extraction
Selector of ra
v function g
Input V
components c Return address ra
Hash Reduction
v function h v function r
Raw fingerprint f~* Reduced RA ra*

~,

Fingerprint f
(ra )
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® [alse Input duplicates (selected bad subset)
s# s Ng(s)=g(s)
® [alse |OOP positives (falsely believe IRQ happened here)
s# s Ns.ra=s".rabut also (h-g)(s)=(h-g)(s)
® [alse RA pOSitiVeS (falsely believe IRQ happened here)

s # s Ns.ra+# s .ra but also

r(s.ra) =r(s'.ra) A (h-g)(s) = (h-g)(s)
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® [alse Input duplicates (selected bad subset)
s# s Ng(s)=g(s)
® [alse |OOP positives (falsely believe IRQ happened here)
s# s Ns.ra=s".rabut also (h-g)(s)=(h-g)(s)
® [alse RA pOSitiVeS (falsely believe IRQ happened here)

s # s Ns.ra+# s .ra but also

r(s.ra) =r(s'.ra) A (h-g)(s) = (h-g)(s)

Calls for good design of fingerprint
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— ,
Execution context s - .
Extraction

Selector of ra
function g

Input V

components ¢ Return address ra

Hash
tunction h

Raw fingerprint f* Reduced RA ra*

Reduction
function r

~,

Fingerprint f
(ra*, 1)
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Selector Function
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¢ Many elements to choose from: data
registers, control registers, GPIO, O status,
general SDRAM, stack, heap, ...
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¢ Many elements to choose from: data
registers, control registers, GPIO, O status,
general SDRAM, stack, heap, ...

® Can’t take all:

® Joo much computation overhead

® Not all are used equally often
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Pick the most frequently used ones
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Pick the most frequently used ones
Register Usage (freq.>0.012)
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Yes, quite well.

ADC Application
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Does it work?

ADC Application
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Execution context s

Extraction

Selector of ra
v function g
Input V
components ¢ Return address ra
Hash Reduction
function h v function r
Raw fingerprint f* Reduced RA ra*
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Median count of hash collisions
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Return addresses tend to cluster

Clustering of Interrupt Return Addresses
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Return addresses tend to cluster
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Return addresses tend to cluster

® Tight loops: busy waiting, iterative
calculations, array/matrix operations

¢ Blocking operations: non-preemptive
peripheral access, waiting for user input, costly
Instructions

¢ Disabled interrupts: generic concurrency
control, I/O access

Context specific hashing => RR hashing
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Idea 2: Round-Robin Hashing 22
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Idea 2: Round-Robin Hashing 22

® Use different hash functions to minimize
collisions
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® Use different hash functions to minimize
collisions

® |[nsert markers in the code for different hash
functions
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® Use different hash functions to minimize
collisions

® |[nsert markers in the code for different hash
functions

® |n the replay use the correct hash function for
according to the marker
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RR hashing works surprisingly well

Comparison of the Hash Functions
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Execution context s

Extraction
Selector of ra
v function g
Input V
components ¢ Return address ra
Hash Reduction
v function h function r
Raw fingerprint f* Reduced RA ra*
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® Give all to the hash value? (minimize hash collisions)

® Give all to the RA? (minimize false RA positives)

—

False RA positives

Hash collisions

Frequency

—
Width of ra* portion
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Trade-off Between ra* and f* Width
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® Debugging embedded systems is painful
=> Replay debugging can help [ST08]

® Frequency-based selection function ¥

® Round robin hashing

® Tradeoff engineering for RA vs hash

® [Future work: Lots, see discussion section
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Questions!
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