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$ echo 'int main() { printf ("Hello, 
world\n"); }' | gcc -xc - -o out
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Motivation

• Embedded => Interrupts
(Especially in low power systems)

• Interrupts => Complexity
(Non-linear program execution)

• Complexity => Nasty bugs
(You only need one try, right?)

• Nasty bugs require good debugging support
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Replay Debugging

• Benefits

• Communicate and document bugs
(Show the trace)

• Go forward and backwards in time
(Thoroughly analyze how the bug happened)

• Retest specific scenario for fixes
(Exercise the system with the specific trace)
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Fingerprinting
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Compress system state

System state

PC R1 R2

Rx
S 0x....

I/O Rx 

010010001001001001011110

512+ bits

<32 bitsFingerprint
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System Model
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ReductionHash
function h

components c
Input
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〈ra∗, f ∗〉
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function r

Sunday, June 21, 2009



Caveats

• False input duplicates (selected bad subset)

• False loop positives (falsely believe IRQ happened here)

• False RA positives (falsely believe IRQ happened here)

11

s != s′ ∧ g(s) = g(s′)

s != s′ ∧ s.ra != s′.ra but also
r(s.ra) = r(s′.ra) ∧ (h · g)(s) = (h · g)(s′)

s != s′ ∧ s.ra = s′.ra but also (h · g)(s) = (h · g)(s′)
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Caveats

• False input duplicates (selected bad subset)

• False loop positives (falsely believe IRQ happened here)
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Calls for good design of fingerprint

s != s′ ∧ g(s) = g(s′)

s != s′ ∧ s.ra != s′.ra but also
r(s.ra) = r(s′.ra) ∧ (h · g)(s) = (h · g)(s′)

s != s′ ∧ s.ra = s′.ra but also (h · g)(s) = (h · g)(s′)
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Selector Function

• Many elements to choose from: data 
registers, control registers, GPIO, IO status, 
general SDRAM, stack, heap, ...

•Can’t take all:

• Too much computation overhead

• Not all are used equally often
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Idea 1
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Pick the most frequently used ones
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Does it work?
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All Perform Equally Badly
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Comparison of the Hash Functions
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Observation
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Context specific hashing => RR hashing
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Idea 2: Round-Robin Hashing

• Use different hash functions to minimize 
collisions

• Insert markers in the code for different hash 
functions

• In the replay use the correct hash function for 
according to the marker
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Does it work? 
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RR hashing works surprisingly well
Comparison of the Hash Functions
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How best to use the FP bits?
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• Give all to the hash value? (minimize hash collisions)

• Give all to the RA? (minimize false RA positives)
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Engineering the Fingerprint
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Conclusions

• Debugging embedded systems is painful
=> Replay debugging can help [ST08]

• Frequency-based selection function 

• Round robin hashing

• Tradeoff engineering for RA vs hash

• Future work: Lots, see discussion section
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Questions?
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