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Abstract
During the system development, developers often must correct
wrong behavior in the software—an activity colloquially called
program debugging. Debugging is a complex activity, especially
in real-time embedded systems because such systems interact with
the physical world and make heavy use of interrupts for timing and
driving I/O devices.

Debugging interrupts is difficult, because they cause non-linear
control flow in programs which is hard to reproduce in software.
Record/replay mechanisms have proven their use to debugging
embedded systems, because they provide means to recreate control
flows offline where they can be debugged.

In this work, we present the data tracing part of the record/replay
mechanism that is specifically targeted to record interrupt behavior.
To tune our tracing mechanism, we use the observed principle of
return address clustering and a formal model for quantitative rea-
soning about the tracing mechanism. The presented heuristic and
mechanisms show surprisingly good results—up to an 800 percent
speedup on the selector function and a 300 percent reduction on du-
plicates for non-optimal selector functions—considering the lean-
ness of the approach.

Categories and Subject Descriptors D.2.5 Software Engineering
[Testing and Debugging]: Tracing

General Terms Design, Experimentation

Keywords Tracing, Debugging Real-Time Systems, Embedded
Software

1. Introduction
Debugging represents a key activity in the development of an em-
bedded system. Debugging comes after testing in that the developer
already detected an unspecified behavior—the program has a bug—
and now wants to correct it. Since embedded and especially real-
time embedded systems usually interact with the physical world,
embedded software makes heavy use of interrupts for timing and
I/O devices such as sensors and actuators.
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Debugging interrupt-driven software is hard, and it is one rea-
son why software testing and debugging take up between 30 to 50
percent of the total development cost in embedded systems (Bouys-
sounouse and J.Sifakis 2005; Gallaher and Kropp 2002). Tradi-
tional debugging techniques such as single stepping are unsuited
for this type of system. Even with conditional breakpoints, any I/O
heavy system will alter its behavior too drastically as the developer
stops the program to step through the code. For example, when the
software drives a motor, stopping the program will cause the motor
to lose its torque as the software discontinues the duty cycle.

System tracing can help debugging control flow problems in
interrupt-driven software. Tracing records information at run time,
and the developer can use it to determine the application’s control
flow offline. Tracing techniques themselves have been around since
the early programming stages (Baginski and Seiffert 1974; Barnes
and Wear 1974), and they come in different flavors: using special
hardware counters (Cargill and Locanthi 1987; Tsai et al. 1990),
software-based monitoring (Mellor-Crummey and LeBlanc 1989;
Dodd and Ravishankar 1995; Thane 2000; Kim et al. 2004), and
hardware tracing (JTA 2001; NEX 2003; Moore and Moya 2003;
Omre 2008).

The utility of the trace increases with a replay mechanism (Ron-
sse and De Bosschere 1999; Ronsse et al. 2003; Sundmark et al.
2003). The replay system allows the developer to step forward and
backward in the execution trace of the application. The replay sys-
tem loads the trace and simulates the program execution using the
stored trace generated at run time. The developer can stop the sim-
ulation any time and examine the execution context that led to the
particular control flow path.

Interrupts pose a particular problem to tracing applications. An
interrupt can occur at any time and causes a break in the control
flow as the program execution stops at the current instruction and
continues at the interrupt handling routine. A good control-flow
trace must also include these routines, however, if the application
contains loops, then determining the exact control flow as it hap-
pened at run time becomes difficult.

Recent work (Sundmark and Thane 2008) suggested taking a
snapshot of the execution context when an interrupt occurs. The
presented results are encouraging, but the approach lacks accuracy.
In this work, we present a better heuristic and contribute the fol-
lowing to the state of the art:

• We formalize the problem and allow quantitative reasoning
about the individual aspects involved in the tracing mechanism.

• We present and discuss the principle of return address cluster-
ing.

• We propose two heuristics—frequency-based selection and
round-robin hashing—and evaluate their its efficiency with our



metrics. Both heuristics incur little overhead and work surpris-
ingly well.

• We investigate the trade-off in allocating bits to the return
address and the hash portion of the fingerprint.

• We discuss a number of observations and insights that will help
the community to advance tracing mechanisms.

The remainder of the paper is structured as follows: Section 2
provides an overview of the system model. Section 3 describes
our finding of the clustering of return addresses. Section 4 shows
our approach and algorithms for the tracing mechanism. Section 5
provides measurements on the quality of our approach. Section 6
discusses additional findings during the evaluation. And finally
Section 7 closes the paper with our summary and conclusions.

2. System Model
In the system model, we provide an overview of the two core
elements of a capture/replay mechanism: tracing and replay. We
also discuss possible errors that can occur in such a system.

2.1 Tracing Mechanism
Figure 1 provides an overview of the tracing mechanism. The exe-
cution context s represents the current state of the system affecting
the program’s execution including for example all memory data,
process registers, I/O status bits. A selector function g uses the ex-
ecution context and selects data elements such as I/O registers or
stack pointers as raw input components. The selector function also
includes a reduction step. For example, the selector function can
select only parts of the stack as input component. A hash function
h calculates a raw fingerprint f∗ from the given input components.
Another element of the fingerprint is the reduced return address ra∗

which is obtained by extracting the return address from the execu-
tion context and applying a reduction function r. The final finger-
print f of an execution environment comprises the reduced return
address ra∗ as prefix and the raw fingerprint f∗—expressed for-
mally as f(s) := 〈r(s.ra), h(g(s)))〉 = 〈r(s.ra), (h · g)(s)〉. The
fingerprint width is the number of bits required to represent the fin-
gerprint. Note that fingerprints may contain no return-address pre-
fix with a reduction function r that filters out the complete return
address.

ReductionHash
function h

components c
Input

Raw fingerprint f ∗

Fingerprint f

〈ra∗, f ∗〉

Reduced RA ra∗

Return address ra

of ra

Extraction

Selector
function g

Execution context s
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Figure 1. Computing a fingerprint.

Consider a simple example in which the processor state con-
sists of memory and processor registers. A selector function picks
registers R0 to R4 and memory addresses 0x00 to 0x3F as input
components—for our purpose called {x0, . . . , xn}. A simple hash
function (Sundmark and Thane 2008) is h1(c) = (

P
xi)mod 16.

The reduction function r picks the four least significant bits from
the return address. The fingerprint width for this example is eight
bits with four bits for ra∗ and four bits for f∗. Assume that at the

time the interrupt occurred, the processor state and memory and
registers are filled with zeros. If an interrupt happens at address
0x16, then the resulting fingerprint will be 〈b0110, b0000〉.

At the time of recording, the tracing system computes a finger-
print each time an interrupt happened and adds it to the fingerprint
database D.

Two fingerprints f1 and f2 will be equal, if their return address
portion is equal (f1.ra

∗ = f2.ra
∗) and their raw fingerprint is

equal (f1.f
∗ = f2.f

∗).

2.2 Replay Mechanism
In the replay phase, a simulator executes the application. To con-
sider interrupts, after each step, the simulator checks whether to
continue with the next instruction or with the interrupt handling
routine. To perform this check, the simulator computes a finger-
print after each instruction. If the fingerprint database contains the
computed fingerprint, then the system will continue with the in-
terrupt handling routine; otherwise, it will continue with the next
instruction.

2.3 Caveats
The following problems can occur in such a tracing system with
replay: A false input duplicate occurs if two different states have
equivalent input components after applying the selector function.
Formally, this will occur, if s 6= s′ but g(s) = g(s′). False
positives generally occur because of information reduction caused
by the selector function and the subsequent hashing. A false loop
positive will occur, if the replay mechanism wrongly continues at
the interrupt handling routine although no interrupt happened at this
point in time at this address. For example,the application contains a
loop and the replay mechanism wrongly continues at the interrupt
handling routine at an iteration count of three instead of seven.
Formally, s 6= s′ and s.ra = s′.ra but also (h ·g)(s) = (h ·g)(s′).
A false RA positive will occur, if the replay mechanism wrongly
continues with the interrupt handling routine although no interrupt
ever happened at this return address. These errors occur as the
reduction function r restricts the return address portion of the finger
print. Formally, s 6= s′ and s.ra 6= s′.ra but r(s.ra) = r(s′.ra)
and (h · g)(s) = (h · g)(s′)

For example, assume the hash function h1 from the previous
example and exactly one interrupt occurs at run time at program
address 0x8c. Further assume, that the resulting input components
are c1 = g(s) = {200, 40, 7}. The corresponding fingerprint is
fp1 = 〈0b1100, 0b0111〉 and the fingerprint database is D =
{199}. During the replay, a false loop positive will appear if the
input components for the check are, for instance, c2 = {200, 26, 5}
at program address 0x8c, because h1(c2) = h1(c1) = 7. A false
RA positive will occur, if the input components are also c1 but the
return address is 0x0c, because r(200) = r(192) = 0b1100.

These caveats show that it is crucial to select good functions
for the tracing method, otherwise the replay mechanism will be
inaccurate.

3. Return Address Clustering
During our empirical evaluations, we observed an interesting phe-
nomenon regarding return addresses: interrupts typically cluster
around a few return addresses. The number of clusters is relative
to the program size and the interrupt frequency, yet still return ad-
dresses spread non-uniformly across the address space.

Figure 2 demonstrates this observation with an example that ini-
tially tipped us off. Section 5 explains this program more closely
with the name FuncsHeap. The x-axis shows the return address at
which the interrupt occurred. The y-axis shows the frequency how
often we observed that particular return address; note that the y-axis



has logarithmic scale. The program runs on an AVR ATmega16 mi-
crocontroller and performs a periodic analog to digital conversion
and processes this value. The program consists of about 7,000 in-
structions and we recorded more than 8,500 interrupts by inserting
breakpoints and extracting data through the JTAG interface (JTA
2001). In the original program, the interrupts cluster around the
return addresses 200 to 350 and 6650 to 6750. Restructuring the
program did not substantially change the interrupt distribution. Fig-
ure 2 also shows the data for the modified version, and return ad-
dresses still cluster around few addresses.
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Figure 2. Example of the principle.

Factors contributing to the clustering include:

• Tight loops present in busy waiting routines, iterative calcula-
tions (e.g. division) and data processing, and array/matrix oper-
ations.

• Blocking operations present in time-costly instructions, non-
preemptive peripheral access (e.g., EEPROM writes with sev-
eral milliseconds), and waiting for user input.

• Concurrency control structures when the developer disables the
interrupts to prevent interleaved execution of programs.

All these elements prevent return addresses from being uni-
formly distributed across the address space, because they change
the likelihood of an interrupt occurring at particular addresses.
For example, concurrency control structure often prevent inter-
rupts from happening inside critical sections; so interrupts are more
likely to be triggered immediately after the critical section com-
pletes.

As a concrete example in the Atmel ATmega processors, when
an interrupt occurs, the Global Interrupt Enable (GIE) I-bit is
cleared and all interrupts are disabled. The user software can write
logic one to the I-bit to enable nested interrupts. All enabled in-
terrupts can then interrupt the current interrupt routine. The I-bit
is automatically set when a “RETurn from Interrupt’ instruction—
called RETI—is executed. If an interrupt condition occurs while the
corresponding interrupt enable bit is cleared, the Interrupt Flag (IF)
will be set and remembered until the interrupt is enabled, or the flag
is cleared by software. Similarly, if any interrupt conditions occur
while the GIE bit is cleared, the corresponding Interrupt Flag(s)
will be set and remembered until the GIE bit is set, and will be
executed by order of priority. When the processor returns from an
interrupt, it will always return to the main program and execute
another instruction before any pending interrupt is served.

This principle allows us to better understand the system and to
create a better tracing mechanism than tracing mechanisms that
assume normally distributed return addresses. Pointing forward,
the insights of RA clustering lead to our design a round-robin

mechanism with markers in the code specifying which has function
should be used. It also lead to an approach that failed and we
describe our experience in Section 6.

4. Approach and Method Overview
The introduction already stated the motivation and the problem. We
now revisit the problem definition with the additional knowledge of
the systems model and the observed return address clustering.

The developer wants to trace control flow in applications with
interrupts without using special hardware. A suggested approach
is to create fingerprints of the system state at run time and then
use these fingerprints to determine during the replay whether an
interrupt happened at a particular location. While the replay mech-
anism is straightforward, the tracing mechanism has several design
parameters:

• What is a good selector function?
• What is a good hash function?
• What is a good ratio between the return address and raw finger-

print portion?

In the following we present our approach to each of these design
parameters and evaluate the quality through experimental data in
the followup section.

4.1 Frequency-based Selection
The execution context of the application comprises a large amount
of data. Key elements include control and status registers, which
are essential to instruction execution, as well as memory-mapped
peripherals and I/O controls—see (Tanenbaum 2001) for details on
these concepts. These elements for example include the program
status word (PSW), process control blocks, thread control blocks,
and integrated peripherals. The PSW usually contains the instruc-
tion address, processor condition codes and status information in-
cluding interrupt settings, and the kernel/user mode bit. The pro-
cess control block comprises the PSW but also further process spe-
cific information such as identifiers, state, memory pointers, and
accounting information. The thread control blocks—only present
in multithreaded processing—contain further thread-specific exe-
cution information. Microcontrollers and microcomputers integrate
computation units and peripheral devices into a single chip. This in-
creases the execution context and adds elements such as peripheral
status (for example the ADC conversion state), data buffers (for ex-
ample memory-mapped CAN message buffers), and hardware state
(e.g., timer values). Growing chip complexity—think system-on-
chip or network-on-chip—enriches execution context even further.

The tracing mechanism must only use a subset of the execution
context to guarantee short execution time and utility. Reading pro-
cessor registers, memory, and peripherals’ data requires execution
time. Tracing should be transparent to the application, therefore it
should have minimal overhead in terms of execution time, memory,
and program code. Using the whole execution context contradicts
this design goal. For example the ATmega16 microcontroller has
32 general-purpose registers, 64 I/O registers, 1KB of SRAM, 512
KB of EEPROM, and three timers. Reading all these data on the
4MHZ variant requires at least 280µs without the EEPROM and
several milliseconds when including the EEPROM.

Using the whole execution context not only takes too long to
read but also to process. Besides execution time, not all data of the
execution context are useful for tracing, because they change too
infrequently. For example, microcontrollers contain a status regis-
ter that stores the reason of the last chip reset—brown-out, watch-
dog, or external reset. This register holds the same value in between
resets and thus will always have the same value for all calculated



fingerprints. Including this or other data with similar behavior pro-
vides no utility but increases execution time. The selector function
picks a subset from the execution context; this subset becomes the
input components for the hash function.

We propose a frequency-based selector function that picks the
elements which occur most frequently in the application source
code. The insight is that frequently-used elements will frequently
change and thus make good input components. Change can occur
in two cases: either the program changes the execution environment
through instructions that store values or flip output pins, or periph-
erals induce change by modifying status registers or delivering new
data. The selection process consists of the following steps:

1. Generate assembly code: In this step, we compile the appli-
cation sources into assembly code. Most compilers allow the
developer to stop before the assembly stage. The compiler then
delivers assembly source code instead of machine code.

2. Extract instructions: In this step, we collect all lines of code
from the assembly that affect the execution environment. Sev-
eral instructions alter the execution context and they differ be-
tween computer architectures. In our experiments, we used the
AVR ATmega architecture.

3. Count suitable components: In this step, we count how of-
ten suitable components appear in the extracted lines of code.
This step scales in its complexity depending on the processor ar-
chitecture and the thoroughness of the approach. For example,
some processor architectures such as the AVR address periph-
erals by their memory location instead of direct text references
in the assembly. GCC for AVR produces assembly that directly
addresses registers—e.g., “ldi r22, 0x40” stores the value 0x40
in the register 22—but it addresses hardware peripherals such as
timers by memory location—e.g., “in r22, 0x3c” loads the value
of the Timer/Counter0 Output Compare Register into Register
22. If such components are suitable components, then the de-
veloper will need to enumerate their memory locations, so our
algorithm can use them.
Indirect addressing and high-level components also complicate
this step. Data elements that are transparent for the processor
but have significance in the software layer such as thread ac-
counting information have not specific name in the assembly
code and to use them, the developer must use the memory map
files from the compilation process and apply the program analy-
sis to identify which lines of code access specific memory vari-
ables.

4. Order by frequency: In this step, we order the suitable compo-
nents by frequency and pick the most frequent ones as our input
components. The number of used input components depends on
how much execution time overhead the application permits for
the tracing mechanism.

We execute these steps separately for the general-purpose and
the I/O registers; otherwise, the I/O registers will always lose
against the general-purpose registers, because they are less fre-
quently used. The experimental data shown in see Section 5 con-
firms this decision.

4.2 Round-Robin Hashing
We cannot store the raw input components in the fingerprint, be-
cause this would require large fingerprint widths. We therefore use
hash functions to turn all input components into a fixed width num-
ber. So for example, if the fingerprint width is at most 16 bit and
we use 8 bit for the return address part (r∗), we will use a hash
function that returns 8 bit numbers for the f∗ part.

A good hash function has no funnels and characteristics (Jenk-
ins 1997), meaning that the hash function will work well, even if

only a few bits change on the input. This is an important property
for our tracing mechanism, because if we trace a system with a high
interrupt frequency and many loops, then chances are that only one
or two input components changed in between two fingerprints.

Related work showed that the hash function (Sundmark et al.
2003) can be one of the primary weaknesses in the tracing mecha-
nism. Observations during our own experiments lead us to the idea
of round-robin hashing.

Interrupts happen at almost arbitrary locations in the code, yet
they cluster around certain addresses. Round-robin hashing uses
different hash functions in the code. A marker—essentially a vari-
able assignment and an indicator in the execution environment—
defines which hash function the tracing mechanism should use. The
results in Section 5.2 show this to be more effective than any sin-
gle hash function. Furthermore, Section 6 shows plots that explain
why round-robin hashing works and is superior. Our current algo-
rithm arbitrarily sets these markers based on the cluster informa-
tion, static and run-time analysis of the program will improve these
results.

4.3 RA/H Ratio
A fingerprint consists of a partial return address (ra∗) and a hash
value of the input components (f∗). These two stands in an impor-
tant relationship to each other that affects the count of false posi-
tives in the replay mechanism.

First let us consider the hash portion of the fingerprint and let us
assume that we chose a good hash function. A good hash function
causes as few hash collisions as possible for a given set of inputs.
In fact, if we know all inputs, then we will be able to use perfect
hashing preventing collisions (Fox et al. 1992).

If the f∗ has a small width, then we will observe hash collisions
at run time and false loop positives at replay time. A small width
of f∗ provides only a small space for hash values, so more inputs
are mapped to the same hash value. This increases chances of two
interrupts having an execution environment that gets mapped to the
same value of f∗. At replay time, a small width of f∗ increases
the rate of false loop positives. At replay time, we stop after each
instruction and check whether an interrupt occurred at run time; i.e.,
we compute a fingerprint from the simulated execution context and
check whether this fingerprint exists in the fingerprint database—
we call this a hit. If we use a small width for f∗ and, for example,
one forth of the possible fingerprint values were recorded in the
database, then chances are that we will have a hit—and possibly
a false loop positive—every fourth time the program reaches the
same address, because of the nature of hash functions; therefore,
the bigger the width of f∗ the better.

If ra∗ has a small width, then we will observe fewer hash
collisions at run time but more false RA positives at replay time.
A small width of ra∗ leaves room for a larger width of f∗—this
is a good thing as we have shown before; however, the ra∗ acts as
prefix to prevent false RA positives. If we use just one bit for the
ra∗ and, for example, one thousandth of the possible fingerprint
values were recorded in the database, then chances are that we will
observe a false RA positive every 2,000 executed instructions.

The developer must find a trade-off between these two types
of false positives, as exemplified in Figure 3. Our experimental
evaluations show the significance of this trade-off.

5. Evaluation
We used EPOS—the Embedded Parallel Operating system—for
implementing our three test applications. EPOS is a component-
based framework for the generations of dedicated runtime support
environments. The EPOS system framework allows programmers
to develop platform-independent applications for microcontroller-
based systems. Analysis tools allow components to be automati-
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Figure 3. Relationship between false RA positives and hash colli-
sions.

cally selected to fulfill the requirements of these particular applica-
tions. One instance of the system aggregates all the necessary sup-
port for its dedicated application, and nothing else. Furthermore,
the system provides an active, opportunistic power manager, a sys-
tem resource monitor, a real-time scheduler, and a set of several
system components that range from thread management to UART,
SPI, communications, and ADC handing.

We implemented three different programs on top of EPOS to
evaluate our work: ADCApp, FuncsHeap, and FuncsHeapWithout-
Loop. The ADCApp represents a typical embedded application that
connects, for example, a sensor to a workstation through the serial
line. The program continually reads data from an analog device,
communicates the read value via the serial interface to a control
station, and also stores results in the EEPROM in a circular buffer.
The program first initializes the ADC, UART, and the EEPROM.
Then, it spins in an infinite loop reading and writing data. The ap-
plication uses 13,886 bytes of program memory which is about 85
percent of the available memory.

The FuncsHeap application is specifically designed to test the
efficiency of our algorithm with loops and nested function calls.
The program uses eight global variables and five functions (main,
and func a to func d). The main function has an infinite loop.
In it, it toggles some LEDs, contains a delay loop—from 0 to
0xffff simulating arbitrary computation—and calls func a. func a
makes some calculations using global variables and calls func b.
func b calls func c twice inside a loop and passes two integers as
arguments. func c dynamically allocates an array of five integers
and calls func d four times inside a loop passing the array as
argument. func d loops from 0 to eight doing some calculations
on global variables. The application uses 14,008 bytes of program
memory—that is about 86 percent.

The FuncsHeapWithoutLoop application is similar to the Func-
sHeap application in its design, however, we removed the delay
loop to emulate simple background/foreground systems as often
found in control applications. The application uses about 14KB of
program memory which is about 86 percent of the available mem-
ory.

We used the ATMEL AVR computing platform to run our ex-
periments. We ran the applications on the STK500 with an AT-
mega16 processor—note that in comparison to related work, we
collected the data using real hardware with external inputs. This
processor provides a good execution context of which we consid-
ered 32 general-purpose registers, 64 I/O registers, 1KB of SRAM,
and three timers. Using the JTAG interface and AVR Studio, we
put a breakpoint in the OS interrupt handler. When an interrupt
occurs, we save the execution context (GP registers, I/O registers
and SRAM memory) in files. We automated this process using the
QuickMacros tool to speed up the collection process. Saving the

context leaves the application and OS untouched, because AVR
Studio keeps the system state including timers. Our method would
only cause problems, if we had used a real-time clock, which we
had not.

5.1 Selector function
We can measure the quality of the selector function by counting
the number of false input duplicates. The optimal selector func-
tions satisfies the property @s 6= s′ : g(s) = g(s′), that is, for
all input exists an unique output. Unfortunately, since the selector
function always picks a subset of the execution context, the opti-
mal selector function always selects the whole execution context.
Another criterion is the number of input components selected by
the selector function. A good selector function should pick few in-
put components as possible to produce as little as possible false
input components. We include this in our criterion to minimize the
execution time of the selector function. A good selector function
should have as short an execution time as possible. For example,
reading an I/O register requires one clock cycle while reading stack
values requires at least two clock cycles—one to receive the stack
pointer and more to read data. Minimizing the execution time will
minimize the tracing mechanism’s effect on the application and ad-
ditional power consumption.

In the first step, we compute the frequency of use of registers
and other potential input components in the source code. In the fol-
lowing we discuss registers—general purpose and I/O—however,
the principle also applies to other data elements. We scanned the
source code for these instructions:

• Arithmetic and Logic Instructions: ADD, ADC, ADIW, SUB,
SUBI, SBC, SBCI, SBIW, AND, ANDI, OR, ORI, EOR, COM,
NEG, SBR, CBR, INC, DEC, TST, CLR, SER.

• Data Transfer Instructions: MOV, MOVW, LDI, LD, LDD,
LDS, LPM, IN, SBI, CBI.

• Bit and Bit-Test Instructions: LSL, LSR, ROL, ROR, ASR,
SWAP.

Figure 4 shows the result of our frequency analysis for the
general purpose registers and the I/O registers in the ADCApp.
Because of space concerns, the figure only shows registers with
at last 1.2 percent frequency in the scanned instructions. Register
24 appears most often in the source followed by registers 25, 30,
31, 28 etc. The microcontroller accesses I/O registers via memory
addresses. The most frequently used ones are the status register at
location 0x3f, the SP low at location 0x3d followed by SP high 0x3e.
Using our proposed algorithm for the selector function, we will
consider general purpose and I/O registers our input components
in this order. However, does this affect the number of false input
duplicates and how effective is it?

Figure 5 shows the effect of including more most-frequently
used general purpose registers in the selector function for all three
applications. The x-axis shows how many registers are included
in the selector function. The y-axis shows the ratio of false input
duplicates to the total measure number of interrupts. A value of
y=5 means that using the present configuration of the selector
function, 5 percent of the recorded interrupts resulted in false input
duplicates.

The initial selector function includes the three most frequently
used I/O registers—SP low, SP high, and SREG—and the return
address. In the figures at value x=0, the selector function picks
only these three data elements as input components. At value x=1,
the selector function picks the original three data elements and
the most-frequently used register. In the case of the ADCApp, the
selector function includes at value x=1 the SP, SREG, RA, and R24.
At value x=2, this function then also includes R25.
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Figure 4. Frequently used registers in the ADCApp.

The figures show a dramatic increase in the quality of the selec-
tor function with only a few registers. In ADCApp with only three
more registers—namely R24, R25, and R30—we cut the number
of false input duplicates essentially to zero. In FuncsHeap we only
need one more register to reduce the number of false input dupli-
cates to a few percent.

Yet, including general-purpose registers alone does not make a
good selector function. The results for FuncsHeapWithoutLoop in
Figure 5 show that register selection can have limited impact in
programs. The drop in the number of false input duplicates is still
significant—after all it’s 50 percent with only using half the register
set—yet, it is not as dramatic as in the other two applications.

The solution for this is to include more I/O registers. If we
include the I/O registers such as the TIFR, PINB, TCNT1L, and
TCNT1H to the selector function in FuncsHeapWithoutLoop, then
the number of false input duplicates will decrease to zero.

5.2 Hash function
Our algorithm allows developers to use any hashing function with-
out funnels and characteristics. Yet, we were curious how different
hash algorithms perform in our evaluation. We ran the experiments
with the following hash functions and compared it to our proposed
round robin hashing:

• Modular Hashing: This hash function simply applies the mod-
ulo operation in the key.

• Two Hash Function based on Modulo: This hash function
combines two hash functions to produce the final fingerprint.
It is a variation from the algorithm presented in (London 1999).

• Bob Jenkin’s Hash Function: An alternative to modular hash-
ing is the hash function adapted from the byte-by-byte Bob
Jenkis’ implementation (Jenkins 1997).
If you need less than 32 bits, use a bitmask. For example, if you
need only 16 bits, do h = (h & hashmask(16)). In which case,
the hash table should have hashsize(16) elements.

• Multiplicative Hashing: An alternative of multiplicative hash-
ing originally proposed by Knuth (Knuth 1997) was used.
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Figure 5. Contribution of most-frequently used general-purpose
register to reducing false input duplicates in ADCapp, FuncsHeap,
and FuncsHeapWithoutLoop.

We also consider our form of round-robin hashing;

• Round Robin: The round-robin combined hash function uses
all four hash functions mentioned before in a round-robin fash-
ion. Markers in the code together with markers in the execution
context specify which hash function to be used.

We recorded more than 10,000 interrupts for each application
and computed the number of fingerprint duplicates—fp.ra∗ =
fp′.ra∗ ∧ fp.f∗ = fp′.f∗ for two separate interrupts. The hy-
pothesis is that there is no significant difference between different
hash functions as long as each hash function has good properties.
Figure 6 shows the results of this comparison. The x-axis shows
the width of the hashing portion f∗. The y-axis shows the median
number of collisions per return address—technically the median of
the medians of the hash set with each RA prefix. We compared two
scenarios: (a) using an optimal selector function that always creates
unique input components and (b) a non-optimal selector function.
We can observe the following from this data:

• Individual hash functions differ little. In both cases, the op-
timal selector function and the non-optimal one, single hash
function perform about equally well. The two bundles of
lines—one for each case—stand out in Figure 6. It therefore
virtually makes no difference which of the single hash function
is used for a system.

• Combined hash functions work very well. The outstanding
result in the figure is our form of round-robin hashing. When
using a non-optimal selector function, this type of hashing per-
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Figure 6. Comparison of effectivness of hashing algorithms.

forms three times better than single hash functions. We describe
in Section 6 the reason for this.

• Combined hash functions can compensate for poor selec-
tor functions. Using an optimal selector function yields ex-
cellent results. The number of collisions reaches almost zero
with already a low bit width, and it surpasses the non-optimal
one by two orders of magnitude. But, round-robin hashing can
compensate for non-optimal selector functions. Figure 6 shows
that round-robin hashing with the non-optimal selector function
comes close to the results with the optimal one—especially with
low bit widths.

5.3 RA/H Ratio
In Section 4.3, we speculated on the effects of the ratio between
the width of the ra∗ and the f∗ portion and their relation. We
now examine the observed data and see whether our model works
correctly.

We used the Avrora simulator (Titzer 2005) for replaying the
execution and computing the data on the RA/H Ratio. In each pro-
gram instruction the algorithm shown below was executed. First,
the fingerprint of the actual instruction is calculated and the coun-
ters’ value are saved. If the fingerprint is in the Database, the algo-
rithm will look for all hash values with the same ra∗ prefix; that
is, all data that have the same fingerprint. Then, if the actual in-
struction’s ra∗ and f∗ are equal to the ra∗ and f∗ saved in the
DB, a fingerprint hit will be detected. If the complete RA is the
same we found a false loop positive, otherwise we found a false
RA positive. If the ra∗ and f∗ differ, then the algorithm will com-
pare the complete execution context (all general-purpose registers,
I/O registers and SRAM memory) and if it matches, it will count as
a correct fingerprint hit and the original counter values are restored
to the previous values. Otherwise, a false input duplicate or hash
collision has been detected.

We first experimented with different widths of ra∗. The width
of ra∗ influences how many addresses of the address space map
use the same postfix of r∗. It therefore should directly influence
the number of false RA positives observed at replay time. Figure 7
shows the results and clearly supports our hypothesis. The x-axis
shows the number of bits of a 16 bit fingerprint devoted to the return
address. For example, a value of 4 means, that the first four bits
of the fingerprint store the four least significant bits of the return

address. The y-axis shows the number of false RA positives as
percent of the worst value achieved. So a value of 0.4 means that
the number of false RA positives has been reduced by 60 percent
compared to the worst possible case. Note that each instruction has
two bytes, so the program counter address always increase by two.
The results therefore show no difference between using zero or one
bit for ra∗. Already using a few instructionssignificantly decrease
the number of false RA positives as seems to follow a trend of 1

x
.

fingerprint = calculate_fingerprint ( ) ;

save_original_counters ( ) ;

i f ( fingerprint is in DB ) {
f o r ( all data which have the same fingerprint ) {

i f ( RA∗ == saved . RA∗ && f∗ == saved . f∗) {
counter_fp_hit++;
i f ( FULL_RA == saved . FULL_RA ) {

counter_false_loop_positives++;
} e l s e {

counter_false_RA_positives++;
}

} e l s e {
i f ( context executions are different ) {

i f ( selector function is the same ) {
counter_false_input_duplicate++;

} e l s e {
counter_hash_collisions++;

}
} e l s e {

counter_fp_hit_correct++;
restore_original_counters ( ) ;

}
}

}
}

Number of bits for ra
∗

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FuncsHeapWO
FuncsHeap

Decline of False RA Positives

F
al

se
R

A
P
os

it
iv

es
[%

]

Figure 7. As the available bits for ra∗ increases, the false RA
positives decrease.

We then experimented with different widths of f∗. The width of
f∗ influences the available space for different recorded interrupts
that map to the same ra∗ portion. The smaller the width of f∗, the
more hash collisions should occur at run time. Figure 8 shows the
results and clearly corroborates our hypothesis. ADCApp was left
out due to computational complexity problems in the simulation
of the ADC capturing loop and the data aggregation. The x-axis
shows the number of bits of a 16bit fingerprint devoted to the hash
portion of the fingerprint. A value of 10 means, that the hashing
function h returns a 10 bit value. The y-axis shows the median
of the number of stored fingerprints per hash value as percent of
the worst-case number. As the number of bits of f∗ increases, the
number of entries per hash value decreases non-linearly following



1
x

. Note that Bob Jenkin’s hashing produces consistently 0 or 1 for
low has bit widths, so we started with a width of three bits.
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Figure 8. As the available bits for f∗ increases, the duplicates
decrease.

The observed clear and consistent decrease is surprising. The
reason is that, the larger the width for f∗, the smaller the available
width for ra∗. More fingerprints will have the same prefix and
therefore more fingerprints will be stored in the same hash space
of f∗. For example, thinking intuitively, if one records 10,000
fingerprints, with a ra∗ width of three, then each the three hash
spaces of f∗ will have to store about 3,333 fingerprints each. If one
duplicates the ra∗ portion, then the hash spaces will only have to
store about 1,600 fingerprints.

One cannot intuitively reason about this situation, because RA
clustering breaks the assumption that return addresses are evenly
distributed across recorded interrupts. This explains the surprise.
The space increase for hash values achieved by growing widths of
f∗ offsets the described partitioning.

Figure 9 shows the design space for the fingerprint in the Func-
sHeapWithoutLoop application. The other applications have a sim-
ilar design space. The valley describes the optimal partitioning be-
tween the ra∗ and f∗ portion of the fingerprint. The differences
among the individual configurations in the middle is negligible,
so as a rule of thumb, a developer should divide the available bits
evenly between ra∗ and f∗.
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Figure 9. As the available bits for ra∗ increases, the false RA
positives decrease.

6. Discussion
During our work, we observed a number of interesting facts. The
clustering of return addresses as described in Section 3 has pro-
found impact on how well the tracing mechanism works. Here we
describe other observations:
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Figure 10. Poor use of the hashing space of f∗.

• Uneven use of hash space. Hash functions without funnels
and characteristics still unevenly use the hash space. Figure 10
shows this fact. The x-axis lists hash values for 16 bit hash-
ing. The y-axis shows the number of hash collisions for each
hash value. The upper part shows the data for the funcsHeap-
WithLoopFP application with Bob Jenkins hashing. It shows a
good even distribution except a few outliers. Still it uses only
0.7 percent of the available hash space after recording 10.000
fingerprints. The lower part shows the same result for the func-
sHeapWithoutLoop application. It clearly shows that only very
few hash values are used—only 0.05 percent—and a high num-
ber of collisions.

• Round robin hashing works. Since each hash function only
uses a very limited portion of the hash space, using multiple
hash function, as round robin hashing does, permits better use
of the available space with minimal collisions among the hash
functions. Yet the developer has to consider the program mem-
ory and execution time overhead (one conditional branch) of
using multiple hash functions. Table 1 shows the overhead of
the individual hash functions. Applying round robin then adds
the overhead of the individual ones plus one additional switch
statement.

Hash Section
Function .text .data .bss
Modular 4 0 0
2 Modular 92 0 0
Bob Jenkis 216 0 0
Multiplicative 126 0 0

Table 1. Hash functions memory consumption (in bytes).

• Cancellation among input components. Related and also our
work sum up all input components before applying the hash
function. Although the frequency-based selection algorithm



minimizes false input duplicates, the hashing mechanism par-
tially cancels this. This results in an increased number of hash
collisions although a good selector function. Using message di-
gests might eliminate this, however, their run-time overhead is
large for microcontroller and deeply embedded applications.

• Input components restrict hash function choice. The devel-
oper must be careful with simple hash functions such as modu-
lar hashing. Even if the hash space is large, the maximum value
achievable by summing the input components might be too low.
For example when using twenty 8-bit values as input compo-
nents can maximally add up to 5,120. Modular hashing with a
bit width of 16 bits is unsuited for this selector function.

• Linear increase of hash collisions. Collisions in the hash por-
tion grow linearly with the number of recorded fingerprints.
For example in the ADCApp, we captured the complete system
state of 10,000 interrupts and calculated a function describing
collisions in h∗. Surprisingly, this relationship is nearly linear
and we can describe it by the line y = 0.75x − 1.51 with neg-
ligible error. This means that the ratio of hash collisions to the
total number of recorded fingerprints stays the same regardless
whether we record for a short or a long time.

Our heuristic and approach works specifically in the context of
microcontroller-based systems with a good number of processor
registers. These types of systems provide a rich execution context
with many register—general purpose and I/O ones—and usually
have tight resource constraints in memory and computation. The
general principle of the presented work also applies to other sys-
tems, however, some of the arguments might not be as strong as
they are in our case. For example, tracing interrupts on a plat-
form with a small execution context might provide enough com-
putational resources to capture the whole context. However, even
systems such as the typical Microchip 8-bit PIC microcontroller
which has essentially only one general-purpose register still benefit
from our approach, because they still have a large number of I/O
registers.

The tested applications are large programs as they fill the pro-
gram memory of the microcontrollers and are sufficiently complex
as our analysis also includes the operating systems on top of which
the programs run. However, applications running off external mem-
ory can be several magnitudes larger than the tested ones. The pre-
sented heuristic may not work well for these systems, because large
systems can include much code that is not executed frequently. In
this case, the frequency-based selection may choose input compo-
nents which are in the worst case invariant in the most-frequently
executed paths. We already indicated that we suggest using static
program analysis or profiling information, if the developer thinks
that the current application is a notorious outlier or has large por-
tions of code that are executed infrequently.

The insight of return address clustering also lead us the idea
of using a different hashing algorithm each time we record an in-
terrupt. This fights the problem of the non-uniform distribution of
return addresses, however, it is impossible to implement a round-
robin system like this. While the recording system is straightfor-
ward, the replay mechanism will fail. In the replay phase, we need
to check each line during the simulation whether an interrupt has
occurred. Assuming that this approach chooses a new hashing algo-
rithm each time we record an interrupt, we cannot tell in the general
case which hashing algorithm would be used at the current pro-
gram address if it recorded an interrupt. We could tell which hash-
ing algorithm is used, if we were to correctly recreate all interrupts
without a single false positive of false negative. Since we cannot
tell which hashing algorithms was used, the replay algorithm will
use all of them. This will increase the number of false positives

and false negatives to the point where the approach performs worse
than using a single hashing algorithm.

7. Conclusions
Debugging interrupt-driven software is hard and takes a consider-
able amount of time during the software development process. Tra-
ditional methods are often inapplicable, because interrupts occur
independent of the control flow. System tracing is a possible option
for debugging the control flow with a number of advantages.

In this work, we investigated the recording part of a capture/re-
play mechanism and proposed heuristics for its steps. Frequency-
based selection for input components proved to be an effective but
simple to implement mechanism to lower the number of false input
duplicates. In some cases the algorithm delivers similar results as
picking all registers with only a few registers which translates into
a speedup of n

32
for our hardware platform with n as the number

of selected registers, and about an 800 percent increase compared
to related work. Round-robin hashing proved to be superior to reg-
ular hashing algorithms with non-optimal selector functions. In the
measured case, it was about three times more efficient. And finally,
our experiments with the RA/H ratio assist in allocating bits to the
return address portion and the hash portion of the fingerprint.

With these encouraging results, there is still lots of room for im-
provement. Our frequency-based selection algorithm ignore control
flow and we expect that program analysis can enhance our algo-
rithm. The use of message digests might solve the problem of un-
even use of hash spaces, however, one has to be careful as they incur
considerable overhead too high for deeply embedded systems. Yet,
work on message digests with short bit width and short execution
time might improve the results.
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