Non-Intrusive Program Tracing and Debugging of Deployed
Embedded Systems Through Side-Channel Analysis

Carlos Moreno

University of Waterloo
cmoreno@uwaterloo.ca

Abstract

One of the hardest aspects of embedded software development is
that of debugging, especially when faulty behavior is observed at
the production or deployment stage. Non-intrusive observation of
the system’s behavior is often insufficient to infer the cause of the
problem and identify and fix the bug. In this work, we present a
novel approach for non-intrusive program tracing aimed at assist-
ing developers in the task of debugging embedded systems at de-
ployment or production stage, where standard debugging tools are
usually no longer available. The technique is rooted in cryptogra-
phy, in particular the area of side-channel attacks. Our proposed
technique expands the scope of these cryptographic techniques so
that we recover the sequence of operations from power consump-
tion observations (power traces). To this end, we use digital signal
processing techniques (in particular, spectral analysis) combined
with pattern recognition techniques to determine blocks of source
code being executed given the observed power trace. One of the
important highlights of our contribution is the fact that the system
works on a standard PC, capturing the power traces through the
recording input of the sound card. Experimental results are pre-
sented and confirm that the approach is viable.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Tracing

General Terms Theory, Algorithms, Experimentation

Keywords Embedded systems; debugging; tracing; side-channel
analysis; simple power analysis

1. Introduction

Debugging is one of the hardest aspects of embedded software de-
velopment. The task is especially hard when the faulty behavior is
observed at the production or deployment stage, when the software
no longer has any auxiliary components dedicated to assist in the
debugging task [3]. For systems at this stage of the development
cycle, non-intrusive observation of the system’s behavior is likely
the only available technique — developers are no longer allowed to
modify the source code, or even re-compile to include or activate
the debugging tools. Moreover, if we need to restart the device to
enable any available debugging techniques, we may not be able to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’13, June 20-21, 2013, Seattle, Washington, USA.

Copyright © 2013 ACM 978-1-4503-2085-6/13/06. .. $15.00

Sebastian Fischmeister

University of Waterloo
sfischme®@uwaterloo.ca

M. Anwar Hasan

University of Waterloo
ahasan@uwaterloo.ca

reproduce the faulty behavior that the device was exhibiting. With-
out these debugging tools usually available in earlier phases of de-
velopment, developers may be limited to non-intrusive observation,
which often provides insufficient information to infer the cause of
the problem and identify and fix the bug.

In this work, we present a novel approach for non-intrusive de-
bugging of deployed embedded systems. The system can be ob-
served and an output indicating the sequence of executed code is
produced, without having to modify anything in the target system
or even restart it. The technique is rooted in cryptography, in partic-
ular the area of side-channel attacks [11, 12]. These types of cryp-
tographic attacks take advantage of the relationship between the
instructions that a processor is executing and the data it is working
with, and observable side-effects such as timing of computations
(timing attacks), power consumption (power analysis), or electro-
magnetic emissions (EM analysis) to obtain the secret data (typ-
ically an encryption key). The techniques, as they exist, are not
directly applicable to the debugging of embedded software, since
they focus on obtaining specific pieces of secret data embedded in
the device (and inaccessible through “legitimate” means), and they
typically require interaction and direct control over what the target
device is executing.

On the other hand, the goal when tracing and debugging a
deployed embedded system is to analyze an operating device for
which we have observed a faulty behavior, and obtain information
allowing us to identify and fix the bug. It may be essential that we
allow the device to continue its operation without restarting it or in
any way exerting control over what the device is doing; otherwise,
we could lead the device to a state where we may not be able to
reproduce the faulty behavior.

As an additional aspect in terms of motivation, this tracing sys-
tem could be used for monitoring as an intrusion detection system
(IDS) [14]. In the wake of threats like Stuxnet [13], one should
consider adapting tools like IDSs, classically viewed as applicable
to servers and networks, to embedded systems as well. Unlike a
software-based IDS embedded in the device, our approach could
lead to a tamper-proof IDS, given that the monitoring system is
physically independent of the device and the software running in it;
thus, any malware that tampers with the functionality of the device
will not be able to tamper with the IDS and as a consequence, any
anomaly in the device’s behavior will most likely be detected.

Our proposed technique focuses on power consumption (though
the underlying techniques are in principle applicable to EM emis-
sions). A current sensing shunt resistor is placed in series with the
Power-In signal going to the Microcontroller Unit (MCU),' pro-
ducing a voltage proportional to the current being consumed. The

! Though the technique is applicable to both CPUs and MCUs, we use
MCU throughout the paper, to simplify the text, and also since it is the
more likely target for our technique.

resistor is selected to produce a voltage in the range of a few mil-
livolts, thus not affecting the operation of the device. Our tech-
nique expands the scope of the cryptographic techniques so that
we recover the sequence of operations executed by a processor, as
opposed to simply one piece of data accessed during a particular
operation of the device. To this end, we use digital signal process-
ing techniques (in particular, spectral analysis) to extract features
of the signal (the power trace) that allow us to match sections of
the power trace against fragments of the source code through the
use of statistical pattern recognition techniques [21]. It is reason-
ably likely that this information would be valuable for the purpose
of identifying and fixing the bug. We observe that in the context
of embedded systems, this relationship between operations being
executed and power consumption has been used for the purpose
of estimating or minimizing power consumption, obtaining power
consumption as a function of the executed instructions. Going in
the other direction may be seen as a far bigger challenge, for at least
two reasons: (1) the operation being executed is not uniquely deter-
mined as a function of the power consumption; thus, information
about the progression of power consumption through an interval
of time may be needed, combined with statistical processing; and
(2) we need to get around the “polluting” effect of the data the pro-
cessor is working with (i.e., the same operation with different data
produces a different amount of power consumption) and the mea-
surement noise.

One of the important highlights of our contribution is the fact
that the system works on a standard personal computer (PC), cap-
turing the power traces through the recording input of the sound
card — side-channel analysis techniques usually rely on digital os-
cilloscopes or other expensive and bulky pieces of equipment.
A standard, reasonably high-quality sound card (24-bits, 192kHz
sampling rate, nowadays available at prices below $200) suffices to
make the system work on a wide range of microprocessors and mi-
crocontroller units. Given the typical computing power of today’s
mainstream PCs, with this setup, we claim that on-the-fly process-
ing is within reach for a wide range of target devices. Of course,
the technique is suitable for use with a digital oscilloscope; in-
deed, for processors with high clock frequencies, higher sampling
rates will be required for the system to work, most likely without
on-the-fly processing, depending on the clock frequency and archi-
tectural aspects of the target device such as pipeline depth, memory
management unit (MMU), and cache memory [9].

Experimental results confirm the validity of our technique
and its practical aspects: we used an Atmel MCU, AVR At-
mega2560 [1] as the target device (8-bit MCU running at 1MHz)
and we included a subset of the MiBench suite [6] as a set of tasks
representative of typical embedded software (at least typical for
certain applications areas). The technique was implemented on a
mainstream PC with an HT Omega Claro+ sound card [10], which
at the time of purchase the cost was around $150, and as the re-
sults show, the setup is viable for on-the-fly processing obtaining
accurate results.

The remaining of this paper is organized as follows: in Sec-
tion 2 we briefly review the notions from side-channel analysis as
well as the digital signal processing techniques and the statistical
pattern recognition techniques used. Section 3 presents our pro-
posed technique. Section 4 describes the experimental setup used
to verify the validity and applicability of our approach, with Sec-
tion 5 presenting the results. A brief discussion, future work and
concluding remarks follow, in sections 6 and 7.

2. Background

Our work draws upon background from different areas: side-
channel analysis, pattern recognition, and digital signal process-

ing. We briefly review some of the basic notions and mathematical
background from these areas.

2.1 Side-Channel Attacks and Simple Power Analysis

Side-channel analysis plays an important role in the area of em-
bedded systems security. Mobile, hand-held, and many other types
of embedded devices increasingly make use of cryptographic tech-
niques, in particular public-key cryptography and elliptic-curve
cryptography (ECC), where exponentiation with large secret expo-
nents is one of the central operations on which the security of the
system relies (we refer the reader to [16] or [8] for more details).

Paul Kocher pioneered the field of side-channel analysis, show-
ing that even though the cryptographic algorithms are secure
from a mathematical standpoint, implementations of such algo-
rithms may be vulnerable to attacks that use side-effects of the
computation — side-effects that can be observed by an attacker
with physical access to the device [11, 12].

Of interest to us is power analysis, in particular simple power
analysis (SPA), where the relationship between what the processor
is executing at a given time and the power consumption at that time
is exploited to recover the secret exponent with a single power trace
during the execution of the exponentiation. Many countermeasures,
as well as different encryption techniques and different attacks
exist; we omit a more detailed description since this is beyond
the scope of this work. The interested reader may consult [18]
for a more in-depth description as well as several of the existing
countermeasures.

We borrow and expand upon this idea of using the relationship
between computation and power consumption to determine what
the processor is doing given an observation of power consumption
(a power trace). Our technique is more general (and thus, requires
additional, novel approaches to processing the power trace) in that
side-channel attacks focus on recovering specific pieces of data,
and some of the more advanced side-channel attack techniques
require that the attacker exert control over what the device is doing.
In our case, however, it is essential that we observe what a faulty
device is doing without disrupting it, to avoid the possibility of
leading the device to a state where we are unable to reproduce the
faulty behavior.

Though template attacks [2] use a technique that is somewhat
closer to our approach, there is still a fundamental difference in
that they use pattern matching for the noise characteristics, relying
on the diffusion property of encryption techniques, making it a
cryptography-specific approach.

2.2 Statistical Pattern Recognition

At the heart of our proposed technique are elements from the field
of pattern recognition, since our goal is to classify a given segment
of execution as an instance of one of the possible fragments of
source code according to a database, given noisy observations that
in principle provide enough statistical information to determine the
most likely fragment of code that produced such observation [21].
We notice that the set of all possible fragments of code being
executed under normal conditions is known with certainty — since
we use our technique for tracing and debugging, we can safely
assume that the source will be accessible.

Since we do not count on an analytic model for the probabil-
ity distribution, we can resort to techniques based on databases of
training samples, for which the classification is known with cer-
tainty. These training samples are in principle a set of values drawn
from the probability distribution for the process in question. Thus,
they should be representative of the probability distribution of the
process. The task of the classification system is described as fol-
lows: Let X be a random variable corresponding to a feature vec-
tor with features from a given sample associated with an unknown

class C from a set of) possible classes C = {C1,C3, --- ,Cq}.
The task of the pattern recognition system is that of determining
the class C' to which the feature vector X corresponds with highest
a posteriori probability:

C = arg max {Pr{Cy [X}} M

Among the common techniques used to achieve this goal are
Linear Discriminant Functions (LDF) and Nearest Neighbors.
With LDFs, the training phase of the system collects a database
of S labelled samples {X1, X2, ,Xs} of feature vectors
(the label being the class C' to which the sample is known to cor-
respond). For each class Cj, we compute the sample average or
centroid C, as

= 1
Cr = S Z X; 2
X; €Cy,
where S, is the number of training samples labelled as C'.

In the detection or classification phase, a given feature vector X
is associated to the class C' that corresponds to the nearest centroid
(usually Euclidean distance in the multi-dimensional feature space
is used):

C = argcrilienc{ HX *ékH } 3)

The LDF corresponds to a hyperplane orthogonal to the line be-
tween the two centroids and intersecting that line at the point
equidistant from the centroids, providing an efficient implementa-
tion mechanism.

For the Nearest Neighbor (NN) rule, the classification phase
associates a given feature vector X to the class of its nearest
neighbor among all training samples:

C = C with I:argliniigS{HX—XiH} 4

The k-Nearest Neighbors (k-NN) rule [21] provides a higher
level of robustness with respect to noise in the measured features.
Given a feature vector X, we obtain the k£ nearest neighbors among
all training samples, and the classification is done by majority vote
among the k labels of these nearest neighbors. That is, if the &k

nearest training samples have labels {C,,, Cp,, -+- ,Chr, }, then
feature vector X is associated to class C' given by
k
C=C; with I =argmax{ » 1)

2.3 Spectral Analysis of Digital Signals

One of the fundamental concepts when applying spectral analysis
to digital signals is that of the Discrete Fourier Transform (DFT).
Given a discrete-time signal x of finite duration, represented by a
sequence of N real values x = {zo,z1, -+ ,Z5_, . its DFT
X [19] is given by the sequence of N complex values X =

{Xo, X1, -+ ,Xn_1}, where each X}, is given by
N-1 .
Xy = Z Tpe VN 6)
n=0
where j denotes the imaginary unit? (i.e., j = —1)

A straightforward implementation clearly takes O (N 2) time
to compute the DFT of a sequence of N values. In practice,
Fast Fourier Transform (FFT) is normally used, being an efficient
algorithm to compute the DFT. FFT exploits the symmetry in the

2 We use the standard “electrical engineering” notation j for the imaginary
unit, to avoid the confusion of i with the standard symbol used to denote
electrical current or intensity.

DFT to implement an in-place divide-and-conquer [4] algorithm
and obtain the DFT in O (N log N) time.

For our system, we used the libfftw [S] implementation, as it
is, to the best of our knowledge, a correct and very efficient FFT
implementation.

3. Ouwur Proposed Technique

As briefly described in Section 1, our proposed technique is cen-
tered around the idea of non-intrusively measuring power con-
sumption as a function of time (i.e., capturing power traces), and
use the relationship between what the processor is executing and
the power consumption, combined with statistical processing to de-
termine the sequence of instructions that were executed, thus as-
sisting in the debugging process. To this end, a current-sensing
shunt resistor is placed in series with the Power-In line going to the
MCU, so that a voltage proportional to the power consumption is
produced. This shunt resistor is selected to produce a voltage in the
order of a few millivolts, thus not disrupting the functionality of
the MCU. This voltage is then captured through the Line input of a
sound card, as shown in Figure 1.

%+V s

Line In Sound i

[Card '

é |
==

PC Running
the System

Figure 1. Simplified Diagram of our System.

The technique is centered around the idea of identifying frag-
ments of code, corresponding to segments of the power trace.
These fragments need to be sufficiently long so that: (1) there is
a large enough amount of actions happening at the circuitry level to
create a distinctive profile of power consumption. As an example,
assigning a variable is unlikely to be distinguishable from any other
operation involving memory, or even from a portion of some other
action, such as fetching an instruction, or the additional memory ac-
cess for instructions with immediate operands; and (2) so that the
signal (in our setup, produced by an MCU running at IMHz) can
be sampled by a sound card at lower sampling frequency (in our
setup, the sampling rate was 96kHz) and be able to extract mean-
ingful information from it.

In this work, which is the initial phase of a longer project
(we discuss future work in Section 6), we decided to use whole
functions as the fragments of code to be considered (with only one
exception, as will be discussed in Section 4 when describing our
experimental setup). This decision was somewhat ad hoc, mainly
related to simplifying the system in the context of a study of the
feasibility of the technique. We do discuss an alternative approach
and its potential benefits in Section 6.

The pattern recognition system then extracts features from these
segments of the power trace, and uses one of the classification tech-
niques described in Section 2.2. We tried and evaluated several
classification techniques: nearest centroid techniques using LDFs
and nearest neighbors techniques. We observed a much better clas-
sification performance when using the k-NN technique. We believe
that the main factor is the fact that a function can do alternative
things depending on the input data— and in general, a given frag-
ment of code could do different things depending on the data it is
working with. This leads to different execution times for different

instances of the same function, and in general, it may lead to fea-
ture vectors that tend to be spread in the feature space, making the
technique based on centroids less effective. For the k-NN rule, we
tried values between 3 and 100 for k, obtaining best results with
k = 5 for individual classification and k£ = 21 for continuous clas-
sification (we discuss this distinction in Section 4 as part of the
description of our experimental setup). Notice that the use of tech-
niques such as cross-validation [21] was not really necessary in our
case, since additionally to the training set, we have the test set to
evaluate the performance, and for that set the correct classification
for each sample is known a priori.

One of the difficulties in our scenario is that the processing
for the classification needs to be done in a continuous way, and it
is the system’s responsibility to achieve synchronization with the
fragments of code to detect. That is, the system is not given a
power trace with the assurance that it is the power trace for one
of the fragments of code. Instead, the system is given a single
power trace that extends indefinitely (in any case, as long as the
system is running), and it has to apply the pattern recognition
technique for variable starting position and length of the sequences
to classify. As an example to illustrate the difficulties arising from
this constraint, we can not use the length of the power trace as one
of the features to extract—if we could, then this would provide a
very relevant piece of information that even alone would give a very
high probability of correct classification (since we could always
select fragments of code that execute with distinct durations).

The starting point of the fragment is mainly a problem when
the system starts up and has to synchronize to the execution; after
that, then having recognized/classified a given section of the power
trace provides information of where that fragment ends, so the
starting point for the next item to be classified is then known, even
though adjustments may be necessary to compensate for “noisy”
or incorrect outcomes from the previous segments (e.g., a segment
that was in reality L samples long may have been detected as
being L’ samples long). This will be discussed in more detail in
Section 4. The system has to try various lengths and see which one
gives the closest match with training samples from the database.

When deciding what parameters to use as features to be ex-
tracted from the entities (in our case, the power traces), there is of-
ten a bit of heuristics and intuition involved, especially when there
is no analytic or otherwise simple description of a PDF with “nice”
characteristics. To evaluate how good this feature set is, the rate of
correct classifications does provide a quantitative measure. In par-
ticular, it does implicitly account for the distance between elements
of different classes and how spread the PDF is. Misclassifications
occur when elements are not far apart given the spread nature of the
PDF; thus, the rate of correct classifications tells us how good this
feature set is for the purpose of the classification process.

In our case, we decided to use spectral information — logarith-
mic magnitude and phase — as the feature vector. The intuition on
why spectral information may give useful and robust information
to identify the power trace as corresponding to one of the given
fragments of code is based mainly on the following two aspects:

e Getting around issues of alignment — spectral contents are sim-
ilar even when the signal or portions of the signal are shifted.
Thus, for different instances of the same function, prominent
portions of the code may still be common to all other traces, but
located at different points in the trace (as the result of condi-
tional execution affected by the input data).

Variations due to “disrupting” factors in the system (such as
noise or artefacts that occur due to the mechanism of leakage
to the side-channel or the measurement) tend to produce higher
deviations in the signal than in its spectrum, making the latter a
more robust tool to identify a given power trace. In any case,

the deviations in the spectrum tend to have simpler patterns,
making it easier to extract the identifying features from spectral
information than directly from the signal.

One additional difficulty, for which we resorted to a heuristic
approach as our adopted solution, comes from the fact that we use
the DFT of the trace directly as the feature vector; that is, each of
the N elements of the DFT (more precisely, its complex logarithm,
which directly provides logarithmic magnitude and phase) corre-
sponds to one of the coordinates (or one of the dimensions) in the
N-dimensional feature space. However, since different traces have
different lengths, then we do not have a fixed value of N. That is,
computing and comparing Euclidean distances in the feature space
poses a challenge. This was an additional issue that contributed
to our decision to use k-NN instead of the nearest centroid classi-
fication technique, which is not directly suitable for variable-size
fragments. We attempted to solve this by computing spectra at a
fixed size through zero-padding to obtain an interpolated version
of the spectrum at this higher resolution; this proved to be com-
putationally expensive, in addition to exhibiting poor performance
compared to the k-NN rule, as already mentioned.

Our heuristic includes two aspects: First, when given a trace
and a starting point, we try all of the lengths present in the training
database. That is, when looking for the nearest neighbors among
the training samples, for each sample from the database, we take
its length and consider the segment of the trace that matches that
length, so that the distance can be evaluated. This is also consistent
with the idea that we need to try different lengths, since we are
only given the starting point, but the system needs to determine the
length of the fragment as part of the task of identifying it.

The second aspect is that, given the detail mentioned above, it is
clear that comparing distances for pairs of traces of one length with
distances for pairs of traces of a different length becomes an issue.
To get around this, we used the notion of a normalized distance,
where we normalize with respect to the number of dimensions. As
an example, if we have two tridimensional vectors, say

ur = (1, T2, x3)

(1’1—|—(5, .Tg—f—(s, 3;‘3+6)

uz

then we get?
2 2
‘ll2 — ll]_| = 36

Our intuition is that for two, say, 5-dimensional vectors

vi = (y1, Y2, Y3, Y4, Y5)
va = (W48, y2+6, ys+9, ya+ 0, ys +9)

the distance, in the context of comparing which of the two pairs
are closer, should be the same, since each of the coordinates, cor-
responding to one descriptive feature, are equally apart. How-
ever, a direct Euclidean distance computation for this case gives
us |vg — v1|2 =542

Thus, to avoid the nearest neighbors selection to be biased
towards the shorter traces, we need to normalize by computing the
square distance per dimension. Also related to this issue of traces
with different lengths: a longer trace may be at a disadvantage
if sub-sections of it provide a sufficiently good match to other,
shorter traces. We observed that this was the case for the set
of MiBench functions that we used. Two different approaches
were considered: (1) using an adjustment factor to favor longer
traces when otherwise approximately equally close matches; and
(2) using an adjustment factor to favor matches at the “nominal”
position as determined by the classification at the previous iteration.
We tried both approaches, and (2) had the severe adverse effect

3 We use square distance since this is the common approach used when
implementing NN rules.

of reducing the ability to maintain synchronization with the trace,
especially resynchronizing after a misclassification.

Putting all the pieces together, we define our distance metric as
follows: given a trace x of length N, with DFT X, the associated
feature vector is given by

X = {Log Ay, Log X1, --- ,Log Xn_1} (@)

where Log(-) denotes the complex logarithm function. With this,
the distance between N-dimensional feature vectors X and Y is
given by
;] Nol
X-Y| = = X, — Y ? 8
l l N kZ:O | Xp — Yi| (8)
where X, and Y} are the entries in the feature vectors, correspond-
ing to the complex log of the DFT entries.

4. Experimental Setup

This phase of our work consists of two experiments. In the first ex-
periment we evaluate the effectiveness of the pattern recognition
system by classifying power traces of known fragments of code
and determining the success rate or precision (the fraction of power
traces that were classified correctly). That is, we test detection of
the various fragments of code in isolation, and evaluate the perfor-
mance of the classification system. To isolate the trace correspond-
ing to the exact time interval of execution, we use markers which
are actions known to have high power consumption and thus pro-
duce a prominent pulse in the trace. This is one of many possible
approaches, and we chose it for our experiments due to its simplic-
ity. Given our STK600 setup, we used the LEDs for this purpose.
Figure 2 illustrates these steps.*

Experiment 1

100 times:
- Draw random value x
- Call F(x) preceded by marker (1 ms pulse)

!

For each of the 100 executions:
- Capture the power traces and extract the feature vectors
- Run the classification system supplying the feature vector

!

Compute and output number of instances
where the classifier output Fy

Figure 2. Experiment 1 — Classifier Performance.

In the second experiment, we execute a sequence of function
calls (each function being one of the fragments of code for the
pattern recognition system) and have the system determine the
sequence of functions that was executed, with the power trace as its
only input. Figure 3 shows the details. The first experiment tests
the building blocks, the basic operations of the system, while the
second experiment aims at modeling the operation of an eventual
practical implementation of our proposed technique.

For the second experiment, the classification system tries adjust-
ing the starting position to help resynchronizing in the cases where
an incorrect classification occurs. That is, given a classification at
iteration n, the starting position for the trace segment at iteration
n + 1 is determined by the length of the classified trace. However,
if the classification at iteration n was incorrect, the starting position
for iteration n 4+ 1 may be incorrect. Trying starting positions in an

4 For some of the functions, the input is a graph or a tree. For these cases,
we inserted random values in the data structure.

interval around this “nominal” starting position allows the system
to reestablish synchronization after a misclassification occurs. This
will be shown in Section 5.2, where we show the experimental re-
sults. For more details, the reader can consult [17] (Chapter 7 and
appendices, where source code for the classification programs is
shown).

Experiment 2

- Setup a sequence of randomly selected functions
- Call the sequence of functions, supplying a randomly chosen
value as argument for each function call in the sequence

Y

- Capture trace for the execution of the whole trace
- Set starting point for the call at the beginning of the trace

Starting point at
end of trace?

- Run the classification system with starting points in an
interval around “nominal” starting point of the trace.
- Starting point < End point of classified / identified segment

Figure 3. Experiment 2 — “Online” operation.

Notice that for continuous operation, the system could consider
the fact that the sequence of fragments is not arbitrary, and classi-
fication at a certain point can be narrowed down according to the
control-flow graph (CFG) obtained from the source code. In this
initial phase of the project, we did not include this aspect, and we
will discuss it more in detail in sections 5 and 6.

Both experiments rely on the training phase of the classification
system — thus, in this initial step we execute each of the functions
S. times, where S corresponds to the number of training samples
per class (per fragment of code to be detected); we decided to use
Sc = 1000 as a reasonably large number to be used as a starting
point (we present a more detailed discussion in the next section).
The fragments of code, denoted Fi (1 < k < |C]), are either
functions or fragments of a function, and for each call we supply
a randomly selected value as input argument for the function, as
illustrated in Figure 4. For Experiment 2, the training samples

Training Phase

M times:
- Draw random value x
- Call Fi(x) surrounded by markers (1 ms pulses)

- Capture the M traces
- For each of the M traces:
Store its feature vector in the database, labelled as F

Figure 4. Training Phase.

were not marked by surrounding them with pulses, but rather,
surrounding them with some other (randomly selected) function,
since this is how they would appear in the classification phase
when operating in continuous mode. We emphasize the detail that
these traces used for the training database are different from those
being identified/classified, since “fresh” random values are chosen
at every instance as parameter values — the fragments of code are

part of the same set of possible classes, but each instance of a
trace being classified is different from every trace in the training
database.

In a real-life application, this training step should consider, if
available, the probability distribution for the arguments to each
function. For example, if a given function receives as input pa-
rameter the measured temperature, we will draw values from a nor-
mal distribution with mean 25 °C and relatively small variance.’
For our experiments, we used uniformly distributed random vari-
ables in a reasonable range (the ranges were consistent between the
training phase and the classification phase). This does not take into
account the possibility of a function being called with unreasonable
parameters due to a defect in the software; however, one can easily
compensate for this aspect by including a small fraction of training
samples using parameter values outside the reasonable range.

The experiments required a target device and a host platform
to compile the programs and “flash” the target device, capture
and process the traces, and analyze the results. For the host plat-
form, we used an Ubuntu Linux system, with avr-gcc 4.3.5 and
avrdude 5.10. The target device was an Atmel AVR Atmega2560
MCU on an STK600 board [1], and we assembled a quick pro-
totype card to facilitate the connections—a snap-in connector to
place the shunt resistor so that different values can be easily tried
(in our case, a 10 €2 resistor produced voltage in the correct range),
pins to connect oscilloscope probes (for verification purposes, or
for future experiments using a digital oscilloscope), and an RCA
audio connector to easily connect to the input of the sound card.
Figure 5 shows a photograph of this simple prototype card. The

Figure 5. Prototype Card to Facilitate Connections.

red/black cable on the right, ending in a two-pin header connector
goes to the VTARGET connector on the STK600 board (so that
current to the MCU passes through), and the green connector on
the left is the RCA audio connector.

The sound card was an HT Omega Claro+ [10], and we used
Audacity [15] to record the power traces. Figure 6 shows a screen-
shot from one of the power traces in the training phase, showing
the two surrounding pulses.

File Edit View Transport Tracks Generate Effect Analyze Help

=g [t 1 0
n “) ») ® | L=10 Flar— Y (£ L7
[P ok v 280 pu 200
ALSA 2| 4| default 2| 8| default 2|2 (ster ¢
2.9920 2.9930 2.9940 2.9950 2.9960 2.9970 2.9980 2.9990
=
Mute | solo | 0.7
. .| o6
o} o5
04
I
02
01
e T [P
02

Figure 6. Screenshot — Power Trace in Audio Editor.

5 Assuming a system intended to work at room temperature.

We used code from MiBench [6] as the source code for the
target device in the experiments. That is, the set of fragments
C includes fragments of code from MiBench; in particular, from
the telecommunications, network, and security sections of it. We
excluded code that required file access or intensive operations as
well as code for which we required many modifications for it to
compile with avr-gcc. We also excluded redundant items — for
example, from the security section, there are several symmetric
encryption algorithms and several hash functions; we used only
AES (which is the one generally recommended for practical use)
for a sample of symmetric encryption, and SHA as a sample of
a cryptographic hash function. For simplicity reasons, our work
currently operates at the granularity level of entire functions (that
is, the fragments of code to be matched are entire functions), with
the exception of the SHA algorithm. This exception is due to the
fact that SHA executes a large number of rounds repeating the
same procedure, thus taking a very long time to execute, making
it more reasonable to choose that procedure as the fragment to
consider. The exact set of functions used for our experiments is
the following: ADPCM encode, ADPCM decode, CRC-32, FFT,
SHA (fragment), AES (Rijndael) symmetric encryption, Dijkstra’s
shortest path algorithm, Patricia Trie (insertion), and pseudo-
random number generation (C’s random() function).

5. Results

We now present and discuss the results for both phases of the
experimental setup.

5.1 Experiment 1 - Individual Classification

For Experiment 1, we evaluate and report the precision of the clas-
sifier. Since the classifier chooses one of the possible classes (one
of the functions being considered), there are no false negatives; that
is, there is always an output from the classifier, and it is either a true
positive or a false positive. Thus, the precision fully describes the
performance of the classifier. The precision P is given by

_ T
T + Fp

where Tp denotes the number of true positives (i.e., correct classi-
fications) and Fp denotes the number of false positives (i.e., mis-
classifications, or incorrect classifications). For example, consider
a scenario with ten candidate functions, Fi, Fa, --- , Fio, Exper-
iment 1 is run and it executes 100 times function F;. The classifier
outputs 90 times F7i, 4 times F», 3 times F5 and 3 times Fy. Then,
the number of true positives is 90, and the number of false positives
is 4 + 3 + 3 = 10. The resulting precision for this example, Pex,
would be

p A

90
Py = 0+10 - 0.9 (90%)

We first adjusted the system’s parameters to obtain the best
performance. For each of the functions, we initially captured 1000
training samples, but then varied the number of samples effectively
used, to determine the optimal value (optimal within the range 1
to 1000, which is the maximum number of available samples). We
first maintained the same number of samples for every function
and varied the value to obtain the optimal. We then used this as
the initial estimate in a simple optimization procedure to determine
the optimal number of training samples for each function. We omit
any additional details or figures, since there is nothing particularly
relevant that they would show.

For some of the functions, more than 1000 samples were re-
quired for good performance, so we captured additional traces
for those. In particular, functions like Dijkstra’s shortest path
required a larger set, possibly due to the variable nature of the

algorithm — depending on the graph contents (weights, connec-
tions, etc.) there may be wide variations in execution time, requir-
ing larger numbers of training samples to compensate for the spread
nature of its PDF. For CRC32, we were obtaining a low precision
when using 1000 training samples, so we increased the number of
samples for this one as well.

With these parameters in place, we started measuring the per-
formance for Experiment 1. Table 1 shows the results for each of
the functions being tested. That is, it shows the precision obtained
for the classifier when executing each different function.

Function Precision
adpcm_encode 100%
adpcm_decode 97%
CRC32 92%
FFT 99%
SHA (Fragment) 100%
AES (Rijndael) 97%
Dijkstra’s shortest path 98%
Patricia Trie (insertion) 100%
random () 99%
Overall (avg.) 98.0%

Table 1. Classifier Precision

The results clearly indicate an excellent performance for the
classifier, with only one of the functions scoring a 92% precision
and no other function scoring below 97% precision. The overall
precision is given by the arithmetic mean — every function, being
executed the same number of times, has the same overall weight,
thus the arithmetic mean is the appropriate averaging mechanism.
A figure of 98% for the overall precision is also a solid indication
of the excellent performance that our classifier achieves.

5.2 Experiment 2 — Continuous Classification

For Experiment 2, we had to overcome several obstacles. For ex-
ample, due to the limit of program memory of the MCU, we were
unable to simultaneously include all sections of MiBench and make
them execute correctly. In particular, Patricia trie insertion and Di-
jkstra’s algorithm fail to run on the target due to insufficient re-
sources. Excluding these two functions, we can run the experiment.

5.2.1 Description of the Experiment

To evaluate the performance of the classifier in continuous oper-
ation, we execute a long sequence of randomly chosen functions,
with the only constraint being that we always call ADPCM encod-
ing first, to then decode the data. We disregard the distinction be-
tween random and pseudo-random, and will refer to random val-
ues through the rest of the discussion. In that sense, we used the
cryptographic-quality pseudo-random generator /dev/urandom,
which is, for most practical purposes, “as close as it gets” to true
random values [20]. Notice, however, that this random selection
is done offline and the sequence is ultimately “hardcoded” in the
source code to be compiled and run on the target. This restric-
tion does not affect the random nature of the experiment, yet it
is necessary: on-the-fly generation of random values by the target
device itself between function calls would introduce artefacts that
could skew or possibly even invalidate the results. In particular,
the classifier identifies contiguous fragments of code; interleaving
code to obtain random values for the selection of function and for
the parameters would introduce non-negligible deviations from the
sequence being tested.

We could not include arbitrarily long sequences of functions,
since the entire sequence had to be hardcoded, and the target device

imposes a limit on the size of the executable — we observe that
the randomly generated data for each call to a function had to be
stored in a buffer, for the same reason explained above. The longest
sequence that we could fit in the target was 500 calls long (close to
100 calls per function on average). Though this number could be
considered large enough to claim that the experiment is valid, we
repeated the process ten times and collected statistics over a total
of 5000 function calls.

The offline program that generates this random sequence of
calls, as well as the random data, produces two files to be included
in the program to be run on the target. One file, buffer_sizes.h,
defines (through #define directives) the sizes of the buffers that
contain the parameter values. Below is an example of the contents
of this file:

#define ADPCM_COUNT 50
#define FFT_COUNT 97
#define AES_COUNT 111
#define CRC_COUNT 101

The other file that this offline program generates is the file contain-
ing the actual function calls. Each function call receives input data
obtained from one of the elements of the buffer, and while gener-
ating this sequence, the offline program goes over each element in
sequence, hardcoding the value in this output program, as shown in
the fragment below, taken from one of the generated files:

encrypt (plaintext + O*AESSIZE, ciphertext, &ctx);

adpcm_coder (pcmdata + O*PCMSIZE, adpcmdata, PCMSIZE,
&coder_1_state);

rc = crc32buf (crcdata + 0*CRCSIZE, CRCSIZE);

fft_float (FFTSIZE, 0, real_in + O+FFTSIZE, imag_in + O*FFTSIZE,
real_out, imag_out);

rc = crc32buf (crcdata + 1*CRCSIZE, CRCSIZE);

adpcm_decoder (adpcmdata, pcmdata_2, PCMSIZE, &decoder_state);

nothing = (random() ~ random()) & OXFFFF;

adpcm_coder (pcmdata + 1*PCMSIZE, adpcmdata, PCMSIZE,
&coder_1_state);

fft_float (FFTSIZE, O, real_in + 1*FFTSIZE, imag_in + 1xFFTSIZE,
real_out, imag_out);

nothing = (random() ~ random()) & OXFFFF;

We can see, for example, for the first two calls to crc32buf,
the input data coming from the first and second elements of
buffer crcdata (offsets 0 and 1 hardcoded in the call). Same for
adpcm_coder and fft_float. These hardcoded offsets continue
to increase with each subsequent call to each function, until the
XXX_COUNT value. Since we only show a short fragment of one of

the files, the only offsets that we see are 0 and 1.
The declarations for these buffers (in the program that runs in
the target device) are shown below:

#include "buffer_sizes.h"

short volatile pcmdata[ADPCM_COUNT*PCMSIZE] ;
char volatile adpcmdata[PCMSIZE/2]; // Encoder output
short volatile pcmdata_2[PCMSIZE]; // Decoder output

volatile char plaintext[AES_COUNT*AESSIZE];
volatile char ciphertext[AESSIZE];

volatile float real_in[FFT_COUNT*FFTSIZE];
volatile float real_out [FFTSIZE];
volatile float imag_in[FFT_COUNT*FFTSIZE];
volatile float imag_out [FFTSIZE];

char crcdata[CRC_COUNT*CRCSIZE];

5.2.2 Performance Evaluation

We used a similar metric to that used for Experiment 1. Since
we still have a classifier that always outputs one of the possible
candidates, we only have true positives or false positives, which
means that the precision still provides a complete picture of the
classifier’s performance.

However, an important distinction arises from the fact that in
continuous classification, the sizes of the traces need to be deter-
mined and affect the performance of the process, as they affect the

necessary resynchronization process in the cases of misclassifica-
tions. In that sense, a more sensible formula for the precision of
the classifier in continuous mode, P, is given by the fraction of the
time during which the output of the classifier corresponds to a true
positive:

Pc Y Z ‘I TP|
z:‘]5b|'+'§:‘]fb|

where I, denotes intervals during which the output of the classi-
fier is a true positive, I, denotes intervals during which the output
is a false positive or a misclassification, and | - | denotes the length
of its argument (the length of the interval). Furthermore, when ob-
taining the output from the classifier, we do not count on precise a
priori knowledge of the lengths of the functions, since the values
of the arguments may cause variation in the execution time. This
means that we need to estimate these from the output. Section 5.2.4
discusses this aspect.

As an example, consider the scenario with three candidate func-
tions, Fi, Fy, F3, which take 10 ms, 20 ms, and 30 ms to execute,
respectively. If the sequence F3 — F1 — F5 is executed and the clas-
sifier outputs F3 at time Oms, F> at time 20 ms, and F> at time
20ms then, with all units implicitly ms, the intervals with true
positive are I, = (0,20) and I, = (40, 60), and the interval
Ir = (20,40) is a false positive— the output is F>, and during
the sub-interval (20, 30) the correct class is Fi and during the sub-
interval (30, 40) the correct class is F1. Thus, in this example, the
precision Pex, would be approximately 67%:

[y | + [I | 2

P — _ =
> ry |+ [I,| + | IR 3

5.2.3 Results

As described in Section 5.2.1, ten sequences of 500 function calls
each were executed, and traces were captured for each of them.
Figure 7 shows a screenshot of the audio editor displaying the
first few milliseconds of one of the traces; in particular, this trace
fragment corresponds to the sequence of ten function calls shown in
Section 5.2.1. The markers were manually added to the image for
illustration purposes, indicating the boundaries between functions.

=7 LT T DE = =
l n)h W [T o R TR R Y3 S R [
El [P e k| 9w 240 pv 240
ALSA 3|4 default |/ default: Optic - | 2 (Ster:
0005 o010 o015 o020 o2 0030 0035 o0k o085

M iy

Figure 7. Power Trace for Sequence of Function Calls.

The complete traces were fed to the processing program im-
plementing the classifier as described in the previous sections. An
example of the output of this program is shown below (only a frag-
ment, since each trace contains 500 function calls). The reported
time uses the unit of audio samples, which is about 10.4 us:

Executed aes at time 18

Executed adpcm-encode at time 428
Executed crc32 at time 810
Executed fft at time 1077

Executed crc32 at time 2127
Executed adpcm-encode at time 2394
Executed random at time 2786
Executed adpcm-encode at time 2942
Executed fft at time 3328

Executed random at time 4407

This example again corresponds to the same sequence of ten func-
tion calls shown in Section 5.2.1 and corresponding to the trace
fragment shown in Figure 7. We observe that in this particular ex-
ample, there was one misclassification (the sixth function call is
reported as adpcm_encode when the actual function being executed
is adpcm_decode).

To measure the performance (the precision) of the classifier in
Experiment 2, the output for each of the ten traces was fed, along
with the C source code corresponding to each of the ten sequences,
to a custom-made program that compares the output and reports
statistics allowing us to determine the precision and provide some
additional potentially insightful information.

An important reason to use a custom-made program for the
analysis of the experimental results was to allow for user inter-
vention in the process of matching sequences that might be hard
to properly identify and match algorithmically. Even more impor-
tantly, the matching includes timing that may need to be verified
against the traces, for the less obvious cases (though only on two
occasions we needed to resort to the traces in the audio editor to
resolve a mismatch). The program does as much as possible in an
automated way to minimize user intervention, and of course does
as much validation as possible for the user input, to minimize the
effect of human errors and oversights. We omit any additional de-
tails or screenshots; however, we do emphasize the aspect that this
custom-made program requiring user assistance is necessary only
for the purpose of analyzing the experimental results in the con-
text of this study; an actual practical implementation of our system
would not require this step.

5.2.4 Estimating the Precision

Measuring the exact value of the precision for the continuous clas-
sifier requires us to obtain more information than reasonably fea-
sible given our setup. Computing the exact value of the precision
requires that we determine the intervals where the output is cor-
rect, and this would require us to have exact timing information for
the sequence being executed. However, the actual trace contains
calls with random parameter values, so the duration is unknown,
and instrumenting the program for the purpose of obtaining that in-
formation would affect the measurements, at least for the family of
devices that we targeted in our work.

We can, however, obtain a good approximation of the precision
if we use the timing that the classifier outputs. Specifically, the
skipped elements from the classifier output (the right column in
the above example of the processing software) are considered to
be false positives and the rest is considered a true positive. As
long as the sequences match, we assume that the timing for the
matching items is correct and disregard any inaccuracies in the
exact positions of the boundaries between functions.

Thus, the difference in the time indexes for the items that have
to be skipped to reestablish synchronization reveal the length of
the false positive intervals. The estimate is accurate provided that
the misclassifications occur with a deviation that is balanced; that
is, provided that some errors confuse a function with a longer
(in duration) function and some confuse a function with a shorter
function, without any imbalance on average. This is a reasonable
assumption, and we did not observe any evidence suggesting that
there would be any imbalance in the errors for the traces that we
processed.

Table 2 summarizes the important parameters describing the
performance of the classifier when operating in continuous mode.
In addition to the precision, we also determined the average number
of items that it took the system to recover from a misclassification.
This was done based on the output of the custom-made analysis
program mentioned in the previous section, which allows us to de-
termine when the system is back in sync. For more details, the

reader can consult [17]. This metric provides information about
the robustness of the system in terms of ability to recover from a
misclassification and reestablish synchronization with the trace. It
also provides evidence to the quality of the classifier in general, in
that short sequences of missed items are certainly easier to compen-
sate for through auxiliary methods, such as doing additional vali-
dation of timings, validating feasible program sequences through
static analysis, etc. Though we did not use any of these techniques
in this initial phase of the project, it still makes sense to claim that
smaller values for this parameter correspond to higher quality for
the continuous classifier. Since all traces included the same num-
ber of fragments, we used arithmetic mean for the average values.

Sequence Precision | Avg. Recovery
1 88.75% 1.29
2 89.78% 1.30
3 87.65% 1.27
4 88.63% 1.38
5 87.07% 1.34
6 89.03% 1.29
7 89.03% 1.32
8 86.97% 1.48
9 89.59% 1.19
10 87.84% 1.30
Overall (avg.) 88.74% 1.32

Table 2. Continuous Classifier Performance

For this second experiment we also obtained results indicating
a good performance. This is encouraging, since this is clearly the
more important of the two experiments, since it models the way an
actual practical system would operate. The precision is not as good
as that obtained for Experiment 1; this is expected, as this operating
mode involves more parameters, more ambiguities and degrees of
freedom, and the additional functionality of maintaining synchro-
nization — with or without misclassifications. Also, the fact that
traces are now in sequence one after another introduces the possi-
bility that sub-fragments of a trace combined with sub-fragments
of another trace could be a good match for some incorrect function.
Experiment 1 does not face any of these difficulties. Thus, we be-
lieve that a figure of close to 90% precision for continuous clas-
sification is a very good result for this initial phase of the project,
where the goal is to study the feasibility of our proposed approach.

Another important aspect revealed by these results is that of
the robustness of the continuous classifier, in that the system never
faced a situation where an error threw it irreversibly out of sync. In
all cases, the system reestablished synchronization after a misclas-
sification, and in most cases the misclassification involved just one
function replaced with another, and then resynchronization imme-
diately after, as suggested by an average of 1.32 functions skipped
before resynchronization.

As suggested before, we can reasonably claim that individual
incorrect classifications are essentially irrelevant, as the tool could
be extended to make use of the CFG and consider possible exe-
cution sequences. Given this information, a match to an incorrect
function may have been rejected with high probability, because the
CFG would have given indication that it is impossible to reach that
particular function within a short period of time after the preceding
sequence.

5.2.5 Additional Insights

As additional observations and insights that we gained from the
experimental results in this initial phase of the project, we could
mention the following:

For some of the functions, long sequences of consecutive calls
to the same function showed a higher likelihood of misclassifica-
tion. For example, sequences of three consecutive calls to CRC32
showed up very often as a prompt for user assistance in the pro-
cessing software, and in some cases required three or four skipped
items from the trace to reestablish synchronization.

Also interestingly, we observed several instances where a se-
quence of three or more consecutive calls to random() either caused
the function immediately following that sequence to be misclassi-
fied, or was misclassified as a smaller number of consecutive calls.

These two aspects suggest that it may be a good idea to restrict
the fragments of code to sections of the source code with no control
structures (conditionals and loops) such that every instance of a
given fragment of code exhibits the same execution time. This not
only has the potential to increase the precision, but also could play
arole in dramatically increasing the computational performance of
the system, in that a smaller training database could work well,
and possibly the more efficient neareast centroid technique (using
LDFs) could be applicable, since it was precisely this aspect of
variable execution time within classes what put that approach at a
disadvantage with respect to the k£-NN technique.

5.3 Interrupts and Interrupt Service Routines

The current experiments were oblivious to interrupts and interrupt
service routines (ISR) for two main reasons: (1) the approach to
detect them differs due to their asynchronous and usually short-
lived nature; and (2) from the evidence we collected and observed,
we claim that their detection should be really easy.

We should expect an interrupt request (IRQ) to cause a “power-
heavy” reaction by the processor, in that a lot of hardware compo-
nents need to react and work on processing the IRQ correctly [7].
Consequently, we should see a prominent component in the power
trace that would identify the exact moment at which the processor
responds to an IRQ.

We collected some experimental evidence supporting this claim;
Figure 8 shows a trace of a simple “do nothing” program that runs
pointless tasks in the background and uses timer interrupts, with the
IRQ firing approximately every 6.5 ms. We observe the prominent
peaks that IRQs produce in the trace.

02860 0.2880 0.2900 02920 0.2940 0.2960 0.2980 0.3000 0.3020 0.3040

Xiecs makin] 0.50]
Right, S6000Hz

2451t Pt 3
Mite | Soo | 0.40-

Figure 8. Power Trace Showing the Effect of IRQs.

For an actual practical implementation, however, we must con-
sider interrupts for at least the following two reasons: (1) any frag-
ment of code that the system is attempting to identify can be subject
to another (small) fragment corresponding to the interrupt process-
ing and the ISR to be inserted at any arbitrary and unpredictable
position of the fragment to identify; and (2) many bugs arise from
improper interactions between an ISR and the main/background
processing, thus triggering the faulty behavior around the time that
an interrupt occurs.

6. Discussion and Future Work

This initial phase of our project presents encouraging results; the
effectiveness of the technique was confirmed by the experimental
phase, at least in a preliminary way.

Further research is needed in several areas of the project; we
focused on one target device, the Atmega2560, running at IMHz.
In general this is not an important limitation, in that we could
extrapolate from the field of side-channel attacks, where SPA has
been successfully applied on a wide variety of architectures and
target devices. The important aspect for us to consider in this
respect is the approach’s ability to work with simple hardware,
in particular with an off-the-shelf inexpensive sound card. With
our Atmega2560 setup, we verified that a standard PC sound card
sufficed for the system to run at the granularity level of function
calls, producing traces in the order of 200 to 300 samples in length.
However, to address either finer granularity, or higher clock speeds
for the target device, we may need to investigate the relationship
between these: for a given granularity, what is the maximum ratio
between the device’s clock speed and the sampling rate at which
we capture the power trace? Equivalently, for a given clock speed
and a given sampling rate, what is the finest granularity at which
we can detect fragments of code?

Ideally, we would like our system to detect every possible code
segment with fixed execution time (i.e., contiguous blocks of code
without conditionals or loops). For example, instead of detecting
execution of a loop (as a whole, with variable execution time), we
would prefer to individually detect the evaluation of the condition
and the body (assuming no nested loops or conditionals inside
the body of the loop). This would be beneficial for at least the
following three aspects:

e There is a potential increase of precision, since loops executing
variable number of passes or other conditional executions can
introduce wide variations within classes, potentially limiting the
precision.

There is additionally a potential increase in processing speed;
the aspect mentioned in the item above also means that the
database of training samples has to be larger to compensate for
these variations (that is, to make sure that the training database
is representative of the spread PDF when allowing variable
length). Additionally, if we have fixed size segments, then the
more efficient LDF technique could be suitable.

The higher level of details in the output of our system will
represent a significant improvement in terms of the system’s
ability to help developers go from program tracing to finding a
bug.

We would like to emphasize the fact that these limitations in
no way negate or compromise the validity or the value of the
reported results. A large class of embedded systems run at low
clock frequencies, and for those, the presented approach will be
perfectly fine and valuable when assisting in the debugging task
during advanced phases of the development cycle. Incidentally, this
low-frequency aspect may be correlated with low transistor count
MCUs, presumably with simple architectures that may lack any
sophisticated debugging tools embedded in the hardware, making
our technique particularly valid for this class of target device.

A positive aspect of the results derives from the fact that all
of our tests and functions are CPU-bound. Practical systems typ-
ically use I/O, which makes a more prominent mark on the power
trace and thus helps the classification process. The results of our
experiments show a good level of performance even with this dis-
advantage.

The following are some of the important aspects that we intend
to tackle through future research:

e Introduce the notion of conditional classification, possibly man-
ually in an initial phase, but with the goal of using a CFG tool
when it comes to a practical implementation. The idea is that
by looking at the source code, we gain information about the
possible fragments of code that could be executed at a particu-
lar time, given the previous fragment executed, or even better,
the sequence of past fragments. Thus, the classifier can count
on additional information, and thus its efficacy should improve.

In this sense, the fact that our Experiment 1 used only nine frag-
ments should not be seen at all as a number too low to pro-
duce valid results —in a practical setup that makes use of the
CFG, for most classifications the system may need to consider
no more than two or three possible candidate fragments follow-
ing the most recent classified fragments.

Reliable detection of a crash condition where the processor ends
up executing random code. Detecting such condition, as well
as the precise time at which it started, is clearly a valuable
piece of information when assisting the developers in the de-
bugging task. This may be related to the option of reject in the
classifier [21], and would allow us to eliminate the assumption
that the execution is restricted to a set of possible fragments of
code —an assumption that is reasonable in the sense that the
developers always can count on the source code, but less rea-
sonable from the point of view of considering cases such as
stack corruption, invalid pointer operations or other situations
leading to “random” execution.

Develop and test strategies to automate the training phase. Hav-
ing to capture training samples of each fragment of code is per-
haps the most severe limitation of our approach. We do believe,
however, that this issue can be mitigated and possibly elim-
inated. One alternative could be instrumenting the program
(during the development phase) to interact with an automated
system to capture training samples. Another option could be
using models of the target devices that would allow an exter-
nal system to determine exact timings of the execution and thus
capture training samples in an automated way by manipulating
the data and signals connected to the device to control its exe-
cution.

Considering different architectures; for example, processors
with cache memory, deep pipeline or other forms of paral-
lelism, etc. These in principle make our task harder, given that
more information is combined together before leaking to the
power trace. However, for some of these aspects, the additional
complexity in the architecture may go hand-in-hand with addi-
tional information being leaked to the power trace, and those
could end up making the task easier.

7. Conclusions

In this work, we have proposed a novel approach for non-intrusive
debugging of embedded systems, especially useful for debugging
faulty behavior observed at advanced phases of the development
cycle, such as during production or even after deployment. The
idea is based on exploiting the relationship between what a pro-
cessor is executing and its power consumption to determine the
sequence of code executed from observations of power consump-
tion as a function of time (power traces). At the present stage,
our approach is applicable to background/foreground programming
(superloop structure), multitasking with run-to-completion seman-
tics, and possibly also to co-operative multitasking, depending on
whether we can easily identify the yield calls.

Our approach and our implementation feature the interesting
highlight that the system runs on a standard PC, and the power
traces are captured through the recording input of the sound card.

Techniques where power traces are required, such as Power Anal-
ysis cryptographic attacks, usually rely on digital oscilloscopes or
other expensive or bulky pieces of equipment. Also worth noting,
since our experiments produced good results even when using an
inexpensive off-the-shelf sound card, we conclude that this tech-
nology is perfectly suitable for hobbyists as well as professional
developers.

Experimental results confirmed the validity of our approach,
showing very good performance when using part of the code base
from the MiBench test suite. Several improvements and opportu-
nities for future work were discussed, which we believe will lead
to substantial improvements in the performance and the range of
target devices for which our technique is suitable.

Acknowledgments

The authors would like to acknowledge the contribution of Summit
Sehgal, who offered assistance with the setup and lab equipment for
the preliminary tests and experimental phases of the project. The
first author would like to thank Dr. Thomas Reidemeister as well,
for his valuable assistance and discussions.

This work was supported in part through a grant from the
Natural Sciences and Engineering Research Council of Canada,
awarded to Dr. Hasan.

This research was supported in part by CFI 20314 and CMC,
and the industrial partners associated with these projects.

References

[1] Atmel Corporation. AVR 8- and 32-bit Microcontrollers, 2012. URL
http://www.atmel.com/products/microcontrollers/avr/.

[2] S. Chari, J. R. Rao, and P. Rohatgi. Template Attacks. Cryptographic
Hardware and Embedded Systems — CHES 2002, pages 13-28, 2003.

[3] J. Cooling. Software Engineering for Real-Time Systems. Addison-
Wesley, 2003.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. The MIT Press, Third edition, 2009.

[5] M. Frigo and S. G. Johnson. The design and implementation of
FFTW3. Proceedings of the IEEE, 93(2):216-231, 2005. Special issue
on “Program Generation, Optimization, and Platform Adaptation”.

[6] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. Mibench: A free, commercially representative em-
bedded benchmark suite. In Proceedings of the Workload Charac-
terization, 2001. WWC-4. 2001 IEEE International Workshop, pages
3-14. IEEE Computer Society, 2001.

[7]1 C. Hamacher, Z. Vranesic, and S. Zaky. Computer Organization.
McGraw-Hill, Fifth edition, 2002.

[8] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve
Cryptography. Springer-Verlag, 2004.

[9] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quanti-
tative Approach. Morgan Kaufmann Publishers, Fourth edition, 2007.

[10] HT Omega. Claro Plus — Online specifications. URL
http://www.htomega.com/claroplus.html.

[11] P. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. Advances in Cryptology, 1996.

[12] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. Advances
in Cryptology — CRYPTO’ 99, pages 388-397, 1999.

[13] R. Langner. Stuxnet: Dissecting a Cyberwarfare Weapon. I[EEE
Security & Privacy, 9(3):49-51, May-June 2011.

[14] Matt Bishop. Computer Security: Art and Science. Addison-Wesley,
2003.

[15] D. Mazzoni. Audacity: Free Audio Editor and Recorder. URL
http://audacity.sourceforge.net.

[16] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1996. URL
http://www.cacr.math.uwaterloo.ca/hac/.

[17] C.Moreno. Side-Channel Analysis: Countermeasures and Application
to Embedded Systems Debugging, 2013. PhD Thesis (Final version to
be submitted May 2013).

[18] C. Moreno and M. A. Hasan. SPA-Resistant Binary Exponentiation
with Optimal Execution Time. Journal of Cryptographic Engineering,
pages 1-13, 2011.

[19] J. G. Proakis and D. G. Manolakis. Digital Signal Processing: Prin-
ciples, Algorithms, and Applications. Prentice Hall, Fourth edition,
2006.

[20] J. Viega and G. McGraw. Building Secure Software. Addison-Wesley,
2002.

[21] A.R. Webb and K. D. Copsey. Statistical Pattern Recognition. Wiley,
third edition, 2011.

