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ABSTRACT
We introduce the tool RiTHM (Runtime Time-triggered Het-
erogeneous Monitoring). RiTHM takes a C program under
inspection and a set of LTL properties as input and generates
an instrumented C program that is verified at run time by
a time-triggered monitor. RiTHM provides two techniques
based on static analysis and control theory to minimize in-
strumentation of the input C program and monitoring in-
tervention. The monitor’s verification decision procedure is
sound and complete and exploits the GPU many-core tech-
nology to speedup and encapsulate monitoring tasks.

1. INTRODUCTION
Runtime verification (RV) is a complementary approach

to exhaustive verification and testing, where a monitor in-
spects the program’s execution at run time to evaluate a
set of correctness properties. Most approaches in the liter-
ature are event-triggered RV (ETRV), where the monitor is
invoked with each occurrence of events that can change the
valuation of a property. Such techniques exhibit nonuniform
and unpredictable monitoring overhead, which can cause un-
desirable program behavior and, hence, catastrophic con-
sequences in real-time systems. To overcome this defect,
in [4], we introduced the notion of time-triggered runtime
verification (TTRV), where the monitor stops the program
execution within time periods, polls the state of the pro-
gram, evaluates properties, and resumes the program’s nor-
mal execution. A time-triggered monitor (TTM) ensures
predictable and evenly distributed monitoring overhead and
invocations throughout the program run. Such monitoring
can control resource usage and predictability of the monitor
invocations which are among the indicators of the quality of
a monitoring solution, especially in the context of real-time
systems.

The main challenge in implementing TTRV is that if val-
uation of a property changes more than once between two
monitoring points, a TTM may overlook a property viola-
tion. To deal with this issue, we have introduced several
techniques, such as (1) employing history variables for the
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case where the TTM is an external thread [3, 9], (2) inlin-
ing TTM’s monitoring instructions in the program code [5]
(called self-monitoring), (3) path prediction using symbolic
execution [8], and control-theoretic monitoring [7].

Despite the long history of runtime monitoring, we know
of no tools that enable runtime monitoring of real-time sys-
tems. In this paper, we introduce the tool RiTHM (Runtime
Time-triggered Heterogeneous Monitoring) that realizes a
subset of the aforementioned techniques for TTRV. RiTHM
takes a C program under inspection and a set of LTL prop-
erties as input and generates an instrumented C program
that is verified at run time by a TTM. The current imple-
mentation of RiTHM supports two TTM and instrumenta-
tion techniques: (1) TTM with optimized fixed polling pe-
riod using static analysis, and (2) TTM with least variation
in dynamic polling period using PID and fuzzy controllers.
TTM’s verification decision procedure for 4-valued seman-
tics of LTL [1] is sound and complete [4], and takes advan-
tage of the GPU many-core technology to speedup monitor-
ing and isolating the monitoring tasks [2]. The tool has been
used in several real-world case studies such as the Apache web
server, a UAV autopilot software, and a laserbeam stabilizer
for eye surgery.

2. TOOL OVERVIEW
Figure 1 shows modules and detailed data flow of RiTHM.

The tool takes a C program and a set of LTL properties as
input and generates an instrumented C program as output.
The specification language for expressing properties is the 3-
valued LTL designed particularly for runtime verification [1].
Each given LTL property is specified in terms of variables of
the input C program. For instance, G(x >= 10 and foo_y
= z) is one such property, where x and z are two global
variables and y is local to function foo. Evaluation of Ltl
properties at run time is handled by a GPU-based verifica-
tion engine. If a machine is not equipped with the GPU,
the verification is automatically shipped to multi-core CPU.
The verification engine is invoked by the TTM thread that
RiTHM generates using Unix high resolution timers (mod-
ule 7). The monitor stops the C program’s execution with
a fixed/dynamic polling period, reads the program state,
sends the extracted data to the verification engine, and re-
sumes the program thread. The monitor evaluates proper-
ties in parallel with the program execution.

Module 1 (in Figure 1) is Globalizer (implemented over
LLVM Clang [6]) that takes the C program and Ltl properties
as input and generates a C program, where all the variables
participating in the Ltl properties are changed into global
variables. Globalizer generates the list of the globalized vari-
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Figure 1: Building blocks and data flow in RiTHM.

ables and passes it to Ltl3 Monitor Generator (module 3)
and Critical Instruction Identifier (module 4) that identifies
and annotates the set of the C program’s instructions which
may change the evaluation of the properties at run time.
From this point RiTHM gives two options for generating a
TTM, as described in Subsections 2.1 and 2.2.

2.1 Instrumentation for TTM with Fixed
Polling Period

Figure 3(a) shows the screen shot of configuring RiTHM
to generate this type of TTM. Globalizer sends the modified
C program to CFG Builder (module 2) that generates the
control-flow graph (CFG) of the program. This module is
implemented over LLVM. Figure 2(b) shows the CFG of the
program in Figure 2(a) (Fibonacci function). The weight of
each arc is the best-case execution time of the instructions
in the originating vertex. For simplicity, in this example, we
assume that each instruction takes one time unit.

Next, RiTHM constructs a critical CFG, where each crit-
ical instruction resides in one and only one vertex (module
5). Figure 2(c) shows the critical CFG of Figure 2(a), where
variables Fnew, Fold, and ans are used by the Ltl proper-
ties. Notice that in order to ensure soundness, the polling
period should be not greater than the shortest time between
the execution time of two critical instructions (called the
longest polling period, LPP). If the input polling period is
greater than LPP, then some critical instructions must be
instrumented, so that their results are temporarily stored in
a history buffer until the monitor’s next poll. In terms of
a CFG, instrumenting a critical instruction involves delet-
ing its corresponding vertex in the critical CFG and merg-
ing outgoing and incoming arcs of the vertex by summing
up their pairwise weights. We require that the number of
instrumentations is minimum. We have shown that this op-
timization problem is NP-complete [4].

RiTHM uses the following approaches to solve the opti-
mization problem (module 6): (1) integer linear program-
ming (ILP) [4], (2) a greedy heuristic [9], and (3) a heuristic
based on finding the minimum vertex cover [9]. The output
of either technique is a set of instructions in the C pro-

gram that need to be instrumented. For the program in
Figure 2(a), to apply a polling period of 2 time units, the
ILP solution for the critical CFG in Figure 2(c) instruments
vertices C2 (Line 7) and B1 (Line 10). The lines of code
corresponding to these instructions are located using the
abstract syntax tree generator (module 8) of LLVM Clang,
and instrumented by Instrumentor 1 (module 9). Finally,
Glue Code Generator 1 (module 13) augments the instru-
mented code with function calls to the verification engine
for verifying properties at run time.

 1. fib(int n) {!
 2.!   int  i, Fnew, Fold, temp,ans;!
 3.!   Fnew = 1;  Fold = 0;!
 4.!   i = 2;!
 5.!   while( i <= n ) {!
 6.! ! ! !temp = Fnew;!
 7.*! ! ! !Fnew = Fnew + Fold;!
 8.*! ! ! !Fold = temp;!
 9.!   ! !i++; }!
 10.* ! ans = Fnew;!
 11.! ! return ans;}!

(a) Fibonacci function in C
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Figure 2: Example of a program and CFG.
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(a) Configuration of TTM with fixed
polling period

(b) Controller-based TTM configura-
tion for dynamic polling period

(c) Real-time resource utilization plot

Figure 3: Selected RiTHM screen shots.

2.2 Instrumentation for TTM with Dynamic
Polling Period

Since in reactive systems, environment events play an im-
portant role in determining the polling period, techniques
based on static analysis are not expected to be effective.
To deal with reactive systems, RiTHM can also generate
TTMs augmented with PID and fuzzy controllers (module
12) that can dynamically change the polling period based on
the environment behavior. Specifically, given the range of al-
lowed polling periods and constraints on the static/dynamic
history buffer size, the controllers target minimizing varia-
tions in adjustments to the dynamic polling period as well
as maximizing history buffer utilization. Figure 3(b) shows
the screen shot for configuring controller-based TTMs. In-
strumentation and controller-based TTMs generation are
achieved through modules 10 and 11, respectively.

3. SELECTED EXPERIMENTS
Figure 4(a) [4] shows that the absolute overhead incurred

by a TTM (with and without history) is bounded and uni-
form and, hence, predictable, as opposed to an ETM. Fig-
ure 4(b) shows that the execution time of the program blow-

fish (from the MiBench benchmark suite) monitored by TTRV
without using history, is larger than the execution time of
the program monitored by ETRV. This excessive overhead
is due to the fact that a TTM gets invoked more often than
an ETM. However, by extending the polling period (e.g., by
a factor of 100), TTRV performs better than ETRV. Fig-
ure 4(c) shows the execution time and memory usage of the
program blowfish when instrumented by ILP and the other
RiTHM instrumentation heuristics for the polling period of
40 × LPP .

Figure 4(d) shows the coefficient of variation (CV) of polling
period and memory utilization (in terms of the number of
empty locations in the history buffer, where positive is ex-
cessive dynamic allocation and negative denotes an under
utilized buffer) for the Apache web server using a controller-
based TTM. As can be seen, the monitor that is controlled
by two fuzzy controllers for stabilizing the polling period

and buffer size (i.e., BSC+PPC:F2) shows a significantly
low CV and well-utilize history buffer. The data set of this
experiment is from the 1998 FIFA World Cup web server.

Figure 5(a) shows that our GPU-based algorithms for ver-
ifying Ltl3 properties are clearly scalable with respect to the
number of cores. The error bars represent a 95% confidence
interval. This graph also shows that the mean throughput
increases with the number of cores engaged in monitoring.
At some point, the parallel verification algorithms reach the
optimum, where all the core are utilized. Figure 5(b) shows
that the CPU utilization of the autopilot process of an un-
manned aerial vehicle (UAV) application monitored using
our GPU-based algorithms is almost identical to the CPU
utilization of the unmonitored process. Notice that the same
program monitored by a CPU-based monitor is almost 100%
utilized. This result holds when the CPU frequency is re-
duced to half of the normal frequency. An interesting side-
effect of this result is that GPU-based monitoring is consid-
erably power efficient.

4. AVAILABILITY
RiTHM is an open source tool. To access the tool, related

publications, a screencast, more detailed experimental re-
sults, user guide, and other resources, please visit
http://uwaterloo.ca/embedded-software-group/projects/rithm.

5. SUMMARY
In this paper, we introduced the tool RiTHM that aug-

ments C programs with monitors that ensure time predictabil-
ity and optimal memory utilization for sound and complete
verification of LTL properties and run time. This type of
monitoring is especially useful in the context of real-time
systems. RiTHM applies two methods: (1) fixed monitor
polling using static code analysis, and (2) dynamic polling
using controllers that response to environment actions.
RiTHM has been tested using large software applications
such as the Apache web server, a UAV autopilot, and a laser-
beam stabilizer for eye surgery.
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Figure 4: Selected experiments.

In future releases, RiTHM will include our optimization
techniques using symbolic execution, inlined monitors, and
combined static and dynamic analysis methods.
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APPENDIX
A. THE DEMO

The demo illustrates RiTHM by designing, enabling mon-
itoring, and executing a simple Fibonacci example for fixed
polling period, and dynamic polling period. The demo con-
sists of four parts: (1) application design, (2) development of
Ltl properties, (3) applying RiTHM to synthesize monitors
and instrument programs, and (4) demonstrating RiTHM’s
features on collecting statistics about satisfaction/violation
of properties, trace logs, and timing behavior of monitors.
If time permits, we will also show a highlight of applying
RiTHM on a more sophisticate example such as Apache.

A.1 Application Design
We will develop the Fibonacci function as illustrated in

Figure 6 as a C program with a given input value n. The
demo will analyze the corresponding CFG (see Figure 2(b)).

A.2 Specification Development
We will demonstrate monitoring three properties (see

Figure 7):

• The first property property0 states that the loop counter
eventually reaches a value greater than 10.

• The second property property1 states that it is always
the case that the loop counter i is less than or equal to
n.

• The third property property2 intends to monitor that an
element in the output Fibonacci series is strictly greater
than the previous element.

A.3 Instrumentation Phase
The RiTHM configuration screenshot is shown in Fig-

ure 3(a). Running RiTHM results in the log shown Figure 8.
This window also shows possible errors and warnings. For
instance, an error could be using a variable in a property
that is never declared. A warning may be issued in case of
using unresolved pointers or aliases. The RiTHM user guide
describes all the limitations (mostly due to LLVM static anal-
ysis) in detail.

After running the tool, the instrumented program is the
one shown in Figure 9. As can be seen, the instrumentation
adds the value of the variables of interest based on the given
polling period such that no properly valuation is overlooked.
It can also be seen that Globalizer has prefixed variables
by the name of the function that declares the variables of
interest (i.e., function main).

A.4 Running the Instrumented Application
and Observing Online Statistics

RiTHM provides detailed report on the valuation of LTL
properties and maintains a trace log that enables the user
to trace back the value of variables that participate in LTL
properties. This is achieved by the help of the name of the
source C file and the line number of the instruction that
changes the value of the variable. Figures A.4 and A.4 show
the property and trace log of the case study. RiTHM reports
that property0 has been satisfied, but property1 and property2

are violated. The trace log illustrates the reason. Property1

is violated because when the loop terminates the value of i

is 31 while the value of n is 30. Property2 is violated because
the values of Fnew and Fold are zero in the initial state of
the program.

Figure 6: Input C program (Fibonacci function)

Figure 7: LTL Properties

When dynamic polling is used, RiTHM provides a real-
time plot of the current polling period and the utilization of
the available buffer as seen in Figure 3(c).

Figure 8: Instrumentation log
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Figure 9: Instrumented code

Figure 10: Property valuations report

Figure 11: Trace log
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