QDIME: QoS-aware Dynamic Binary

Instrumentation

Pansy Arafa, Guy Martin Tchamgoue, Hany Kashif, and Sebastian Fischmeister
Dept. of Electrical and Computer Engineering
University of Waterloo, Canada
{parafa, gmtchamg, hkashif, sfischme}@Quwaterloo.ca

Abstract—Software systems with quality of service
(QoS), such as database management systems and web
servers, are ubiquitous. Such systems must meet strict
performance requirements. Instrumentation is a useful
technique for the analysis and debugging of QoS sys-
tems. Dynamic binary instrumentation (DBI) extracts
runtime information to comprehend system’s behavior
and detect performance bottlenecks. However, existing
DBI tools are intrusive; adding unacceptable delay to
the program execution. Such delay alters the perfor-
mance requirements and degrades the overall quality
and the user experience of the system. Moreover, the
delay may change the system behavior, thus, producing
misleading run-time information.

This paper presents QDIME, a QoS-aware dynamic
binary instrumentation technique that respects sys-
tem’s performance requirements. QDIME takes a user-
defined QoS threshold as an input and periodically
gathers QoS feedback from the system under analysis
to decide its instrumentation budget.

‘We implemented QDIME on top of PIN, a popular
DBI framework. We evaluated QDIME with Gzip,
MySQL server, Apache HTTP server, and Redis. The
experiments show that QDIME respects the user-
defined QoS threshold and, thus, improves the per-
formance of the monitored application by manifolds.
QDIME is able to provide up to 100% instrumentation
coverage with an average of 92% when compared to
PIN. Moreover, QDIME reduces the slow-down factor
of the instrumented application by 1.41, 5.67, and
10.26 folds for Sys-trace, Call-trace, and Branch-profile
respectively. A release of QDIME is available for down-
load at https://github.com/pansy-arafa/qdime.

I. INTRODUCTION

The number of businesses relying on systems with qual-
ity of service (QoS) has been rapidly increasing. Soft-
ware systems behind these businesses must meet strict
performance requirements to satisfy the need of both the
provider and the end-users. These systems include web
servers, database management systems, multimedia appli-
cations, web browsers, and hypervisors. QoS performance
requirements refer to the extra-functional (non-functional)
aspects of the system that can affect the user’s experi-
ence [14]. These requirements include the total volume of
computation, end-to-end delay, error rate, response time,
and jitter [35]. For example, the production database
management system at Facebook should be able to handle
roughly 60 million queries per second [16], and its key-

value store, billions of requests per second [32]. In this
paper, the term QoS denotes all extra-functional aspects
of a system which may be used by end-users to judge the
quality of a service.

Program analysis tools are critical for understanding
the run-time behavior of programs. Developers need such
tools to analyze programs and identify performance bot-
tlenecks [37]. Instrumentation is the process of insert-
ing analysis code inside the program to extract run-
time information. Static instrumentation preprocesses the
program to insert analysis code into the program before
execution [37], [23]. On the other side, dynamic binary
instrumentation (DBI) weaves analysis code into the pro-
gram’s binary during execution [29], [31], [12]. Although
DBI incurs high runtime overhead, it does not require
program preprocessing and can handle dynamically loaded
libraries and dynamically generated code.

DBI frameworks have been widely adopted in software
analysis and security applications [29], [12], [31]. However,
these tools are well-known for being intrusive; imposing
high overhead to the monitored program. For instance,
our experiments showed that extracting the branch profile
of Gzip with PIN incurs a slowdown of about 102x. The
perturbation added by the instrumentation may alter the
overall QoS of a system drastically degrading the end-
user’s experience. However, many applications are not
tolerant to more than a few percent of latency degradation
as this hurts the QoS and causes distortions that thwart
meaningful analysis [13].

In this paper, we present QDIME, a QoS-aware DBI tech-
nique that guarantees a certain QoS to the program under
analysis. For this purpose, QDIME allows the user to define
a QoS related metric with a threshold value. To meet the
performance requirements, QDIME periodically switches
instrumentation on and off. Instrumentation budget is the
amount of time, per period, during which instrumentation
is enabled. Periodically, QDIME determines its instrumen-
tation budget as a function of the QoS metric. The function
is constructed such that the budget varies with the quality
of the application and eventually falls to zero when the
QoS constraints are violated. Thus, in every period P, the
budget, B, is computed to satisfy 0 < B < P.

To accurately determine the budget, the values of the
QoS metric are periodically extracted from the instru-



mented program and fed back into QDIME. Ideally, this
metric extraction should be transparent and unintrusive,
requiring no or little modifications to the application.
Fortunately, most existing applications already output
different statistics that can directly be used by QDIME.
In our experiments, we show that this is easily achievable
with applications such as MySQL, Gzip, Apache server,
and Redis. QDIME also has the option to log small pieces
of data about the information it extracts. These data are
used and updated across multiple runs of the same applica-
tion to guarantee the unicity of the extracted information.

We implemented QDIME on top of PIN instrumentation
framework [29]. The evaluation on four popular real-world
applications shows the performance, practicality, scalabil-
ity, and effectiveness of QDIME. Moreover, QDIME not only
guarantees a QoS to the monitored application but also
reduces the runtime overhead by manyfold and provides
up to 100% of coverage w.r.t. PIN. In summary, QDIME
offers the following features:

e QoS Guarantees: QDIME takes into account the per-
formance requirements to limit the latency degrada-
tion of the program.

e Low Overhead: QDIME guarantees a reduced runtime
overhead by switching the instrumentation on and off.

o Asymptotic Completeness: The re-execution and re-
dundancy suppression feature of QDIME allows it to
extract only new information through multiple runs,
and also to extract full traces with limited runs.

o Flexibility: The QoS metrics can be of any type and
from any source including system-level metrics such as
CPU and memory consumption. Also, the thresholds,
period and constraints are entirely defined by the de-
veloper, who can then tune them to adjust the trade-
off between information gain, QoS, and overhead.

e Practicality: producing a high coverage with a signif-
icantly reduced overhead allows QDIME to enable the
instrumentation of QoS-based applications and the
design of QoS-aware analysis tools.

o Portability: The generic nature of QDIME makes it
possible to implement the technique on top of any
existing instrumentation framework. Further, QDIME
does not depend on any system or hardware level
features.

The remainder of this paper is organized as follows: Sec-
tion II provides an overview of DBI techniques. Section IIT
describes QDIME and presents its design architecture. Sec-
tion IV provides some implementation details of QDIME.
In Section V, we evaluate QDIME on some commonly used
applications. Section VI discusses some of the limitations
of QDIME. Finally, Sections VII and VIII list the related
work and the conclusion respectively.

II. BACKGROUND

In this section, we provide a brief description of DBI
techniques with emphasis on PIN framework upon which
we built a prototype of QDIME.

A. Dynamic Binary Instrumentation

Software instrumentation is essential for designing pro-
gram analysis tools such as profilers and debuggers. The
instrumentation acts by augmenting the original program
with user-generated extra code for analysis. Binary in-
strumentation can be done either statically or dynami-
cally. Static binary instrumentation (SBI) tools such as
EEL [27], ATom [37], or PEBIL [28], use static analysis
techniques to modify a binary before execution. This
behavior limits the scope of SBI techniques to the only
code they can statically access as they lack a global view
of the program.

DBI, contrarily to SBI, requires no preprocessing of
a binary and possesses a complete view of the program
at runtime including shared libraries, plug-ins, and dy-
namically generated code. Accordingly, the DBI approach
is more practical, flexible, and scalable. DBI frameworks
intercept a program and inject the instrumentation code at
the designated points of interest during execution. Based
on the mechanism of this task, DBI frameworks can be
classified into two groups. In the first group are tools like
DyYNINST [10] and VULCAN [15] that use code transforma-
tion, and thus, suffer from transparency issues. The second
group includes tools like PIN [29], DYNAMORIO [12], and
VALGRIND [31] that use a Just-in-Time (JIT) compiler [11]
to dynamically recompile the binary and run it from a
software code cache. DBI frameworks usually propose a
set of custom application programming interfaces (APIs)
to help developers provide the (1) analysis routine, which
determines the collection and the processing of the runtime
data, and the (2) instrumentation routine, which specifies
where to inject calls to the analysis routine.

Runtime overhead constitutes the principal drawback
of DBI frameworks and mainly originates from both the
instrumentation itself and the user-defined analysis rou-
tine. However, the instrumentation process, which involves
injecting the user code into the binary, uses different
optimization techniques [11], [22] and represents only a
minor source of overhead [29]. Uh et al. [38] showed
that a typical DBI uses only about 1.4% of its time to
generate and optimize code dynamically. On the other
hand, DBI spends about 4.6% of the time to process
the collected data and 88% to execute the dynamically
generated code. Thus, the main contributor to the runtime
overhead is the user-defined analysis code. Contrarily to
the instrumentation overhead that occurs only when a new
code is discovered, the analysis routine runs every time
an instrumentation point is encountered. The complexity
and invocation frequency of the analysis function directly
impact the overhead and thus the QoS. Unfortunately,
while much has been done to lower the instrumentation
overhead, less attention has so far been paid to that of
the user-defined code [13], [41]. Moreover, none has been
done to support programs with strict QoS requirements.
We focus on this type of systems in this work.



B. Instrumentation with Pin

PIN [29] is a state-of-the-art cross-platform DBI frame-
work. PIN is portable and supports any commodity hard-
ware with the TA-32 or the x86-64 instruction-set architec-
ture. The framework transparently allows an instrumented
program to maintain the same instruction and data ad-
dresses as well as the same register and memory values
with its uninstrumented counterpart. PIN provides a rich
set of APIs that allow developers to build various analysis
tools called Pintools.

PIN takes full control of a program by injecting itself
into its binary, thus, forcing the program to run inside its
virtual machine. It then uses its JIT compiler to translate,
instrument, and execute the program. The unit of com-
pilation is a trace, which represents a straight-line code
sequence that ends in an unconditional control transfer,
a predefined number of conditional control transfers, or
a predefined number of instructions. When the program
starts its execution, PIN compiles the first trace and
generates a modified trace. The generated trace is almost
identical to the original but enables PIN to regain control
when a branch exits the trace. Before moving to the next
trace, the current trace is saved into a cache code to
speed-up further executions of the same sequence of code.
Whenever the JIT compiler fetches a new code, the pintool
is allowed to instrument the code before compilation. The
instrumentation can run at different levels of granularity,
e.g., image, trace, routine, and instruction level, each
indicating when PIN executes the instrumentation routine.

The Trace Version APIs [5] of PIN provide a way to
implement and switch between multiple types of instru-
mentation on traces. For example, a trace may have both
heavyweight and lightweight instrumentation and PIN can
switch between the two at runtime based on a dynamic test
defined by the user. From an implementation point of view,
trace versions are user-defined numbers with zero being
the default for all traces. Switching to a new version causes
the execution to continue at a new trace starting with the
current instruction. To illustrate, assume that the current
trace A consists of 10 instructions and has the default trace
version zero. Then, after instrumenting five instructions,
the dynamic test results in switching the trace version to
one. PIN will split the trace A into two traces A and B
such that trace A ends at the fifth instruction and trace B
starts at the sixth instruction. PIN will, then, set the trace
version of B to one and continue the execution accordingly.

When compared to other DBI frameworks, PIN is flexi-
ble, easier to use, and has relatively lower overhead. Using
a lightweight basic block counter, Luk et al. [29] reported
a slowdown of 2.5x, 5.1x, and 8.3x, respectively for
PIN [29], DYNAMORIO [12], and VALGRIND [31], with the
SPECint benchmark on a Linux platform. For the above-
mentioned reasons, we choose to implement QDIME on top
of PIN to support the dynamic binary instrumentation of
software with strict QoS requirements. However, QDIME

1 void analysis(...){

2 start = get_time () ;

3 //Analysis code

4 Budget -= get_time() - start;

5 F

6 void instrumentation(...){

7 if (redundancy_off)

8 is_new = check_log();

9 if (is_new || !(redundancy_off)){
10 version = insert_call(check_budget ())
11 if (version == instrument){

12 //enable instrumentation
13 //insert analysis routines
14 }

15 else{

16 //disable instrumentation
17 }

18 if (redundancy_off)

19 update_log () ;

20 }

21 }

22 void budget_handler (int sig){
23 Budget = compute_Budget (qos);
24 }

Listing 1: Instrumenting with QDIME

is a generic approach, not restricted to PIN, and can be
ported to other instrumentation frameworks as well.

III. QOS-AWARE INSTRUMENTATION

This section provides details about QDIME, its algorithm
and design architecture.

A. QOwverview

It is important for instrumentation tools to guarantee a
certain QoS to the monitored program for responsiveness
and usability. QDIME is a DBI tool designed for this
purpose. To instrument a program, the user first defines
the QoS metric to be monitored by QDIME at run-time.
Further, the user is required to set a threshold and the
constraints that are to be satisfied by the metric to
guarantee an acceptable QoS. Finally, the user defines the
instrumentation period for QDIME.

Listing 1 shows the core algorithm of QDIME. At run-
time, QDIME decides to either enable instrumentation
(i.e., augment the program with analysis code) or disable
instrumentation (i.e., prevent the injection of the analysis
code into the program). Thus, to meet the QoS require-
ments, QDIME trades off information, QoS, and overhead.
Using the trace-version APIs, QDIME checks its budget at
each instrumentation point as shown in Line 10. Thus,
the instrumented code executes as long as QDIME has
the budget to do so and as a consequence, the QoS of
the program degrades. The analysis routine at Line 1
consumes the budget at each call by decrementing its value
by the total time it takes to execute. Whenever the budget
falls to or below zero, QDIME turns off instrumentation,
i.e., prevents insertion and execution of analysis routines,
leading to increased QoS and speedup as a result. The



mechanism of budget checking and version switching in
QDIME follows the same model of [8].

QDIME uses a signal handler that fires periodically to
replenish the budget (Listing 1, Line 22). The function
compute_budget() generates a new budget w.r.t. the
health status of the program. Thus, QDIME instruments
aggressively when the system is healthy enough by pro-
ducing a higher budget, but also limits its intrusion by
generating a lower budget as the QoS degrades. If the user-
defined threshold is violated, the budget is set to zero to
prevent further instrumentation. Figure 1 shows how the
budget is periodically replenished during the extraction
of system calls from Apache. For instance around 10 sec,
when Apache processes about 4,000 requests/sec, which
is above the threshold of 2,000 requests/sec, the budget
is set to approximately 35% of the 1 sec instrumentation
period. However, around 55 sec, the QoS drops to 3,050
requests/sec forcing QDIME to adjust its budget to only
about 20% to meet the threshold.
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Fig. 1: Apache: budget vs. QoS metric

B. Redundancy Suppression

Instrumentation tools may generate an amount of run-
time information that, however, contain many redundant
entries. The extracted information can form several giga-
bytes of data. Many researchers have reported the com-
plexity of understanding software systems using runtime
information due to its sheer size and complexity [18], [19].
One reason is the redundancy of traces which occurs due
to, for example, repetition of sequence of events. In [18],
removing contiguous repetitions in call traces dropped the
size of the extracted information to between 5% and 46%
of the original size. For many analysis tools, instrumenting
each instruction once is sufficient since the extracted infor-
mation is the same regardless of the number of times the
instruction is executed or instrumented. Examples of such
tools are code-coverage analyzers and memory profilers.

To respect the QoS threshold, QDIME may disable in-
strumentation, and hence, extract partial traces compared
to PIN. We enrich QDIME with a Redundancy Suppression
feature allowing it to prohibit the instrumentation of a
previously instrumented code [7]. This feature provides
three advantages; (1) reduction of the number of extracted

Performance .
Program’s Binary
Data
Metric Y QDIME \4
Analyzer
Budget Instr.
Manager Engine
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Fig. 2: Architecture of QDIME

traces to facilitate program comprehension, (2) increas-
ing instrumentation coverage, and (3) decreasing runtime
overhead. Although useful, the redundancy suppression is
an optional feature, which the user can turn off when not
needed.

With the redundancy suppression feature enabled,
QDIME utilizes the instrumentation budget to extract
unique, i.e., non-redundant run-time information. To be
able to identify the instrumented pieces of code, QDIME
saves their relative addresses into a simple log file as
shown in Listing 1, Line 19. QDIME checks the log before
instrumenting a new trace to ensure the uniqueness of
the extracted information (Listing 1, Line 8). Multiple
runs of QDIME may be required to, optimally, achieve
full coverage. In this case, the redundancy log file is
passed across runs, allowing QDIME to reveal only new
information during each run. We refer to this extraction
process as asymptotic completeness.

C. Design Architecture

QDIME periodically monitors the QoS state to ensure
that the quality of the instrumented program does not
degrade to violate the threshold. Thus, QDIME needs to
maintain a constant knowledge on the evolution of the
QoS metric throughout the entire instrumentation process.
QDIME achieves this by periodically extracting the QoS
data from the program under analysis. To make this
extraction process transparent and unintrusive, QDIME
relies on performance data generated by the program itself.
This reliance is possible because most, if not all, programs
with QoS requirements already provide a mechanism to
expose internal performance statistics. QDIME parses and
consumes this data to make its instrumentation decisions.
Even for programs that do not propose such a mechanism,
in our experiments, we found it straightforward to add an
extension that exposes QoS statistics.

The architecture of QDIME is as shown in Figure 2.
The Metric Analyzer periodically accesses the performance
statistics generated by the program. It then parses and
performs any user-defined computation on the data to
generate QoS metrics in a format accessible by QDIME.
Finally, the Analyzer writes the QoS data in a memory
area it shares with QDIME. Ideally, the frequency at which
the Metric Analyzer updates the QoS metric should match
the instrumentation period P, although this is not a
requirement. As shown in Listing 1, Line 23, the Budget
Manager of QDIME periodically reads the QoS values



from the shared memory to compute the budget. This
architecture allows QDIME to handle any application out-
of-the-box, without any modification of the binary.

IV. IMPLEMENTATION

This section describes QDIME’s implementation details.

A. Basic Details

We implemented a prototype of QDIME on top of PIN
as a C/C++ library, that any Pintool can load. QDIME
relies on the Trace Version APIs [5] provided by PIN to
transparently switch instrumentation on and off with min-
imal overhead. The switching decision is made whenever
QDIME reaches an instrumentation point. A release of
QDIME is available for download at https://github.com/
pansy-arafa/qdime.

For the redundancy suppression feature, QDIME utilizes
a hash-table as the redundancy log. After instrumenting a
trace, QDIME saves the trace relative address to the log.
QDIME searches the log before the instrumentation of a
trace. If 7; is the current trace and 7; is the trace already
in the hash table log L, QDIME instruments 7; only if
address(t;) # address(t;),V1; € L. To avoid adding to
the runtime overhead, both steps, saving to and searching
the log, take place in the instrumentation routine (not the
analysis routine). According to comparative evaluations of
the hash-table versus other data structures such as binary
search tree (BST), a hash-table provides the following;:

o Negligible overhead and simple implementation.

o Fast logging and searching (average case: constant;
worst case: linear in the size of the table).

o Negligible false negatives. False negatives will occur,
if QDIME prohibits instrumentation of an uninstru-
mented trace.

o Possible false positives, i.e., allowing instrumentation
of a previously instrumented trace. False positives
will happen, if the current trace 7; was previously
instrumented as part of a previous trace 7;. Note
that a trace may be part of another trace due to the
creation of new traces through version switching as
explained earlier in Section II-B.

The evaluation of the redundancy-suppression data-
structure showed that there is a trade-off between the
ratios of false positives and false negatives. A high ratio of
false negatives may dramatically decrease the instrumen-
tation coverage, i.e., the amount of extracted information.
Although the hash-table log may generate a percentage of
redundant information, it is safer and preferable due to
the low ratio of false negatives. An extended discussion of
the mentioned evaluation is available in [7].

QDIME registers a SIGVTALRM signal, which fires at each
instrumentation period P to replenish the budget (List-
ing 1, Line 22). We implemented the function get_time ()
of Listing 1, Line 2 as an inlined assembly function using
rdtsc to return the value of the timestamp counter.

B. Budget Function

We implemented the budget function
compute_Budget() of Listing 1, Line 23, as a map
of RT into [0,P], where P is the instrumentation
period. In general, the budget function can be built as
a decreasing function using the insight that a program
produces high QoS when the budget is set to zero, i.e.,
when instrumentation is disabled. Also, the QoS decreases
as the budget increases.

In this paper, we design the budget function as a
proportional controller which periodically determines the
percentage of the QoS to safely use for instrumentation.
If the value of the QoS, v(t), extracted from the program
at time t is above the threshold, there will be a QoS gain
given by ¢(t) = v(t) — T, where T represents the user-
defined threshold value. The gain function g(t) depicts
the health of the monitored program w.r.t. the defined
threshold and represents the extra portion of the QoS to
utilize for instrumentation without violating the threshold.
The function of Equation 1 encodes these observations
and sets the budget to zero whenever the QoS constraint
is violated, i.e., QoS below the threshold in this case.
Otherwise, it always produces a budget B < P. Instead
of zero, the user could also choose a default value to use
when QDIME fails to meet the threshold condition. Since
respecting the QoS threshold is the primary objective,
QDIME adopts a conservative budget function by choosing
the tuning factor of 1/(v(t) + T') in Equation 1. As later
shown in Section V-C, the budget function of Equation 1
enables QDIME to successfully avoid threshold violations
while providing both high coverage and reduced overhead.
However, one could opt for a more aggressive tuning pa-
rameter, considering the overhead of the analysis routine,
such as 1/(M — T) if the QoS upper-bound value M is
known or even 1/v(t).

0 ifo(t) <T
b(t) = M x P otherwise (1)
v(t)+T

V. PERFORMANCE EVALUATION

This section describes the experimental setup and dis-
cusses the results of QDIME instrumenting four popular
real-world applications. Note that all the average values
mentioned in Section V-C are geometric means.

A. Experimental Setup

The experimentation environment consists of two work-
stations each hosting a 64-bit quad-core i7-2600 processor
clocked at 3.4 GHz with 16 GB of RAM and 8 MB of cache.
Each workstation runs Ubuntu 12.04 patched with the
real-time kernel v3.2.0-23 that converts Linux into a fully
preemptive kernel. We prevent task migration between
cores, lock each core to its maximum frequency, and
run the experiments with increased scheduling priority.
Although these settings are not necessary for QDIME,



they lead to less variance in the results [33]. We used
the following analysis tools taken from the PIN toolkit
version 2.14-71313 and compiled using gcc 4.6.3 with -O3
optimization level. The tools are ordered from the least to
the most intrusive.

1) Sys-trace: extracts system function calls. The system-
call traces are important for debugging and discover-
ing performance bottlenecks in a program.

2) Call-trace: outputs the list of function calls with
corresponding instruction addresses. Call traces are
used to build call-context trees, which are useful in
performance analysis and runtime optimizations [36].

3) Branch-profile: prints out the jump, call, and return
instructions in addition to the source and destination
addresses. The output of this tool is useful for explor-
ing code coverage for example.

To evaluate its applicability and scalability, we run four
real-world applications on top of QDIME. We repeated each
experiment ten times (1) natively, (2) with PIN, and (3)
with QDIME. Our experiments empirically evaluate the
following metrics:

e QoS performance metric: the values of the user-
defined QoS metric over time. This metric measures
the ability of QDIME to respect the user-defined
threshold during instrumentation.

o Slowdown factor of the instrumented application: the
ratio of the execution time of the instrumented ap-
plication to its native execution time. This metric
evaluates the runtime overhead of QDIME.

o Instrumentation coverage: defined as the ratio of the
amount of non-redundant information extracted by
QDIME to that extracted by PiN. To illustrate, a
100% coverage means that QDIME extracts the same
number of non-redundant traces as PIN. This metric
highlights the ability of QDIME to extract quality
information.

Based on the above, our experiments are to verify that
(1) instrumenting with PIN highly degrades the quality
of the application, (2) QDIME always maintains a higher
QoS w.r.t. that of PIN, (3) QDIME is able to meet the
defined threshold to provide a guaranteed QoS to the end-
user, (4) QDIME reduces the application’s slow-down factor
introduced by DBI, and (5) QDIME is capable of extracting
sufficient information, i.e., provide high coverage.

B. Benchmark Applications

This subsection describes the benchmarks and the ex-
perimentation objectives. We fixed the instrumentation
period to P =1 sec for all the applications. Different val-
ues of the instrumentation period and the QoS threshold
will be discussed in Section VI.

Gzip Compression Utility Gzip is a widely used
data-compression application of about 59,000 lines of code
(LOC) adopted by the GNU project [3]. Our experiments

aim to instrument Gzip 1.4 while maintaining a compres-
sion rate threshold of 1 MB/s. Gzip compresses the Linux
kernel 4.1.1 file whose size on the hard disk is 569 MB
and generates a compressed file of size 121 MB using
the default compression flags. QDIME’s Metric Analyzer
periodically monitors the size of the output file to compute
the compression rate.

MySQL Server MySQL is a popular, fast, scal-
able, and reliable relational database management sys-
tem. MySQL is a multi-threaded system of over 1.5 mil-
lion LOC [4]. For the experiments, we installed MySQL
5.5.43 and SysBench 0.4.12, a benchmarking tool for
databases [25]. We configured SysBench to run an OLTP
test with a MySQL database of 1,000,000 records. The
test simulates 10 users performing a total of 100,000
requests. This setup results in the execution of a total of
2,100,000 database queries. The goal of the experiments is
to instrument MySQL server, under the above-mentioned
workload, and keep a QoS threshold of 1,000 transactions
per second (TPS). The Metric Analyzer utilizes MySQL
APIs to access the server status variables and compute
the number of TPS.

Apache HTTP Server Apache [2] is a powerful
and popular web server of about 1,785,428 LOC that
implements the latest HTTP protocols. The experiments
intend to instrument an active Apache server, i.e., version
2.4.16 in this case. The workload consists of 200,000 HTTP
requests from 10 concurrent users generated with the
Apache benchmarking tool ab 2.3 [1].

Although QDIME is capable of handling an application’s
child processes, the Apache child processes refused the
attachment of both PIN and QDIME. Therefore, the exper-
iments run Apache in debug mode, which forces the server
to run as a single process. To respect a QoS threshold
of 3,000 requests per second (RPS), the Metric Analyzer
monitors Apache’s log files to determine the number of
requests executed per second.

Redis Data Structure Server Written in ANSI
C, Redis is an in-memory, NoSQL database management
system, with optional persistence capabilities [6]. Redis
consists of roughly 20,000 LOC. Many well-known projects
such as Twitter, GitHub, and Pinterest, rely on Redis.

We installed Redis server 3.0.3 and used redis-benchmark
utility to generate load on the server. We configured redis-
benchmark to run a series of 10 tests with 50 parallel
connections, each with a maximum of 200,000 queries. The
QoS performance threshold is set to 30,000 queries per
second (QPS). The Metric Analyzer uses Hiredis, a C
client library for Redis, to access run-time statistics from
the server.

C. Ezxperimental Results

QDIME respects the QoS performance threshold of the
application, while PIN drastically alters the QoS of the ap-
plication. Figures 3, 4, 5, and 6 show the QoS metrics over
time for Gzip, MySQL, Apache, and Redis, respectively,
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Fig. 3: Gzip: QoS performance metric over time
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10000 | T pae 10000 T pave 10000 T pate
—— QDime —— QDime —— QDime
—--- Threshold —--- Threshold —--- Threshold
o 8000 o 8000 o 8000 -
(0] (0] [0}
@ @ @
B 6000 | S 6000 S 6000
[%2] (%] (2]
Q () Q
3 4000 S 4000 - T 4000 -
o e o o
2000 | 2000 2000
0 0 0
T T T T T T T T T T T T T
20 40 60 80 0 50 100 150 200 250 200 300 400
Time (sec) Time (sec) Time (sec)
(a) Sys-trace (b) Call-trace (¢) Branch-profile
Fig. 5: Apache: QoS performance metric over time
—e— Native -~ —— Native , —e— Native
—%— Pin —%— Pin —%— Pin
- —— QDime - —— QDime - —o— QDime
150000 —--- Threshold 150000 —--- Threshold 150000 —--— Threshold
[ (o] (&
Q (0] Q
@ @ @
@ 100000 @ 100000 | @ 100000 |
Q2 Q Q
5] 5] 5]
pm} pm} pu}
S 50000 - M S 50000 | S 50000 | p
3 }_ 1 L ‘
| e
0 04 04
T T T T T T T T T T T T T T T
10 20 30 40 50 60 70 0 50 100 150 0 50 100 150 200
Time (sec) Time (sec) Time (sec)

(a) Sys-trace

(b) Call-trace

Fig. 6: Redis: QoS performance metric over time

(c) Branch-profile




for each analysis tool. The execution time in seconds is
on the x-axis, while the y-axis represents the QoS metric.
The higher the QoS values, the better it is for the overall
performance of the application. In this settings, we turned
on the redundancy suppression feature of QDIME. For
increased readability, the mentioned figures show only the
first experimental repetition for each application and tool.
Moreover, the box-plots in Figures 7, 8, 9, and 10 summa-
rize the QoS values for the ten repetitions and, if appli-
cable, for all QDIME runs. The y-axis represents the QoS
metric values during native execution, instrumentation on
top of PIN, and instrumentation on top of QDIME. Gzip:
While PIN maintains a high average compression rate of
7.00 MB/sec with the lightweight Sys-trace, it degrades
the average QoS down to 646.72 KB/sec with Call-trace,
and 73.60 KB/sec with Branch-profile. However, as seen
in Figures 3 and 7, QDIME always respects the threshold
of 1 MB/sec with an average compression rate of 7.33
MB/sec with Sys-trace, 5.91 MB/sec with Call-trace, and
2.89 MB/sec with Branch-profile. Natively, Gzip has an
average compression rate of 8.26 MB/sec.
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Fig. 7: Summary of Gzip QoS-metric values

MySQL: The un-instrumented execution of MySQL
server maintains an average of 2,544 TPS as shown in
Figures 4 and 8. PIN produces only an average of 868,
161, and 128 TPS for Sys-trace, Call-trace, and Branch-
profile, respectively. On the other side, QDIME respects the
threshold of 1,000 TPS with an average of 1,310, 1,165,
and 1,158 TPS respectively for the three analysis tools.

Apache: Figures 5 and 9 show that the native exe-
cution of the Apache server along with its workload has
an average of 8,302 RPS. PIN cannot respect the server’s
QoS and produces only an average of 2,343 RPS with Sys-
trace, 689 RPS with Call-trace, and 452 RPS with Branch-
profile. QDIME maintains an average QoS of 3,514 RPS
with Sys-trace, 3,009 RPS with Call-trace, and 3,014 RPS
with Branch-profile.

Redis: Natively, Redis maintains a QoS of about
177,667 QPS on average as in Figures 6 and 10. The QoS
remains below threshold with PIN and drops from 21,448
QPS on average with Sys-trace to 9,859 QPS with Call-
trace and 7,461 QPS with Branch-profile. Contrarily to
PIN, QDIME meets the defined threshold of 30,000 QPS
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Fig. 9: Summary of Apache QoS-metric values

with all the analysis tools by maintaining an average QoS
of 41,811 QPS with Sys-trace, 34,918 QPS with Call-trace,
and 36,440 QPS with Branch-profile.
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Fig. 10: Summary of Redis QoS-metric values

As for the slowdown factor of the instrumented ap-
plications, QDIME always outperforms PIN. On average,
QDIME reduces the runtime overhead by 1.41x with Sys-
trace, 5.67x with Call-trace, and 10.26x with Branch-
profile. Figure 11 presents the average slowdown factors of
the instrumented applications on top of PIN and QDIME
w.r.t. the application’s native execution time. The x-axis
lists the analysis tools, whereas the y-axis shows the
average slowdown factors. QDIME reduces the slowdown
of PIN with Sys-trace from 2.96x, 4.14x, and 8.47x to
1.96x, 2.81x, and 4.97x for MySQL, Apache, and Redis,
respectively. Similarly, Call-trace’s overhead drops from



12.20x, 15.07x, 13.09x, and 18.56x with PIN to 1.19x,
2.20x, 2.87x, and 5.74x with QDIME respectively for
Gzip, MySQL, Apache, and Redis. With Branch-profile,
PN slows down Gzip by a factor of 102.03x. Thanks to
the adaptive budget function and redundancy suppression
of QDIME, this slowdown is reduced to 2.56x. Similarly,
the slowdown factor of Apache with Branch-profile on top
of QDIME is only 2.84x compared to 19.96x atop of PIN.

Although QDIME with Branch-profile requires multiple
runs to achieve high coverage with MySQL and Redis (Fig-
ure 13), the total execution times of QDIME runs remains
lower than that of PIN. PIN introduces slowdown factors
of 20.09x and 24.56x for MySQL and Redis, respectively.
QDIME reduces these values to 2.22x and 5.63x for one
run. The instrumentation of MyS@QL atop of PIN consumes
785 sec on average, whereas the combined execution times
for the two runs with QDIME is 175 sec at most. Similarly,
Redis runs three times on top of QDIME for a total of 147
sec, while PIN takes 209 sec on average.
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Fig. 11: Slowdown factors of the instrumented applications
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QDIME is a useful and practical DBI technique since

it, not only, respects the QoS thresholds and reduces the
runtime overhead, but also provides high instrumentation
coverage in a low number of runs. QDIME, on average,
conveys 92% of the runtime information compared to PIN.
Figure 12 plots the average QDIME coverage for each
analysis tool. The x-axis lists the applications, while the
y-axis shows the instrumentation coverage of QDIME w.r.t.
that of PIN. In general, QDIME maintains high coverage
by being able to extract up to 100% coverage in a single
run with some applications and tools. In our experiments,
the lowest coverage of QDIME is with Redis, as only 78%
of the Branch-profile information is extracted. Figure 13
highlights the number of runs required by QDIME to
reach the coverage of Figure 12. Only Branch-profile, the
heaviest analysis tool, consumed two runs for MySQL and
three runs for Redis to extract 93% and 78%, respectively.

Summary: Table I summarizes the experimental
results. As shown earlier, QDIME always respects the QoS
threshold of the instrumented application leading to a
higher overall system performance as compared to PIN.
Using QDIME, the slowdown factors of the instrumented
applications dropped by 1.41x with Sys-trace, 5.67x with
Call-trace, and 10.26x with Branch-profile on average
w.r.t. PIN. Finally, the runtime information collected by
QDIME represents an average of 92% of that of PIN, with
a minimum of 78% and a maximum of 100%.

VI. DISCUSSION

QDIME is a generic method that is portable to DBI
frameworks other than PIN. QDIME can instrument any
QoS application whose security permits the attachment
of a DBI framework. For example, the child processes of
the Google Chrome browser executes within a restrictive
environment and accordingly prohibits the PIN attach-
ment. Also, the applicability of QDIME is not limited to
the analysis tools used in this paper.

Redundancy suppression, which is an optional feature of
QDIME, is useful for (1) analysis tools that extract useless
repetitions, and (2) applications that maintain negligible
variance among runs. Without redundancy suppression,
QDIME may require a higher number of runs to collect
sufficient instrumentation coverage. For instance, without
redundancy suppression, QDIME extracted 69.88% of call
traces with Gzip in one run (vs. 99.4% with redundancy
suppression enabled).

We evaluated various threshold values to identify the
highest that QDIME can support in our settings. Table II
presents the maximum possible thresholds along with
respective coverage. Beyond these values, QDIME starts
to violate the thresholds. With higher thresholds, QDIME
extracts from 70% to 100% of the coverage for all the appli-
cations. The only exception is Branch-profile and MySQL
where the highest threshold of 1,200 TPS restricted the
coverage to 55.5%. However, such a trade-off between the
QoS level and the extracted coverage is expected especially
for a heavy-weight analysis tool.



TABLE I: Summary table

Applications Gzip MySQL Apache Redis
Analysis Tools Sys Call Branch Sys Call Branch Sys Call Branch Sys Call Branch
QDIME 1.13x 1.19x 2.56x 1.96x 2.20x 2.22x 2.81x 2.87x 2.84x 4.97x 5.74x 5.63x
Slowdown
PiN 1.17x 12.20x 102.03x 2.96x 15.07x 20.09 % 4.13% 13.09x 19.96 x 8.47x 18.56x 24.57x
QpivE # Runs 1 1 1 1 1 2 1 1 1 1 1 3
Coverage 100%  99.40% 79.34% 99.23% 90.82% 92.86% 95.26% 96.46% 82.42% 100% 90.34% 77.96%

TABLE II: Max. threshold values with resp. coverage

Application Sys-trace Call-trace Branch
Gip Thr. 7.50 MB/sec 7.50 MB/sec 7.00 MB/sec
Cov. 78.57% 69.70% 81.14%
MysQL _Thr- 1,500 TPS 1,200 TPS 1,200 TPS
Cov. 94.59% 92.57% 55.56%
Thr. 4,000 RPS 3,400 RPS 3,400 RPS
Apache
Cov. 93.10% 95.94% 82.30%
Redis Thr. 48,000 QPS 44,000 QPS 44,000 QPS
Cov. 100% 89.22% 71.55%

Finally, we assessed the impact of the instrumentation-
period value on QDIME’s performance by varying the in-
strumentation period from 1 to 10 seconds. Table IIT sum-
marizes the results for Call-trace. In general, smaller peri-
ods allow fine-grained decision making and are therefore to
be favored at the expense of larger ones. The experiments
show that increasing the instrumentation period increases
the time at which QDIME decides its budget leading to
frequent threshold violations. With Gzip, QDIME always
respects the threshold when the instrumentation period
P < 7 sec. In this case, there is a drop in coverage with
threshold violations when P > 6 sec. For MySQL and
Apache, the threshold violations start when P > 3 sec and
for Redis, when P > 2 sec but without coverage sacrifice.

TABLE III: Coverage and threshold violations points

Threshold Gzip MySQL Apache Redis
Respected Per. 1—- 6 sec 1— 3 sec 1 - 3 sec 1 -2 sec
Cov. 99.40% 94.75% 96.06% 90.62%
Violated Per. 7—-10sec 4—10sec 4 —10sec 3 — 10 sec
Cov. 70% 94.75% 96.06% 90.62%

VII. RELATED WORK

This section then compares the existing DBI techniques
to QDIME. Thanks to their flexibility and scalability, the
recent years have seen a wide adoption and develop-
ment of many DBI frameworks such as DYNAMORIO [12],
DyNINST [10], VALGRIND [31], VULCAN [15], PIN [29], and
PEMU [40]. These tools all suffer from the same overhead
problem, sacrificing the overall QoS of the monitored
program. Thus, many works [30], [41] leverage parallelism
to reduce the overhead of DBI frameworks. However, while

the output of these frameworks highly depends on the
number of cores available and the amount of code that
can effectively be parallelized, QDIME can still benefit
from these techniques to provide even better throughput
on multicore platforms. Several other optimization tech-
niques [26], [39], [42] have been proposed with the same
objective, reducing the instrumentation overhead of DBI.
However, none of them have so far considered the QoS of
the application under analysis. Similar to QDIME, Cho et
al. [13] and Arafa et al. [8] also propose to control both
the instrumentation duration and frequency to switch the
instrumentation on and off periodically. However, their
techniques can guarantee only the timing property of
programs.

Sampling has been widely used to reduce the run-
time overhead by trading off the amount of extracted
information [9], [21], [17], [24], [34]. Arnold and Ry-
der [9] collects low-overhead frequency profiles using a
compiler-controlled counter-based sampling to switch be-
tween instrumented and uninstrumented code. Hirzel and
Chilimbi [21] further extended this work to allow longer
samples with lower overhead. To maximize the coverage of
infrequently executed code, Hauswirth and Chilimbi [20]
propose an adaptive profiling scheme that samples code re-
gions at a rate inversely proportional to their execution fre-
quency. Fischmeister and Ba [17] introduced a sampling-
based monitoring approach for time-sensitive applications
along with techniques to statically determine sampling
periods. While sampling-based techniques mostly focus
on performance profiling and optimization, QDIME also
considers the overall QoS of applications.

VIII. CONCLUSION

This paper presents QDIME, a QoS-aware DBI technique
that guarantees a certain QoS to the program under anal-
ysis. The evaluation on four real-world applications shows
that QDIME respects the QoS threshold while maintaining
an average coverage of 92%. QDIME also reduces the
slow-down factors of the instrumented applications. These
results make QDIME a powerful tool for instrumenting
QoS-based applications and enable the design of dynamic
analysis tools with QoS guarantees. For the future work,
we are investigating new budget functions; for example
utilizing adaptive learning approach and handling thread-
specific constraints.
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