
Describing Multidimensional Schedules for Media-Access Control in
Time-Triggered Communication

Sebastian Fischmeister
University of Pennsylvania
sfischme@seas.upenn.edu

Abstract

A shared communication medium is characterized by
multiple entities that use this medium by reading and writ-
ing from and to it. Write operations on the shared com-
munication medium must be coordinated and collision-
avoidance schemes are one technique to achieve this;
for example time-division multiple access (TDMA). Com-
mon solutions for TDMA include descriptive tables or
algorithm-based client/server mechanisms. Yet, they are
all limited in their expressiveness: at the beginning of the
communication period at most one write operation can be
scheduled for a specific time slot.

In this work, we propose a system that allows for
scheduling several write operations for the same time slot
but guarantee that at most one will be performed though. It
does not deal with scheduling algorithms per se, it deals
with describing and implementing a computed schedule.
The consequences of this added expressiveness allow for
parallel and stateful communication schedules merged and
serialized in an ad-hoc way.

The contribution is the proposed more-expressive yet still
value and time-deterministic way of describing communi-
cation schedules for time-triggered communication plus a
description of its implementation in an interpreter imple-
mented as infrastructure in RTLinuxPro.

1 Introduction

A shared communication medium (SCM) is character-
ized by multiple entities that use this medium by reading
and writing from and to it. Data writers perform write op-
erations on the SCM. Data readers perform read operations
and retrieve values written by data writers. An example of
such a SCM is the network in a distributed system such as
Ethernet in a distributed application or a CAN bus in an au-
tomotive application.

If multiple data writers are present, then collision will
occur on the SCM in case at least two data writers have

performed write operations at the same time. A collision
scrambles data written by the data writers and data readers
will not receive a correct message. Several different strate-
gies exist to implement error-free communication on a SCM
[1]. Collision-detection schemes detect a collision on the
SCM and require the data writers to retransmit the message.
Collision-avoidance schemes constrain write access for data
writers and these constraints guarantee collision-free com-
munication. SCM are widespreadly used in non–real-time
and real-time applications.

In real-time applications, timeliness of tasks is a first-
class citizen. In hard real-time applications, if a dead-
line is missed, a catastrophic failure with possibly human
loss may be a consequence [2]. Timeliness of tasks im-
plies deterministic communication. This involves commu-
nication via SCM, especially in distributed real-time ap-
plications [2]. To guarantee deterministic communication,
collision-detection schemes must guarantee deadlines un-
til what time a specific message will have been transmit-
ted in the worst case possible. Collision-avoidance schemes
must also guarantee deadlines, however, they do not have to
worry about scrambled messages as they prevent them im-
plicitly. One well understood collision-avoidance scheme
is time-division multiple access (TDMA). It divides time
into slots and assigns single slots to at most one data writer.
Within the specified slot, the data writer can perform write
operations on the SCM without interference from any other
data writer. A scheduling algorithm assigns the individual
slots to data writers and thereby generates a communication
schedule (in contrast to an execution schedule that describes
when to dispatch tasks to the CPU).

Currently, to provide guarantees, the TDMA-based com-
munication schedule is calculated offline or at least at the
beginning of the communication cycle. So the communica-
tion cycle is static. In this work, we propose a mechanism
to define more dynamic schedules that can change within
the communication cycle, but still provide guarantees. This
work solves problems in the context of flexible distributed
real-time systems, where meeting communication deadlines
is essential, however, static and a-priori systems are not vi-

1

In Proc. of the 10th IEEE Symposium on Computers and Communications (ISCC'05), 2005.

1/7

able due to the demands of the dynamic, chancing environ-
ment.

In this work, we first describe a network-code machine
(NCM) in Section 2 that can dispatch arbitrary TDMA-
based communication schedules (Section 3). Then we in-
troduce the concept of multidimensional schedules (Sec-
tion 4) and stateful schedules that provide verifiable and
flexible communication and increase the expressiveness of
TDMA-based communication schedules. Finally, we pro-
vide an overview of our toolchain to generate code for the
nc-machine (Section 5), discuss related work 6, and close
the paper (Section 7).

2 Network-Code Machine

The network-code machine (NCM) conceptually splits
communication into two parts: producing values and com-
municating values (writing them on the SCM). The ap-
plication on top of the NCM produces values by running
application-specific functionality. The NCM is only respon-
sible for communicating values. Communicating values in-
cludes reading and writing values from and to a SCM such
as a computer network.

The NCM is an interpreter that executes TDMA-
based communication schedules in form of network-
communication code (n-code). Such a schedule specifies
for each participating node: (1) when it is allowed to per-
form write operations on the SCM, (2) when it should per-
form read operations on the SCM, and (3) which value (vari-
able) it should use for the write or read operation. Unlike
other approaches (see Section 6), n-code does not necessar-
ily have to be a linear communication schedule encoded in
a communication scheduling table. N-code is equivalent to
a program that is interpreted and executed by the NCM.

The NCM and the application do not necessarily depend
on each other. The application and the NCM may either
run independently from each other or they use a combined
execution schedule. The NCM and the application inter-
act via a predefined interface that encapsulates a memory
region (further denoted ascommunication buffer). The ap-
plication performs write and read operations on this com-
munication buffer. Depending on the type of application
(real time or non real time), the interface of the communi-
cation buffer may differ. For example, when implement-
ing an application for the domain of real-time systems, the
communication-buffer layout is predefined and the applica-
tion and the NCM perform read and write operations with
specific addresses. Predefined communication-buffer lay-
outs are important for real-time applications because the
execution requirements of tasks may result in transferring
a specific value (e.g., a task output) at a specific moment
in time. Non–real-time applications do not have such re-
quirements. When implementing a non–real-time applica-

tion, the communication buffer acts as mere queue using the
first-in–first-out mechanism.

2.1 Instruction Set

Communication requires the participants to perform dif-
ferent steps such as communicating a value or listening for
a value, or waiting. The n-code instructs the NCM what ac-
tion it should perform on the SCM and the communication
buffer.

• Send. The instructionsend(loc, id, dl, act) tells the
NCM to write a value on the SCM. The locationloc de-
notes a location in the communication buffer and spec-
ifies which value to be communicated. Theid iden-
tifies the communication to which this value belongs
to. The deadlinedl specifies the point in time until
which the NCM must have communicated the value.
The time valueact defines, the point in time at which
this value will be accessible to other tasks1.

• Receive. The instructionreceive(loc, id) tells the
NCM to read a value from the SCM. The locationloc

specifies the address within the communication buffer,
at which the value will be written. The valueid iden-
tifies the communication to which the received value
belongs to.

• Future. The instructionfuture(dl, jmp) schedules a
wait operation that will halt the NCM until the deadline
dl has passed and then jumps to the position given by
jmp.

• Signal. The instructionsignal(dl, s) is a special form
of the instructionsend andreceive. It does not trans-
mit/receive an application-specific value, but it trans-
mits/receives a protocol-specific symbol. The NCM
must have transmitted/received the signal before the
deadlinedl has passed. The symbols denotes the sym-
bol that is put on or read from the SCM.

The instructionsignal is executed by sending and
receiving nodes. The current communication master
transmits the symbol and all other member nodes read
it.

• Return. The instructionreturn() suspends the NCM
until it is resumed by afuture instruction.

• If. The instructionif(g, jmp) implements a condi-
tional jump. If the guardg evaluates to true, the pro-
gram counter of the NCM is set to the addressjmp.
Otherwise, the program counter is increased by one.

1Necessary only for time-triggered computation.

2/7

2.2 Example Communication

Figure 1 provides an example of a time-triggered com-
munication which involves three nodes (n1, n2, andn3).
The communication round has a length of three slots in
which at most one node can communicate at the same time
and the communication cycle consists of one communica-
tion round. All communication on the SCM is broadcast
(i.e., a message transmitted byn1 can be received byn2

andn3, however, they may discard the message). The com-
munication graph shows thatn2 receives messages sent by
n1 andn1 andn3 receive messages sent byn2.

� �
� �

�
�

� � � � �
� � � � �
� � � � �
� � � � � � � � � �

� � � � �
� � � � �
� � � � � � � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
	 	 	 	 	
	 	 	 	 	

� � � � �
� � � � �
� � � � �

n2

t-Marks t0 t1 t2 t3

TimeMedia

n1

n2n1

n3

Comm. graph

Comm. cycle

Figure 1. TDMA communication example.

Noden1 performs three operations on the SCM: First,
it sends data, then it receives data fromn2, and finally it
sends data again. Noden2 also performs three operations:
First, it receives data fromn1, then it sends data, and finally
it receives data fromn1 again. Noden3 performs only one
operation: it receives data fromn2. The following listing
shows the corresponding n-code forn2.

Noden1:
L0 : f u t u r e t0 , L1

re turn
L1 : send t1 , A , tx

f u t u r e t2 , L2
re turn

L2 : r e c e i v e B
f u t u r e t2 , L3
re turn

L3 : send t3 , A , tz

f u t u r e t3 , L0
re turn

Noden2:
L0 : f u t u r e t1 , L1

re turn
L1 : r e c e i v e A

f u t u r e t1 , L2
re turn

L2 : send t3 , B , ty

f u t u r e t3 , L3
re turn

L3 : r e c e i v e t3 , A
f u t u r e t3 , L0
re turn

3 Arbitrary TDMA

This section provides the basic formalism required for
the following proof and the concepts presented in the fol-
lowing sections. We claim that the NCM and its instruction
set is sufficient to express arbitrary TDMA-based commu-
nication schedules. This means, the NCM is equivalent ex-
pressive to schedules described by tables but also schedules
generated at run-time by complex scheduling algorithms.
Proofing the former is trivial, proofing the latter requires
some effort.

The setN includes all computation nodesn of the
system that use the SCM. The setC := N × N :=
{(ni, nj)|ni ∈ N, nj ∈ N} contains all communication of

the distributed application and the tuple(ni, nj) describes a
point-to-point communication betweenni andnj in which
ni is the sender andnj is the receiver. The setB is a subset
of C∗ and describes all valid broadcast communication by
B := {b|b ∈ C∗, ∀c ∈ C, c ∈ b : n0,i = n0,j}. TDMA-
based communication schedules involve time and times-
tamps. The setT refers to the time base and elementst ∈ T

are timestamps. We use the mappingTS : N × T → T

with TS(n, tl) = tg whereTS(n, tl) relates a timetl at
noden to a global timetg. For slotted communication,
we need to introduce slots to the model. First, we intro-
duceχ ⊆ T with χ := {(ti, tj)|ti ≤ tj ; ti, tj ∈ T }
and ς as slot length. The mappingS : N → χ with
S(n) = {(ti, tj)|ti = n ∗ ς + δ(n), tj = ti ∗ ς} where
S(n) defines a time frame[ti, tj) in whichti is starting mo-
ment andtj the excluded ending moment of slot numbern.
The functionδ(n) can introduce gaps in the schedule be-
tween single slots. The mappingslotting : S(N) → B∗

with slotting(S(n)) = Ψ provides the broadcast commu-
nication that happens in a specific slot withΨ ∈ B that
satisfies the communication requirements specified by the
application. The scheduler determines the slot assignment
and thus calculates the result ofslotting(S(N)).

In the following proof, we show examples that
base on the communication depicted in Figure 1 with
Z ⊆ C, Z := {(n1, n2), (n2, n1), (n2, n3)}, S :=
{(t0, t1), (t1, t2), (t2, t3)}.

Theorem 3.1 The NCM can implement arbitrary collision-
free TDMA-based communication patterns, i.e., for anyC

if ∃Ψ that satisfies the communication requirements of the
application for allB, we can generate code for the NCM.

The goal of TDMA is to prevent collision on
the communication channel. Consequently it is in-
tended that at most one node performs a write op-
eration on the channel at pointtx. Consequently,
∀n : 0 ≤ |Ψ| ≤ 1. The setB follows this defini-
tion: Given the communication pattern in Figure 1,B :=
{∅, {(n1, n2)}, {(n2, n1)}, {(n2, n3)}, {(n2, n1), (n2, n3)}}.

All nodes utilizing the SCM use a globally synchronized
clock. We useTS−1 : T → N × T with TS−1(t) = τ

whereTS−1(t) denotes the set of timestamps at each node
that relate to the global timet. Given the global clock
∀a ∈ τ : ta = tglobal. Given the non-discrete form of
time, there exists always aty that satisfiestx < ty < tz
iff tx 6= tz. See Kopetz [2] for further details about this
lemma. We split the proof of Theorem 3.1 it into three sep-
arate parts: proof sending, proof receiving, and proof any
combination of sending and receiving. Yet, all three proofs
use the same basic idea.Σ includes letters and each letter
represents an individual node (e.g., noden1 ≡ a). Each
communication slot is assigned an element fromΣ∪ ε. The
characterε represents an empty communication slot. The

3/7

languageL = Σ∗ then provides all possible communica-
tion patterns on the SCM.

Lemma 3.2 We can represent all TDMA-based communi-
cation patterns in words of the alphabethΣ.

Proof Since time monotonically passes, we can assume,
that no two lettersx and y must be placed on top of
each other, except the communication takes place at ex-
actly the same moment (i.e.,tx = ty). Two nodes can
either intentionally or unintentionally communicate at the
same point in time. No two nodes communicate intention-
ally at the same point in time (by definition of TDMA). As
all nodes know the global time and all nodes participate in
the TDMA-based communication (by definition ofN), un-
intentional communication cannot happen, unless one par-
ticipating node failed or it is not a member of the applica-
tion. As no intentional and no unintentional communication
can happen at the same point in time, no two letters must be
placed on top of each other. �

From 3.2 and the language L, we have to transform any
encoded word to n-code. To do so, the word w (representing
the communication pattern) and the lengthts of the time
slot is sufficient. The sequence of characters represents the
order in which the communication takes place and it can be
translated into n-code.

Mapping communication patterns onto words, the lan-
guageL = Σ∗ includes all possible collision free commu-
nication patterns for the sending party. One word represents
one possible communication pattern. Any communication
pattern is thus part of the list of all possible words. The
number of possible words is the power #time-slots of #hosts
and comprises all possible communication patterns.

Receiving packets from a stream of communication is
similar to filtering out single letters from words. For ex-
ample, given the communication wordaabbcc2, n3 is only
interested in data packets fromn2. Thus it filters for all let-
tersb. Noden1 is interested in all data packets, except its
own. Thus, it filters for all letters excepta. Noden2 is only
interested in the first packet sent byn1 and in the last packet
sent byn3. Thus it filters for “.εεεε.”.

Local data transfers, i.e., communication tuples
(nx, nx), need not be communicated via the SCM and we
assume that it must not be communicated.

Lemma 3.3 Sending and receiving can be combined in any
form. I.e., there is notx at whichNx is sender and receiver.

Proof No node is sending and receiving its own data and
at most one node is sending data (by definition of TDMA).
Consequently there is at most one packet on the bus and at
most one n-code for any point in time per node. Conse-
quently, sending and receiving data can be combined in any
form. �

2Three nodes (n1 to n3) and six time-slots per period.

4 Multidimensional Schedules

Communication on a SCM is one-dimensional. Such
one-dimensional schedules are often written in tables (see
Section 6) and read linearly. Such schedules define∀Ψ ∈
B : 0 ≤ |Ψ| ≤ 1 for which |Ψ| = n ∈ N defines the
number of elements ofΨ.

The NCM allows for multidimensional schedules.
We define a multidimensional schedule as the tuple
(C, N, slotting, Θ) of a SCM as one for which∃Ψ ∈ B :
|Ψ| > 1 andΘ selects at most oneb ∈ Ψ.

We use the mappingΘ : Ψ → C with Θ(Ψ) = Ψ′

whereΘ(Ψ) is a decision algorithm that selects one broad-
cast communicationΨ′ of the current set of communica-
tions Ψ with Ψ′ ⊆ Ψ. The decision algorithm uses mes-
sage guards as means for selection. The setG contains all
guards of the distributed application. The setG0 contains
G and the guard that always evaluates to false denoted by
g0. The mappingg : N × S → G0 with g(n, s) = g where
g(n, s) defines the guard ofs at n. We useπ := G → S

with π(g) = s whereπ(g) denotes the slot thatg guards.
With π−1(S) := {g|π(g) = s} whereπ−1(s) denotes the
set of guards that guard slots. To evaluate the guard we use
the mappingeval : G × T → Bool with eval(g, t) = bool

whereeval(g, t) is an evaluation ofg at t. The evaluation
of g0 is always false, i.e.,∀t ∈ T : eval(g0, t) = false.

Guards can use static and dynamic data of local or global
scope. Static data whether global or local, is known a pri-
ori and does not require special handling. Such data ele-
ments are, for instance, the node number, total number of
slots, or the cycle time. Dynamic global data also does
not require special treatment. Example data elements are,
for instance, the communication round or the current slot
number. Dynamic local data (e.g., task output values) re-
quires special treatment. Such data has to be propagated to
π−1(s) := Γ, if ∃g ∈ Γ that uses this data. Such prop-
agation requires communication and extendsC by Υ :=
N × N := {(ni, nj)|ni ∈ N, nj ∈ N, (ni, nj) 6∈ C} and
increases the number of messages to be scheduled.

We have to guarantee collision-free communication on
the SCM where∃!b ∈ Ψ. In case of|Ψ| > 1, Θ must
evaluate at most one guard totrue while all others evaluate
to false with ∃!g ∈ Γ : eval(g, t) = true. In other words,
Θ evaluates

⊗
g∈Γ g where⊗ is the logical XOR.

��

� � � � �
� � � � �
� � � � �
� � � � �

� � � � �� � � � � � � � � � �� � � � �� � � � �	 	 	 	 	

� � � � �

� � � � �

 � � � � �� � � � �� � � � � �� � � � �

n2

gn1
:= cycle%2

gn2
:= ¬gn1

Comm. graph
n3

n2n1

t0 t1 t2

Medium

t3t-Marks

Slots

Time

gn2

gn1

n1

Comm. cycle

Figure 2. Multidim. schedule example.

Figure 2 shows an example of such a multidimensional

4/7

schedule with guards that use dynamic global data, only.
Θ evaluates totrue alternatively betweeng(n1, t1) and
g(n2, t1). The axisMediumat interval[t1, t2) showsΨ :=
{{(n1, n3)}, {(n2, n3)}}. This means that at this interval
two nodes are scheduled. We use this kind of visualization
in the following figures.

��
� �� �
� �� �
� �� �
� �	 	

� � � � � �

� � �� � � � � �� � � � �� � � � �� � � � � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

Empty
g

n3

n2

n1

g(n2, t3) := ¬g(n2, t2)
g(n3, t3) := g(n2, t2) ∧ cycle%2

g(n1, t3) := g(n2, t2)∧!(cycle%2)

∈ Υ

n2n1

∈ C∈ C
n3

Comm. graph

Medium

t0t-Marks t1 t2 t3 t4 t6

Slots

t5

Time

t7

Comm. cycle

g(n1, t2) := OutputT1
< 3

g(n2, t2) := OutputT1
≥ 3

g(n1, t6) := OutputT1
< 4

g(n3, t6) := OutputT1
≥ 6

Figure 3. Example with guards and local data.

Figure 3 shows an example of a multidimensional sched-
ule that uses guards with static, dynamic global, and dy-
namic local data. The communication cycle contains twelve
slots. The distributed application consists of three nodes
(n1, n2, andn3) and at least one taskT1. For sake of brevity,
the example does not specify task configurations exceptT1

to run atn1.
The communication graph in right lower corner of Figure

3 shows the producer and consumer relationship between
the nodes withC := {(n1, n3), (n2, n3)}. Noden1 com-
municates some values ton3 and so doesn2. The lower
left corner of the figure shows the guard configuration that
provides the necessary information to serialize the sched-
ule at runtime. Guardg(n1, t2) uses local dynamic data
at t1 and t6, consequentlyΥ := {(n1, n1), (n1, n2)} as
present(t2) = {n1, n2}. In the upper left, the media shows
the resulting multidimensional schedule with for example
|Ψ| = 3 at n = 6. Each node uses a different hatching and
the corresponding hatching for each node is shown next to
the schedule in Figure 3.

For all communication, we have to prove collision-free
communication holding (

⊗
g∈Γ g). The n-code generator

uses an algorithm that generates decidable n-code that holds
this equation. The n-code generator adds the complement
of predicatep to eachg ∈ Γ except the target one. The
following algorithm shows this mechanism. Consequently,
although the target language may be undecidable, the gen-
erated n-code is not.

f o r each pgy
do

begin
f o r each gx in Γ, gx 6= gy do
begin

gx := gx ⊕ ¬p

end
gy := gy ⊕ p

end

The multidimensional schedule shown in Figure 3 is a
simple representation of an eventually serialized one. Fig-
ure 3 does not show the full semantics and dependencies
between the individual messages. To specify the semantics
and dependencies, we use timed automata [3, 4]. The au-
tomata shown in Figure 4 shows the exact specification of
this figure. Each location contains anε-switch labeled with
t = t + δ andδ > 0 but t < tS(n+1) andt >= tS(n−1). So,
one location can switch to itself and continue communicat-
ing until it can switch to a different location.

T1 ≥ 3,t=3

c1

n1

t = 0

c2

t = 0

c2, t = 10, t := 0

T1 < 4,t=8

n2

T1 ≥ 6,t=8 t = 5 ∨ c1, t = 10g

t = 2 ∨ t = 7 c2, t = 10, t := 0

c1, t = 10

c2, t = 5

n3

c1, t = 5

t = 7

t = 7

T1 < 3, t = 3 ∨ t = 7

Figure 4. The schedule as timed automata.

5 Tool chain & Implementation

To prove technical feasibility, we implemented a tool
chain to generate n-code and implemented a NCM on top
of the commercial real-time system RTLinuxPro. The pro-
ducing application is implemented by the timing definition
language (TDL). TDL is a software description language
evolved from Giotto [5] and is intended for timed compu-
tation. It allows for defining the timing behavior of a set
of tasks. It separates the timing constraints of an applica-
tions from the functional implementation, which must be
provided separately, for example, using an imperative pro-
gramming language such as C.

We extract all timing and communication information
from a TDL source file [6]. It provides the basic informa-
tion such as tasks, task frequencies, and inter-task commu-
nication. The necessary information is converted from TDL
input files into one file that includes all communication-
related information. This file uses XML format and the
developer can annotate it and add, for instance, additional
guards and more complex constructs that cannot be ex-
pressed in TDL source.

5/7

This communication source is parsed into internal data
structures and the tool finds valid communication sched-
ules from the communication specifications using a sim-
ple branch and search algorithm. To increase options for
the scheduler, the communication schedule may add further
constraints for the execution schedule such as one specific
task has to complete computation even before its deadline
to communicate its values within this one specific slot. As
a consequence of this optimization, although the communi-
cation schedule may be serializable for a SCM, it does not
automatically lead to a valid execution schedule at each in-
dividual node. Thus, we perform a schedulability check for
each node. As schedulability on the node is not the main
concern of our work, we use earliest deadline first (EDF)
[7] to verify schedulability. If the communication sched-
ule implies a non-schedulable task execution, the tool will
generate the next valid schedule and perform a schedulabil-
ity check again. Eventually a serializable schedule may be
found that is also schedulable at each node. Then the n-
code generator outputs C-header files for each node that are
compiled into the NCM. These files include the n-code. If
no communication schedule can be identified or if all com-
munication schedules are not schedulable at the nodes, the
tool will prompt a message.

The NCM is implemented in RTLinuxPro (see
www.fsmlabs.com). RTLinuxPro 2.1 is a hard real-time,
POSIX-compatible operating system. The real-time kernel
as the heart of RTLinux is built on top of the interrupt-
control hardware and is responsible for the execution of
real-time tasks. It treats the Linux kernel as a low prior-
ity task and implements real-time applications via kernel
modules. These modules augment the kernel and the kernel
executes these modules according to a selected scheduling
scheme. If processing time is left (i.e., all real-time threads
are idle), then the kernel will execute non–real-time tasksin
the Linux environment.

The generated n-code is a program header file for the
programming language C. The instructions are encapsu-
lated in one data structure and each instruction is a tuple
of four values with(opcode, arg1, arg2, arg3). The n-code
header file is included in the NCM and when compiled, they
are linked together to the platform-specific NCM. Once, the
NCM runs, it interprets the n-code data structure.

The current implementation of the NCM runs on RTLin-
uxPro by FSMLabs and uses the real-time communica-
tion stack called LNet. The time synchronization is imple-
mented via thesignal(SY NC) command in the NCM and
uses a simple time-offset correction algorithm.

6 Related Work

Several related approaches use table-driven communica-
tion. For example the time-triggered protocols developed

by Kopetz et al. [8, 9, 2] use a so called message descrip-
tor list (in TTP/C) and a round descriptor list (in TTP/A).
Other systems use a similar approach (see [10, 10]). Im-
plemented as message descriptor list, the schedule specifies
exactly when a node has to send a certain message and when
messages from the other nodes have to be received. In com-
bination with this, a task descriptor list describes the cyclic
scheduling of application tasks. This list specifies the in-
stances of time of starting and stopping tasks. At runtime
the dispatcher reads the table structure and executes one row
after the other.

TTP allows for assigning slots to virtual nodes and sev-
eral physical nodes can be the same virtual node. This by-
passes the guard system and allows∀Ψ ∈ B : 0 ≤ |Ψ|.
However, the function that evaluates, which of the physical
nodes is allowed to send does not satisfy equation (??). This
allows for programming faulty schedules whereΘ evaluates
to true for more than at most one guard.

Other protocols aim at more flexibility and communi-
cate their schedules at the beginning of each communica-
tion cycle. For example, flexible time-triggered (FTT) Eth-
ernet [11] aims at time-triggered communication with op-
erational flexibility and features centralized schedulingand
master/multi-slave transmission control. The central master
calculates the schedule for the next communication round
and the master/multi-slave transmission control allows for
communicating this schedule to several nodes at once and
provides better efficiency. Another similar approach is Eth-
ernet PowerLink3 [12] which is an isochronous protocol
based on standard Ethernet. It aims at deterministic com-
munication, low cycle times, and asynchronous communi-
cation and uses a master/slave transmission control. Within
each period, the master prompts nodes and they respond
only when they are prompted. Additionally, the master can
invite one node to communicate after the cyclic period has
elapsed and before the communication cycle starts.

Other protocols are token driven such as real-time Ether-
net (RETHER [13]). RETHER regulates access to the net-
work via a token. The token circulates between the member
nodes of the real-time set and the non–real-time set. Each
node is allowed to hold the token for an interval of time dur-
ing which it can access the communication medium. Each
real-time process specifies its required bandwidth and the
sum of the requirements of all real-time processes is the
bases to compute the token behavior (e.g., the token rota-
tion time). The token rotation time implicitly contains all
communication constraints and as it affects all nodes of the
real-time set, it cannot changed in an arbitrary way.

Much work has been accomplished in making TDMA
schemes more flexible. However, they all are limited to
predefined one-dimensional schedules. At the beginning of

3The following applies to version one of the protocol, since version two
is not available for public discussion.

6/7

the communication round, the controller knows the sched-
ule and will execute it without variation. Multidimensional
schedules introduced in this paper are not.

7 Conclusion

Shared communication media (SCM) introduce the
problem of collision when multiple participants perform a
write operation at the same time. Common solutions in the
time-triggered domain provide linear and one-dimensional
schedules that specifies when which participant is allowed
to perform write operations on the SCM. Such schedules are
usually static in case they need to be verified offline (e.g.,
for real-time applications) or they are at least known a pri-
ori (e.g., at the beginning of the communication cycle) and
for each moment within this cycle at most one participant is
scheduled for a write operation.

In our work, we introduce a description method for
multidimensional schedules that break with traditional ap-
proaches and allow for several writers to be scheduled for
a single communication slot at the SCM and use an eval-
uation functionΘ to determine the actual writer while the
communication schedule is executed.

The proposed system is more expressive than common
ones (see Section 6) but it can run on arbitrary communica-
tion hardware. It provides more flexibility for the scheduler
as it allows in-cycle changes of the communication pattern.

One area of application of multi-dimensional schedules
is flexibility in real-time systems for which messages of
nodes can be re-scheduled at runtime or communication of
shadow nodes can be omitted in favor of lower priority mes-
sages such as status reports. We implemented and tested the
system on RTLinuxPro using Ethernet as SCM.

8 Acknowledgments

We would like to thank Josef Templ, Johann Edtmayr,
and Gregor König for their valuable discussions on this
topic.

References

[1] G. Coulouris, J. Dollimore, and T. Kingberg,Dis-
tributed Systems: Concepts and Design. Queen Mary
and Westfield College, University of London, 1996.

[2] H. Kopetz,Real-time Systems: Design Principles for
Distributed Embedded Applications. Kluwer Aca-
demic Publishers, 1997.

[3] R. Alur and D.L.Dill, “A Theory of Timed Automata,”
Theoretical Computer Science, vol. 126, pp. 183 –
235, 1994.

[4] R. Alur and P. Madhusudan, “Decision problems for
timed automata: A survey,” inFormal Methods for
the Design of Real-Time Systems(M. Bernardo and
F. Corradini, eds.), no. 3185 in LNCS, Springer, 2004.

[5] T. Henzinger, C. Kirsch, M. Sanvido, and W. Pree,
“From control models to real-time code using Giotto,”
IEEE Control Systems Magazine, Feb. 2003.

[6] J. Templ, “TDL Specification and Report,” Tech.
Rep. T002, Computer Science, University of Salzburg,
2004.

[7] G. Buttazzo, Hard Real-Time Computing Systems.
Kluwer Academic Publishers, 2000.

[8] W. Elmenreich, W. Haidinger, R. Kirner, T. Losert,
R. Obermaisser, and C. Trödhandl, “TTP/A smart
transducer programming — a beginner’s guide,” Re-
search Report 33/2002, Technische Universität Wien,
Institut für Technische Informatik, Treitlstr. 1-3/182-
1, 1040 Vienna, Austria, 2002.

[9] S. Eberle, C. Ebner, W. Elmenreich, G. Färber,
P. Göhner, W. Haidinger, M. Holzmann, R. Huber,
R. Schlatterbeck, H. Kopetz, and A. Stothert, “Speci-
fication of the TTP/A protocol v2.00,” Research Re-
port 61/2001, Technische Universität Wien, Institut
für Technische Informatik, Treitlstr. 1-3/182-1, 1040
Vienna, Austria, 2001.

[10] G. Menkhaus, M. Holzmann, and S. Fischmeister,
“Time-triggered Communication for Distributed Con-
trol Applications in a Timed Computation Model,” in
23rd International Digital Avionics Systems Confer-
ence (DASC’04), IEEE Press, 2004.

[11] P. Pedreiras, L. Almeida, and P. Gai, “The FTT-
Ethernet protocol: merging flexibility, timeliness and
efficiency,” inProc. of the 14th Euromicro Conference
on Real-Time Systems, pp. 134 –142, IEEE Press, June
2002.

[12] BERNECKER + RAINER Industrie-Elektronik
Ges.m.b.H., Ethernet Powerlink: Data Transport
Services, 5 ed., Sept. 2002. White-Paper.

[13] C. Venkatramani and T. Chiueh, “Design, implemen-
tation, and evaluation of a software-based real-time
ethernet protocol,” inProceedings of the conference
on Applications, technologies, architectures, and pro-
tocols for computer communication, pp. 27–37, ACM
Press, 1995.

7/7

