IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009 325

Hardware Acceleration for Conditional State-Based
Communication Scheduling on Real-Time Ethernet

Sebastian Fischmeister, Member, IEEE, Robert Trausmuth, Member, IEEE, and Insup Lee, Fellow, IEEE

Abstract—Distributed real-time applications implement dis-
tributed applications with timeliness requirements. Such systems
require a deterministic communication medium with bounded
communication delays. Ethernet is a widely used commodity
network with many appliances and network components and
represents a natural fit for real-time application; unfortunately,
standard Ethernet provides no bounded communication delays.

Conditional state-based communication schedules provide ex-
pressive means for specifying and executing with choice points,
while staying verifiable. Such schedules implement an arbitration
scheme and provide the developer with means to fit the arbitration
scheme to the application demands instead of requiring the devel-
oper to tweak the application to fit a predefined scheme. An eval-
uation of this approach as software prototypes showed that jitter
and execution overhead may diminish the gains.

This work successfully addresses this problem with a synthe-
sized soft processor. We present results around the development
of the soft processor, the design choices, and the measurements on
throughput and robustness.

Index Terms—Networks, programmable hardware, real-time
systems, time-division multiaccess.

1. INTRODUCTION

ODERN real-time systems are used to implement dis-
M tributed applications with timeliness requirements. An
intrinsic property of such a system is that the correctness of the
system depends on the correctness of values and the correct-
ness of timing. This implies that a correct value at an incorrect
time can lead to a failure. Consider a car with a brake-by-wire
system, where the pedal communicates to the brakes when force
is applied to the wheels. In this system, a correct value means
that the brakes apply force to the tires only when the driver hits
the brake pedal, and correct timing means that the time between
the two events of one “hitting the pedal” and two “applying
force” should be bounded. Obviously, the system is only useful,
if both—correct timing and correct values—are guaranteed.

Manuscript received October 30, 2008; revised March 07, 2009, May 22,
2009, and June 24, 2009. Current version published August 07, 2009. This
work was supported in part by NSF CNS-0834524 NSF CNS-0721541,
NSF CNS-0720703, NSF CNS-0720518, NSF CNS-0509327, AFOSR
FA9550-07-1-0216, NSERC DG 357121-2008, and in part by ORF RE03-045.
Paper no. TII-08-10-0135.

S. Fischmeister is with the Department of Electrical and Computer Engi-
neering, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail: sfis-
chme @uwaterloo.ca).

R. Trausmuth is with University of Applied Sciences, Wiener Neustadt, Aus-
tria (e-mail: trausmuth@thwn.ac.at).

I. Lee is with the Department of Computer and Information Science, Uni-
versity of Pennsylvania, Philadelphia, PA 19104-6389 USA (e-mail: lee@cis.
upenn.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/T11.2009.2026642

A distributed real-time system adds the complexity of de-
centralized control to a shared communication medium. Con-
nected nodes can access the medium and cause collisions or
dropped packets in the network communication, which typically
results in retransmissions. Since such behavior makes it hard
to place a bound on the communication delay, one primary re-
search goal is to investigate effective coordination models for
controlling access to this shared medium. Additionally, the de-
veloper must consider properties intrinsic to the protocol and
arbitration scheme, and adapt the application to work with or
around them.

Ethernet is a widely used network technology in the em-
bedded systems industry besides field bus systems. The market
provides many appliances and network components, therefore
it is natural to try using Ethernet for real-time communication.
Unfortunately, Ethernet’s intrinsic nondeterminism caused
by the collision detection and binary backoff mechanism for
resolving contention make it hard to provide upper bounds
for communication delays on this platform. Several systems
propose different schemes, usually called real-time Ethernet,
with different arbitration schemes to provide bounded delays
and enable real-time communication.

Initial work on this topic proposed customized hardware
[1]-[3] that provided guarantees for the system analysis and for
high-level real-time software. At the time this initial research
was done, custom hardware was an illusive assumption, because
manufacturing it was too expensive. This motivated research to
move towards commercial off-the-shelf (COTS) Ethernet com-
ponents. Approaches using COTS advocate either statistical
methods [4]-[7] for traffic shaping and traffic prediction or
higher level communication frameworks [8]—[14] on top of the
standard Ethernet card with a separate arbitration mechanism.
However, running the framework and arbitration control on
the workstation can cause a huge computation overhead in the
processor [15] and is subject to high jitter.

State-based schedules based on automata [16] or more ex-
plicitly state chart like formalisms with conditional transitions
[17], [18] represent recent development to improve scheduling
of real-time systems. The Network Code language permits de-
velopers to express such conditional state-based communication
schedules, and while the specification, analysis, and verification
are already partially examined, the systems side of how to effi-
ciently realize such schedules is not yet sufficiently explored as
we will show in the following section.

A. Motivation

A conditional state-based communication schedule must
maintain state information and has guarded transitions between
state. This requires the system which executes such a schedule

1551-3203/$26.00 © 2009 IEEE

326 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

Execution Time for send()

500 1000 2000 5000 10000 20000 50000
Execution Time for Sending A Packet
20000 30000 40000 50000 60000 70000 80000

Fig. 1. Execution jitter in [ns].

to have memory and computational resources to evaluate the
guards. We can implement such a framework in two ways: in
software and in hardware. Commercially available and research
systems [8], [10]-[13], [19]-[22] would allow us to implement
it in software on top of it—this has already been done [18] and
the driver resides in the network driver of a real-time Linux
system using standard Ethernet. This provides good flexibility,
because the software can easily be changed and extended to
accommodate new features. However, although the code sits
as close to the hardware as possible considering a full-blown
operating system, the system still experiences high jitter which
limits its applications in industrial settings. One could envision
the same software prototype to use Powerlink Ethernet or
EtherCat. However, this will still cause similar execution-time
jitter for instructions as with the used software prototype.

Fig. 1 shows two box plots for execution jitter of instructions.
In a box-and-whisker plot [23], the central rectangle includes
the second and third quartile giving an idea of the distribution’s
slope. The median divides this box. The two markers to the left
and the right of the box mark the smallest and largest values that
are no outliers (1.5 times the distance of the interquartile range
from the median). All outliers are marked with the symbol “o0”.

The data in Fig. 1 provides evidence that implementing the
framework on top of standard components introduces high jitter
in a system—data comes from tests using the software proto-
type [18]. Let us consider the instruction send() which enqueues
a message in the output queue. The statistical mode of this in-
struction is 372 ns. If we consider the 99th percentile, then the
execution time lies between with 371-733 ns. If we increase the
percentile and thus increase the timing reliability of our system
(a more correct estimate of the execution time leads to less fre-
quent fault caused by missed deadlines), then we will observe
a drastic increase in execution time. For example the 99.9999th
percentile leads to an upper bound of 19.090 ps (26 times the
original value). Although parts of the software might be op-
timized by correlating delays and dependencies using for ex-
ample statistical models [24], the high variance still remains.

This paper describes the Network Code Processor (NCP)
which is a hardware implementation of the Network Code

framework which enables conditional state-based commu-
nication schedules. Specifically to the NCP, we discuss the
following items.

1) We present our hardware model and the analysis, which
make the framework run at comparable speeds to raw 100
Mbit/s Ethernet. To improve performance: (a) we used an
application-specific processor [25], [26] with a superscalar
design in which multiple instructs are autonomous exe-
cution units, and (b) we used techniques to discover and
subsequently exploit concurrent execution as much as pos-
sible.

2) We provide measurements to demonstrate that we success-
fully met our goals to increase throughput and reduce jitter.
We also compare the hardware prototype with the software
prototype side by side and show the effect of the execu-
tion-time jitter.

3) We discuss our lessons learnt when going from the soft-
ware prototype to the hardware prototype and how the pre-
vious work helped us to reduce the space footprint on the
FPGA.

4) We show how we provide support for legacy and non real-
time applications in our hardware implementation. Specif-
ically, we show how we integrate the standard OS network
driver interface and permit running legacy drivers without
changes.

The reminder of this paper is organized as follows: Section II
introduces the system model, provides an overview of the
instruction semantics, and also explains the hardware model.
These three elements form the basis for the instruction depen-
dency analysis which we present in Section III. Section IV
explains our instruction parallelism control unit used to control
the individual execution blocks. Section V shows the mea-
surement results for our system and our comparison with the
software prototype. In the discussion part (Section VI), we
report our experiences from building the system and discuss
the work. Finally, we close this paper with our conclusions in
Section VII.

II. SYSTEM, SEMANTICS, HARDWARE MODEL

Network Code represents a domain-specific language for
programming communication schedules and arbitration mecha-
nisms for real-time communication. Network Code programs of
a certain structure remain verifiable [18], analyzeable [27], and
composable [28]. Furthermore, Network Code and its runtime
can be seen as a programmable communication layer [29].

A. System Model

Time-division multiple access (TDMA) provides a
time-based arbitration method to provide collision-free access
to network nodes. Time is partitioned into slices called slots
with a duration referred to as slot length. Each network node
is allowed to communicate in specific slots. The node-to-slot
assignment varies among protocols from dynamic to static. A
communication round usually refers to a basic pattern that is
then repeated endlessly as the system executes. Nodes must not
communicate outside their slots, therefore it is of utmost impor-
tance to guarantee that each node’s communication terminates
prior to the slot boundary.

FISCHMEISTER et al.: HARDWARE ACCELERATION FOR CONDITIONAL STATE-BASED COMMUNICATION SCHEDULING ON REAL-TIME ETHERNET 327

Computation tasks ‘

l

Variable buffers

NC data

control
soft
queue

queue

NC queue
arbitration

Transceiver

l

Fig. 2. Overview of the queues and controls.

Bus

Network Code provides two distinct types of quality-of-ser-
vice (QoS): best effort and guaranteed. Messages sent using the
best effort quality class do not have a bounded communication
delay, as the transmission can fail infinitely often for various
reasons including getting blocked by guaranteed traffic or col-
lisions. Messages sent using the guaranteed quality class have
bounded communication delays. We can apply static verifica-
tion [18] and analysis [27] to compute bounds on communica-
tion delays as long as the traffic follows a well-defined temporal
pattern.

Network Code also provides data control functionality for
buffers. This functionality allows the developer to create mes-
sages from these buffers and transmit them on the network. The
developer can use this to replicate buffers across multiple nodes
following a specific temporal pattern. For example, given that
a specific buffer holds the sensor readings, the developer can
write a Network Code program that transmits the sensor read-
ings to all nodes every 10 milliseconds. Replicated buffers can
act as input to control-flow decisions in the program. The con-
ditional branching instruction if () allows the developer to code
alternatives. For example, if the last sensor reading lies below
a threshold, then the sensor will suspend sending updates for
some time.

Fig. 2 shows an overview of the programmable arbitration
layer used for Network Code, and how it interacts with the
queues and the computation tasks. For details beyond this sum-
mary, please see the system specification for the initial work on
the verification mechanism [18] or the language specification
[30].

Let us walk through the system using the best-effort traffic
class: the computation tasks implement the application logic and
transmit values to other network nodes. The task enqueues this
message in the soft queue. Whenever the transceiver is placed
into soft mode, it will take messages from this soft queue and
transmit them. On the receiving node, the transceiver automati-
cally receives such messages and places them into the soft queue
for incoming messages. The computation task on the receiving
node can dequeue the message and process it.

Let us walk through the system using the guaranteed traffic
class: the computation task writes a new value into a dedicated

1L0: create(msg_a, A) wait (9)

send (1, msg_a, _) 2L1: receive(l, A)
3 future (10, 1.0) future (10, 1.1)
halt () 4 halt ()

(a) (b)

0 10
(©)

Fig. 3. Using guaranteed traffic class communication to transmit variable A.
(a) Sender. (b) Receiver. (c¢) Visual schedule.

variable buffer; for example the variable temperature. The Net-
work Code program specifies the time when this value will be
read from the buffer, turned into a message, and transmitted to
receiving nodes via the hard queue. The Network Code program
at the receiving node knows the message containing the tem-
perature value will be transmitted and receives it into the local
variable buffer. The computation task on the receiving side can
read the value from the buffer and process it. In contrast to the
best-effort traffic, in the guaranteed traffic everything must be
specified offline: the schedule, the buffers, and the timing.

The Network Code language consists of just a few core in-
structions which control timing, data flow, control flow, and
error handling. Derived instructions are like macros that can be
represented by core instructions.

The create() instruction creates a message from a variable
buffer. The send() instruction issues a transmission of a message
on the network. The receive() instruction receives an incoming
message into a variable buffer. The if () instruction implements a
conditional jump where the branching condition can use values
in the variable buffer, history, or the current state of the schedule.
The sync() instruction signals a new communication round and
synchronizes all nodes. Communication rounds can have dif-
ferent lengths in state-based schedules, because depending on
the conditional branching during the round it sometimes might
take a branch with a longer or shorter duration. The instruction
mode() controls the mode of operation of the runtime system.
In the soft mode, the system offers best-effort communication,
in the hard mode it provides guaranteed communication, and
the init mode is used for system initialization. The instructions
future() and halt() implement temporal control through the use
of timers which may resume execution at particular program la-
bels.

In the following, we provide two brief examples to demon-
strate how Network Code works. Most of the parameters are
intuitive, and parameters, which are unimportant for this work,
are masked with the symbol “ _ . For detailed descriptions, we
direct the interested reader to [18].

As an example for virtual circuit-switched communication
consider the following programs shown in Fig. 3(a) and (b).
Note that for sake of simplicity, we assume that both nodes start
simultaneously and there is no clock skew; also wait() is a com-
posite instruction used for instructive purposes and not atomic.

Fig. 3(c) shows the schedule that these programs represent.
Note that at time 10, the schedule repeats. The sender first cre-
ates a packet from variable A using the alias msg_a. Then, it

328 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

1L0: mode(soft) 1L1: wait(5)

wait (4) mode(soft)
3 mode (hard) 3 wait (4)

future (11, 1.0) mode (hard)
5 halt () 5 future(1l, L1)

halt ()
(@) (b)
Ny | Ny | N | N, |
t

0 5 10 15

©)

Fig. 4. Using best-effort traffic class communication data from the soft queue
from Ny and N,. (a) Node N . (b) Node N,. (¢) Visual schedule.

sends the message on channel 1, and sets up an alarm in ten
time units to continue at label LO. It then halts execution (the
halt() instruction) and waits for the alarm to resume operation.
The receiver first waits nine time units for the first delivery of a
message and then receives it from channel 1 into the local vari-
able A every ten time units.

As an example for packet-oriented communication, consider
the programs in Fig. 4(a) and (b) using the same assumptions as
before.

The system guards access to the network through temporal
isolation. Fig. 4(c) shows the schedule that these two programs
represent. Note that the schedule repeats at time 10. Node 1 gets
exclusive access to the medium during the first four time units,
and Node 2 for time five to nine. While they have exclusive ac-
cess, both nodes communicate soft values. Messages are auto-
matically received through the transceiver and best-effort-traffic
messages are logically separated from guaranteed-traffic mes-
sages (see Fig. 2).

Note that Network Code also supports raw communication.
In the previous example, only one node was in the soft mode at
a time. If several nodes are in the soft mode, all of them might
concurrently access the network.

B. Operational Semantics Excerpt

The small-step operational semantics of the Network Code
language are well defined [30]. In the following, we provide a
small excerpt of a few instructions to illustrate how they work
and how we used them to detect dependencies among instruc-
tions (see Section III).

1) Overview: A program prgm consists of a sequence of
instructions where each instruction is stored in a unique address
location. The set A contains all valid addresses; ag denotes the
initial address. Addresses are totally ordered.

* Node State: A node state is the 4-tuple

Sn = (Prgm, Snem., St, StO)
consisting of a Network Code program prgm, the Network
Code Machine state s,,.,,, time state s;, and a storage sto.

* Message: A message is the 3-tuple

m = (ch, lifetime, cont)

with a channel ch, a relative time span /i fetime, and a
message content cont.

» Storage: A storage sto contains bindings of identifiers to

values. It can be considered as containing tuples (id,n).

The proposition id € sto holds, if I(x,n) € sto: x = id.
¢ Network Code Machine State: The state S, =

{a,T, M., Mo, M;,, mod, t,,) consists of

— a program counter ¢ € A U {L}, where the symbol L

indicates termination;

— a set of timed triggers T’;

— a set of created messages M.;

— a set of output messages Mot ;

— a set of input messages M;,;

— an operational mode mod € {hard, soft};

— a time stamp of the last wake up ¢,,.

2) Auxiliary Operations: instr(a) represents the operation
code for the instruction at location a. next(a) represents the
successor address of address a. applySto(sto,id) returns the
value associated with id in the storage sto. More auxiliary op-
erations are listed in [30].

3) Sample Instructions: The instruction create(msgid, loc)
creates a message from a memory location. The parameter
msgid identifies the message to be created. The parameter
loc identifies the memory location from which the message’s
values will be taken

(create(msgid, loc), sp) — (skip, s,,)
with M/ = M. U (msgid, _, applySto(sto,loc)). (1)

The semantics of the create instruction is shown in (1). The
instruction specifies a state change from s,, to s}, and (1) speci-
fies how s/, differs from s,,. For the subsequent instructions, we
will use a similar notation.

The instruction send(ch, msgid, lifetime) enqueues a mes-
sage in the hard output queue. The parameter ch specifies the
channel on which messages are to be sent and received. The
parameter msgid identifies the message to be communicated.
The parameter lifetime specifies the message’s relative lifetime.
The lifetime is the time span during which the message’s
packets are alive and valid. After expiry of that value, the mes-
sage can be cleared from the input buffers. In the normal case,
the lifetime of a message is the TDMA slot length. The send
instruction neither needs a parameter for message length nor its
deadline, because we check offline whether these parameters
are satisfied and thus at runtime they serve no purpose. We refer
the interested reader to [18] and [30] for further details how
message lengths and transit times are specified. Note, that in
(2), m’.cont = m.cont with m € M, and m.msgid = msgid

(send(ch, msgid, lifetime), s,) — (skip, s,)
with M. = Moy U (m' = (ch,lifetime, cont)) . (2)

The instruction mode(m)

(mode(newmode), s,) — (skip, s.,)

with mod = newmode. 3)

FISCHMEISTER et al.: HARDWARE ACCELERATION FOR CONDITIONAL STATE-BASED COMMUNICATION SCHEDULING ON REAL-TIME ETHERNET 329

The instruction future(wakeup, jmp) registers another timed
trigger to wake up upon at a specific code location

(future(wakeup, jmp), s,) — (nil, s.,)
T' =T U (wakeup, jmp). (4)

The examples are not to completely describe the semantics,
but just to illustrate how we have specified the small step opera-
tional semantics of the language elements. A complete descrip-
tion of all instruction is given in the language specification [30].
As explained before, we will use these semantics to investigate
potential for parallelism.

C. Hardware Model

Instruction level parallelism is also limited by the underlying
hardware. In this section, we describe the hardware and analyze
dependencies among instructions.

1) XILINX Virtex 4: We synthesize the NCP on an FPGA.
Our choice of hardware is a XILINX Virtex 4 FX12 FPGA. Its
main features are a PowerPC core and two Ethernet MAC cores
on chip. The PowerPC uses on chip buses according to the IBM
CoreConnect specification, namely the Processor Local Bus and
the On-Chip Peripheral Bus. All cores used by the PowerPC
connect to one of those buses.

The application-specific instruction set processor (ASIP) was
designed, optimized and implemented by hand. Although there
are several tools available for doing this, namely, MESCAL
[31] or commercially available packages like the Tensilica cores
[32], we chose this approach to complete control the synthesized
hardware. Future research will show whether we can get similar
results by using such tools.

The FPGA comprises 36 memory blocks which can be
used as dual port random access memory (RAM) or as
first-in—first-out (FIFO). We mainly use dual port memory
blocks to decouple the NCP and the PowerPC part of the im-
plementation. The chip design is placed into 5472 logic slices
which are arranged in a 64 x 24 matrix.

The implementation target platform is a XILINX ML 403
board with one V4 FX12 chip on it.

2) Core Building Blocks: Fig. 5 shows the functional units
and their connection to the FPGA infrastructure. The OnChip
RAM contains the computation tasks. The PowerPC runs an op-
erating system and executes the tasks. The PowerPC communi-
cates with the NCP via the on-chip peripheral bus (OPB).

The NCP implements instructions in its own, independent
execution units. On the FPGA such an execution unit is a mi-
crocode block which is accessible via a well defined interface.
In Fig. 5, all such microcode blocks are combined in the “NCP
command blocks” element.

To control the independent execution units, we also synthe-
size the control block “NCP controller.” This control block trig-
gers the execution units and manages the instruction level par-
allelism. We describe the precise rules for concurrent execution
(triggering) of instruction in Section IV. The NCP controller
also manages buffers. The variable buffers for guaranteed traffic
are stored in the dual port RAM inside FPGA (i.e., the Config
ROM and the Variable RAM). The Variable RAM contains the

IBM CoreConnect OnChip Peripheral Bus

2

| OPB IPIF |

2

OPB - PLB

P

2

| UART

| User Logic Adapter

| NCP_MAIN | I
PPC 405 Packet RAM 100 Mbit Ethernet
@ 300 MHz ’—>
Config ROM
Program ROM NCP command ETH
Variable RAM
OnChip RAM
Program & Data NCP controller

Fig. 5. NCP implementation block diagram.

current values set by the computation tasks. The Config ROM
contains the memory layout of the Variable RAM. The Packet
RAM contains the next packet to be transmitted in best-effort
mode. The dual port RAM is accessible via the on chip periph-
eral bus by the OPB IPIF and the user logic adapter. Accesses to
the memory areas such as the Variable RAM are arbitrated via
a synthesized bus in the FPGA area.

3) Interaction and Data Paths: The core building blocks
share communication busses and memory resources. We there-
fore must clearly describe the block interaction and data flows,
so we can later analyze data dependencies.

The computation tasks run at the PowerPC. Each task can ac-
cess the variable buffers in the dual port RAM and the control in-
terface to the NCP. The buffers themselves are memory mapped
to a specific address range and the tasks themselves must coor-
dinate access restrictions to these addresses on the computation
side. The dual-port access is delayed for synchronization pur-
poses when the NCP is about to create a telegram or receive
data.

Each Network Code instruction is encoded in one 32 bit
word. The Network Code program resides in the Program ROM
area which can be accessed by the PowerPC (for setting up the
program) as well as the NCP. The processor uses a classical
fetch-decode-execute method for instruction processing. How-
ever, branch instructions are preloaded and available for decode
whenever needed. The instruction loader uses a preload pipeline
and provides the next instruction right after the decoding of
the previous one. In case of possible parallel execution, the
execution stage of one instruction triggers decoding of the
next. The controller takes care of all necessary interlocking
mechanisms as described in Section I'V-A.

One key requirement is the integration/reuse of legacy soft-
ware (see one question in Section I-A). We wanted to leave the
OS interface to the network controller unchanged. Therefore,
the standard network driver in the OS must have access and feed-
back from the MAC chip on the board. To provide this, the soft
queue uses an interface compatible with the XILINX emacLite
IP core specification. In case the NCP is set to mode hard, the
network card appears to be busy to the OS driver. Whenever

330 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

the NCP switches to mode soft, the network card is transpar-
ently accessible to the OS driver until the next mode instruction
switches back to the hard mode.

The network interface provides two memory areas holding
one send and one receive packet. The OS driver sets up the
packet to be sent and then signals to the MAC controller to
transmit the packet. In the soft mode, the end of transmissions
and packet receptions are signalled to the OS driver either by
the interrupt or by setting a status bit. The OS driver can trans-
parently access the received packet during the soft mode.

The hard queue is active whenever the NCP is running in hard
mode. Messages have a well-defined life cycle and we can map
this life cycle to a sequence of instructions to send a packet in
hard mode. First, the packet has to be prepared. This is done by
the create() instruction. Data is copied into the send FIFO. The
send() instruction then assembles a valid Ethernet packet and
puts it into the output FIFO which triggers the transmission by
the MAC block. The reception of packets is done by an asyn-
chronous receive block which checks the telegram type and un-
packs the data of the telegram. The receive() instruction reads
data from one of the channel FIFOs and copies the data into the
specified variable.

III. DEPENDENCY ANALYSIS

To maximize the level of concurrency, we must analyze de-
pendencies among instructions. With the full set of dependen-
cies we can construct the control block that controls instruction
level parallelism. Without the full analysis, we risk unintended
behavior and possible faults during execution which can result
in system failures.

A. Instruction Dependency

Based on the operational semantics of Network Code, we can
identify three types of dependencies: control-flow dependen-
cies, data dependencies and mode dependencies.

Control Dependency. Given two successive instructions, the
second one is control dependent on the first one, if its execution
depends on the evaluation of a conditional guard expressed in
the first instruction. Obviously, the instruction if () creates con-
trol dependencies in program. The instruction at the target ad-
dress is control dependent on the if() instruction.

However, Network Code also has nonobvious control de-
pendencies resulting from the instructions halt() and sync().
The instruction halt() terminates the current execution until
an alarm trigger wakes up the runtime to resume operation.
Clearly, the NCP cannot concurrently execute instruction
sequences such as “halt(); create(...);”, because it must halt
after the first statement and continue only after a trigger event.
The instruction sync() synchronizes distributed nodes by
means of a synchronization packet. Nodes that wait for such a
synchronization packet must not resume operation before (a)
such a packet is received or (b) a timeout occurs. Therefore, the
NCP cannot concurrently execute instruction sequences such as
“sync(c, 3000); create(. . .);”. The same goes for the sender and
specific instructions that cause packet transmissions, because
the NCP must preserve causal ordering of packet transmissions.

Data dependency. Two successive instructions are data de-
pendent, if they access or modify the same resource [33]. In our

TABLE 1
DEPENDENCY SUMMARY

Type | Dependency

Control

Cc

if(G1,jmp) — (instr(jmp)\ {nop})
if(Ga,) S (instr(next(a))\ {nop})

halt % instr(next(a))
sync = {send, receive, halt, mode,if}

halt
sync(e,_) if(StatusTest,_)

receive «— if(Gs,_)

=

Data if
d
<«

d

. d
receive < create
d
create «— send
& f(SendBufferEmpty, _)

destroy &, send

create

destroy &, i f (SendBufferEmpty, _)
mode < {sync, receive, create, destroy, send}

Mode

sync(e,_) s halt

system, all data dependencies originate from the read/write ac-
cess to the shared buffers in between the individual microcode
blocks which implement instructions. For example, the two in-
structions “create(msg_a, _);send(_, msg_a, _);” cannot be ex-
ecuted in parallel, because one instruction writes to a shared
buffer containing the created message, while the other instruc-
tion reads it.

Mode dependency. Two successive instructions are mode
dependent, if the second instruction executes a mode change
to a target mode and the first instruction is unavailable in this
target mode. Typically, each instruction assumes a specific
system state when it executes. A mode change might violate
this assumption. The NCP can be in one of three operational
modes: hard, soft, and sync. From this, we can derive the mode
dependencies among instructions. For example, the instruction
send() is used solely in the hard mode, and its operational
semantics assume that this holds. However, this assumption
creates a mode dependency between the instructions send()
and mode(). For example, the following instruction sequence
is valid “send(. . .); mode(soft);” and can be executed concur-
rently, while the following cannot “mode(soft);send(. ..);”.

Summary: Table I shows a summary of the dependen-
cies among instructions based on the operational seman-
tics. The symbols —», 2 and ™ denote a control, data,
and mode dependency, respectively. The symbol a S0b
denotes a dependency @ — b and b = a. The set G4
consists of all guards except AlwaysFalse, the set Go
contains all guards except AlwaysTrue, and set G3 :=
{TestVar, GreaterVarVar, CompareVarVar,LessVarVar}.

Examples: The dependency i f(G1, jmp) — (instr(jmp) \
{nop}) represents a typical control dependency. Instructions
immediately following an if() instruction cannot be executed
concurrently with the if (), because it depends on the evaluation
of the conditional statement which branch the NCP will follow.
The dependency sync = {send,receive, halt, mode,if}
shows a dependency between the sync() instructions and a
number of other instructions. These instructions cannot be
concurrently executed with the sync() instruction, because they

FISCHMEISTER et al.: HARDWARE ACCELERATION FOR CONDITIONAL STATE-BASED COMMUNICATION SCHEDULING ON REAL-TIME ETHERNET 331

| RT application | [os network stack |
| NCprogram | | VSconfig | [VvSdata | | nrtpacket |
—— 3
A A |
vy LA v
| if() | [receive) | | create) |
controller | [rev FIFO |_-| [sendFiFO |
I
T T I '

| fuure) | | autorev) | | send() | | auto_send() |
| mputFIFO | [outputFIFO |
1
| Ethernet MAC & PHY |

Fig. 6. Block diagram of the NCP.

TABLE II
DEPENDENCIES ORIGINATING FROM THE HARDWARE

Type | Dependency

Hardware

h .
create <«— receive
if(Gs,_)

if(Gs,_)

send

create

=1z

receive <«—

I=

create

send < sync(m, _)

result in user-visible actions and must wait for the nodes to
finish their synchronization through the sync() instruction.

The dependency create < send represents a typical data
dependency between two instructions. The instruction send()
uses the message which instruction create() builds and thus

must wait for it to finish. The dependency halt & f expresses
the data dependency between the two instructions halt() and
if (). Both instructions manipulate the program counter and thus
cannot execute concurrently.

The dependency sync(c,) = halt is necessary so the halt()
instruction does disable the NCP before the sync() operation
completed.

B. Dependencies From Hardware

Fig. 6 shows the NCP implementation. Each Network Code
instruction (with the exception of the instruction halt()) is en-
capsulated in a microcode block. The architecture of the NCP
follows ideas drawn from the original MIPS architecture [34].
The blocks communicate with the controller using a simple two
way handshake protocol.

If we investigate Figs. 5 and 6, we can identify additional
dependencies in our system originating from the hardware. For
example, at most one execution block may access the shared
memory area.

Table II shows the resulting dependencies for our underlying
hardware. The instructions create(), receive() and if() access
the variable space via a memory bus, so they can only execute
one after the other. The instruction if () blocks the memory bus
only for variable comparison operations, therefore guards not
included in set G5 as specified in Section III-A can be executed

in parallel with instruction create() or receive(). The instruc-
tions send() and sync(m,) both use the output FIFO, thus they
can only be executed sequentially. Since the active sync() is a
send instruction sending a special telegram, it can be handled
by the send block, too. The passive sync() instruction is imple-
mented directly in the controller which handles also the sync
timeout. When the auto_rcv block receives a sync telegram, it
sends a hardware signal to the controller.

IV. INSTRUCTION PARALLELISM CONTROL

The NCP controller manages concurrent execution of mi-
crocode blocks based on dependencies among instructions. In
the previous sections, we listed the individual dependencies. In
this section, we put them together and optimized the system ar-
chitecture to reduce the number of dependencies.

A. Concurrency Control

To minimize the number of stalls of concurrently executing
microcode blocks, we optimized a number of cases that fre-
quently occur in Network Code programs. For example, one of
the most frequent instruction sequences is “create(); send();”,
which first creates a message in the send buffer and then trans-
mits this message. According to the data dependencies shown
in Table I, these two instructions must be executed sequentially.
However, as they occur frequently, we optimized the NCP to
allow concurrent execution of these two instructions by means
of a data pipeline. We achieve this by: 1) a FIFO queue between
the two microcode blocks and 2) the send() instruction’s de-
layed reading from this FIFO queue. The FIFO queue enables
concurrent access, because while the microcode block imple-
menting the create() instruction is still filling the queue, the mi-
crocode block implementing the send() instruction can already
start reading from this queue. However, we have to make sure
that the FIFO queue always contains data. To guarantee this,
the send() microcode block first creates the Ethernet telegram’s
header (requiring about 30 cycles) before it starts reading the
FIFO. Meanwhile, the concurrently executing create() block
can already start filling the FIFO queue. Also, the send() block
reads data four times slower than the create() fills in data, be-
cause the internal memory bus is 32 bits wide, whereas the MAC
interface only supports 8 bits.

Table IIT shows the summary of all dependencies for the NCP
after optimizations. The meaning of the characters in the table
are “w” for wait until finished, “c” for continue with next in-
struction and “h” wait until the memory bus is available. The
table is read the following way: given two sequential instruc-
tions “x(); y();”, the instruction x() specifies the column and y()
specifies the row. For example, the snippet “if (); send();” results
in a sequential execution as specified by w, while “send(); if ();”
can be executed in parallel as the Table III provides a c.

To simplify the implementation, the instructions mode() and
nop() are synchronous instructions which always have to finish
before the next instruction can start. The halt() instruction stops
program execution, and the processor starts working only after
receiving an interrupt set up by an earlier future() instruction.

The controller uses the running states of all the instruction
blocks to calculate the locking conditions during the decoding
phase. If Table III permits concurrent execution, the controller

332

TABLE III
SUMMARY OF FINAL INSTRUCTION DEPENDENCIES
(5]

g 5 3 o & 3

a g = 8 & = 2 S
2 5 2 & » £ 2 £ =
nop w c [c c W ¢ WwW ¢
create w W b c W ¢ W w
send W W cC W W ¢ W W
receive | w b cC W W W ¢ W W
sync W ¢ W ¢ W W ¢ W W
halt w o c [cC W W ¢ W W
future w o C [c c W W W W
mode W ¢ W W W W ¢ W W
if w b ¢ b w w c ww

Slot
Gap
L0: create(msg_b, B)
msg, msgy, 2 send (1, msg_b, _)
receive (msg_a, A)
t 4 future (1, LX)
halt ()
Exec. prgm, at LO (b)
(a)

Fig. 7. Average case of receiving and transmitting a message. (a) Visual struc-
ture. (b) Program rmprgm, .

will trigger both microcode blocks. Otherwise, it will only
trigger one and enter a waiting loop until the lock is resolved.
After starting to execute one instruction, the controller imme-
diately decodes the next instruction.

Before switching modes (executing a mode instruction), the
also locking condition ensures that there are no packets in transit
on the network.

B. Example

Let us consider an illustrative example to show the benefit
of our selected architecture. Fig. 7(b) shows one of the snip-
pets representing the average case of a network node receiving
a message and transmitting a message. Fig. 7(a) shows how this
program fits into the slot structure. The node executing this pro-
gram first creates a message containing variable B which is then
transmitted as message msgy, using channel 1. It also receives a
message msg, from the previous slot and stores its content in
variable A.

Fig. 7(b) must be executed within 10 s, because the instruc-
tion future() specifies a delay of 1 time unit which, in our im-
plementation, equals 10 ps. One cycle takes 10 ns as the FPGA
runs with a clock speed of 100 MHz. The execution time of an
instruction is how long in terms of cycles the block requires to
complete its operation. The future() instruction takes three cy-
cles, and the halt() instruction requires two cycles to complete.
Assuming that the size of the variables A and B are 128 words
(i.e., 512 bytes), the instructions create(), send(), and receive()
then require 135, 547, and 543 cycles, respectively. The sequen-
tial execution of the whole program block requires 1230 cycles.
However, since 10 us accommodates exactly 1000 cycles, this
program cannot be executed sequentially.

This program executes fast enough to meet the deadline on
our architecture with the instruction dependencies as specified
in Table III. First, the two instructions “create();send();” are
executed in parallel, because the instruction send() can start

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

@
Bt
= i 135
g create I:
S send ! 547
= . 1
E receive 543
1
5 future | 3
T‘c 1
3 b |1 2
1
v0 ”f()() v 1.230
. 0 T682 cycles (t)
=
o i 135 '
g create :l 347 :
b send |
2 |
§ receive ‘ 543
“g’. future 3
2 halt

Fig. 8. Scheduling of the example program shown in Fig. 7(b).

right after create() has begun to fill the send FIFO. The instruc-
tions “send(); receive();” can be executed in parallel, but the
receive() instruction has to wait for the data bus occupied by the
create() instruction. The program will thus be ready after 145
cycles and the processor will be halted; except for the receive()
instruction which will still be active for another 533 cycles.
Since this is less than 1000 cycles, this program can be executed
by our processor.

Fig. 8 shows the execution trace as a Gantt chart of the NCP
for executing Fig. 7(b). For each instruction, it first shows the
loading time and then the actual execution in the microcode
block. The upper part shows the sequential execution, which re-
quires more than 1000 cycles. The lower part shows the execu-
tion trace of the NCP, which executes instructions in parallel and
thus can execute the program in less than 1000 cycles therefore
satisfying the requirements for the future(1, _) statement.

V. MEASUREMENTS AND RESULTS

For measurements and experimentation, we use two nodes
that are directly connected with no active network components
in between. The two nodes communicate with each other via a
ping-pong program; specifically, Node A periodically transmits
variable A, and node B receives it.

A. Throughput of FPGA Solution

The execution speed of the create(), send() and receive()
instructions grows linearly with the size of the data to be
transmitted. This makes the system predictable. Because of
this, the system throughput is a direct function of the execution
speed and the variable size. Note that we calculate the actual
throughput based on cycle-accurate information resulting in
single-cycle precision, because the hardware is free from jittery
influences such as interrupts, cache misses, and page faults.
Fig. 9 shows the maximal throughput of the FPGA implemen-
tation depending on the data size. The x axis shows the variable
size in Bytes, and the y axis shows the throughput in kB/s. Note
that the data throughput differs from the actual network utiliza-
tion: 1) Ethernet messages include a header which introduces
overhead and 2) messages have a specific minimum size, so
padding must be added until 64 bytes and incurs overhead.

To calculate the throughput of the FPGA implementation, we
can use (5) and (6). t,, specifies the computation time of the

FISCHMEISTER et al.: HARDWARE ACCELERATION FOR CONDITIONAL STATE-BASED COMMUNICATION SCHEDULING ON REAL-TIME ETHERNET 333

Data Throughput VS Network Utilization
1 4000 T T T T T T T T T

12000 -
10000
8000

6000
4000

Throughput [kB/sec]

2000

Data throughput ——

NeltworkI utilizlation X

1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Variable Size [Bytes]

Fig. 9. Throughput of the FPGA implementation.

NCP, and #, is the time required by the MAC layer to transmit a
message. The components of ¢, are instruction cycles executed
at a speed of 100 MHz with 8 cycles setup time for the create()
microcode block, 5 cycles for the send() microcode block, and
B/4 cycles for copying the variable content of B bytes. The
components of £, are the size of the message (signaling of §,
frame accounting for 18, the body with a minimum of 46 bytes,
and 12 bytes of transmission time as gap between subsequent
slots) times the transmission duration of 80 ns per byte in the
MAC layer.
We assume B in bytes

tp(B) = (8 + g + 5) % 0.010 [ps] (5)
ts(B) = (8 + 18 + max(B,46) + 12) x 0.08 [us] (6)

Using ¢, and £, we can now compute how many ticks it takes
to execute the program and transmit the data. A tick, called #;ck
is the time duration of future(1,)

ticks = {M-‘ @)

ttick
Ly = ticks * Ly (18])

We now calculate how often we can fit this time into 1 s, and
then multiply this with the transmitted kilobytes per variable and
receive the throughput in [kB/s]

f= fi % 10e° [He])

‘tx

tp «f [kB/s]. (10)

~ 1,024
Thus, the throughput ¢p(B, t1;cx) of a specific variable size B
in bytes and a system tick length of ¢;c is defined as

-1
t, +1 B
tp(B, tick) = £ = Ltic
P(B, thick) <{ ttiCk-‘*tk> *1024

7

[kB/s] (11)

Fig. 9 shows the result of (11).

B. Software vs FPGA

As mentioned in the introduction the options to implement a
framework for state-based communication scheduling is either
on top of an existing communication standard in hardware or

Throughput with Reliability >99.85%
100

90 A
80 b

50

Throughput [Mbit/s]

40 | Software implementation —— .
FPGA implementation --x--
1 1 1

1 1

1 1
0.9986 0.9988 0.999 0.9992 0.9994 0.9996 0.9998 1
Reliability [p/100]

Fig. 10. Throughput of the two prototypes.

in software. We use the presented FPGA core as the hardware
implementation and compare it to an implemented software pro-
totype [18]. The selected software prototype used a kernel ex-
tension and ran on top of Ethernet.

For the evaluation purposes, we use the same ping-pong pro-
gram as mentioned before. The software-based system ran as a
kernel module of RTLinuxPro 2.2 on an Intel Pentium 4 with
1.5 GHz, 512 MB RAM, and a 3c905C-TX/TX-M [Tornado]
(rev 78) with exclusive interrupt access. The hardware system
ran on a Xilinx ML403 board. The core of the quantitative eval-
uation is now to identify that maximum throughput while still
obeying the following premises.

1) The sending node must only communicate during its slot,

so the 7th communication must take place in the time slot
[i - step, (4 + 1) - step).

2) The input queue must not overflow. The receiver must be
fast enough to process the input queue as new messages
arrive.

In the performance test, we run these programs on the
software implementation and on the FPGA with different
throughput values. We fixed the variable size to 4 bytes. We
then evaluated the reliability of the system in terms of how
many successful transmissions took place versus how many
unsuccessful ones happened. A successful transmission is one
which keeps the premises stated above. An unsuccessful one
violates at least one of them. So, for example, programming an
arbitrary throughput and running the programs, if the premises
are kept on average every other transmission, then the reliability
of this throughput equals 50%.

Fig. 10 shows the throughput of the two prototypes. The data
bases on about one million measurements per data point, the
data for the FPGA implementation bases on the results from
the cycle-accurate FPGA simulator and sample measurements.
The z axis displays the reliability of the traffic according to
the definition above. The y axis show the throughput in Mb/s.
The figures show that the FPGA implementation clearly out-
performs the software implementation. The difference becomes
even more significant as the reliability approaches 1. The soft-
ware version also requires and additional safety margin for in-
dustrial cases. Looking at the other end of the spectrum, the soft-
ware asymptotically approaches the upper limit as the reliability
moves towards 0.

334 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

TABLE 1V
SWITCH LATENCY FOR ACTIVE NETWORK COMPONENTS IN [us]

Latency Latency Latency
4B var. 500B var. | 1000B var.

Cisco Catalyst 2950 17 51 99

(LAN Switch)

Cisco Catalyst 3500 25 135 271

(LAN Switch)

Surecom EP-808X-R | 33 130 270

(Mini Switch)

C. On Chip Resource Usage

The current implementation uses a XILINX Virtex 4 FX 12
chip, which provides one PPC 405 core and two Ethernet MACs
on chip. The FPGA has 36 memory blocks, and the NCP cur-
rently uses 20. The CLB usage is moderate (30% of the FX12
chip) which leaves lots of space for the host processor system in-
tegration. The host processor uses another four memory blocks
for the boot loader, and it starts the operating system from a
flash card. The full system including FLASH card, NCP, VGA,
and keyboard/mouse driver covers 75% of the CLBs on chip.
The host operating system (in our case linux) is booted from the
FLASH card.

D. Timing and Data Throughput

Since the Network Code program is time triggered (the
future() instruction uses a time value for the parameter dl),
correct timing is important and needs to be analyzed throughout
the whole system.

The FPGA runs at 100 MHz. Every critical function is im-
plemented as an IP core—a program that specifies used gates
and their connections inside the FPGA—and has a well-known
timing behavior. Although the execution time of some instruc-
tions depends on the length of the concerned variables, all this
information is known at design time and timing properties can
be statically checked beforehand.

Programs can operate at a (message) resolution of 100 kHz,
therefore, the current time quantum (minimal value) for the
future() instruction is 10 us. Since we use a 100 MBit Ethernet
connection, the quantum is more than the minimum transmis-
sion time of an Ethernet message, which is 6.8 us for 64 bytes
plus preamble and interframe gap (IFG) that gives a throughput
of 6 MB/s. Note different payload sizes result in more or less
throughput (see Fig. 9).

However, active networking components can introduce an ad-
ditional delay that has to be considered. In one of our exper-
iments, we tested different switches for the introduced delay.
Table IV presents the data for all three used switches and shows
that the speed varies considerably among brands and models.

E. Robustness

For robustness tests we set up a simple star-form network
with two NCP systems connected through a switch. The two
NCP systems exchange data (ping-pong) with a communication
round of 600 ps. We also connected two workstations to inject
rogue traffic into the system. The NCP systems were equipped
with counters and indicator flags to measure the correct func-
tioning of the system. The network switch used a store-and-for-

Robustness Against Injected Rouge Traffic

100 g T T T T
c Broadcast ==
= - Stranger e==3
g - Client === =
= (4 Zi=I
= c e —
7 I Ee =
<5 B %A: = —]
CEP]:_ é"""E /§E 3
¢ = o=
X = —
g Z = =
@ 0lg Za= =
L - B -
-é%z Z= = Tie
— ?— o —
0.01
10 100 1 000 10 000

Injected messages per second (1024 byte)

Fig. 11. Robustness test results.

ward principle which introduced some latency in the network
communication (see Table IV). The store-and-forward architec-
ture also cause the switch to drop messages. When we present
the results and refer to lost messages, these messages have either
been corrupted during the transmission—the checksum of the
packet did not equal the transmitted checksum—or the switch
has dropped the packet.

The tests covered: (a) broadcast packets; (b) packets
addressed to nonpresent MAC addresses; and (c) packets ad-
dressed network clients. We ran these tests multiple times with
different injection rates (10, 100, 1.000, and 10.000 packets per
second) with in different packet sizes (64, 256, and 1024 bytes)
for about 30 s per test. Fig. 11 summarizes the results of the
robustness test. The z axis shows the test of 1024 byte packets
at different injection rates. The y axis shows the percentage of
lost sync messages (indicating a new communication round)
relative to the total number of sync messages sent during the
test. Note that the y axis uses a logarithmic scale. In these tests,
we made the following observations: (a) packets with length
of 64 and 256 bytes never affected the system with any given
injection rate; (b) the amount of lost packets correlates linearly
with the injection rate; and (c) there is no significant difference
between the three tested scenarios. The second observation is
visible in Fig. 11; as the inject rate increases with an order
of magnitude, the packet loss rate increases by an order of
magnitude. Fig. 11 also shows the measurements for all three
scenarios are about the same.

VI. DISCUSSION

A. Going From Software to Programmable Hardware

General software systems rarely face resource limitations of
the storage resource. Even if the developer faces such storage
limitations, the typical solution is to either move to a larger
chip with more capacity (e.g., in microcontroller systems) or to
add more memory and disk storage to the computer. However,
the developer cannot apply this solution to programmable hard-
ware, especially FPGAs, because current production and avail-
able boards limit the available options. We therefore revisited
each instruction and made a case again why this feature should

FISCHMEISTER et al.: HARDWARE ACCELERATION FOR CONDITIONAL STATE-BASED COMMUNICATION SCHEDULING ON REAL-TIME ETHERNET 335

be part of the system and should be present in the hardware so-
lution. Among the features we cut out are message buffers for
outgoing messages, and we limit multiple concurrent future()
instructions to at most four. Both features were rarely used in the
software prototype. As a consequence of the former, the create()
and send() instructions can only use one send buffer. Therefore,
one packet must be prepared after the other has been sent.

In the software implementation, the developer can code ar-
bitrary branch guards via C functions and execute them on the
main processor. The hardware implementation provides no gen-
eral purpose processor to execute these guards. To overcome
this limitation, we analyzed existing programs and guards and
now provide a predefined set of frequently used branching func-
tions such as tests of variables and tests of messages and queues.
However, the developer also has the option of extending the set
with own functions synthesized onto the FPGA.

These predefined branching conditions fall into three cate-
gories: value comparators, state comparators, and counter com-
parators. Value comparators compare two values in the dual
RAM and branch, for instance, if the value A is greater than
value B. State comparators allow the developer to branch de-
pending on the internal status bits. These conditions include for
example checks whether messages have been received in par-
ticular channels or whether the output buffer is filled. Finally,
counter comparators provide convenience to the developer, be-
cause now the developer can set/reset and compare the counters
inside the Network Code program without requiring a high-level
application. For example, the developer can now easily encode
that the program follows a particular branch every other round.

The FPGA implementation provides a decoupled processor
for real-time communication. In the software prototype, the ap-
plication and the communication were still tightly coupled, be-
cause they executed on the same processor. In the FPGA imple-
mentation, these two elements are disjoint and we require ad-
ditional means for communicating between them. We therefore
provide a signal() instruction in the hardware implementation to
generate interrupts in the host processor. The application soft-
ware in the host processor can listen to this interrupt and respond
appropriately.

B. Lessons From Using Ethernet COTS Versus FPGA

Our measurements show that software-based real-time com-
munication frameworks in which the arbitration control is
located inside the kernel or at a higher level can only be used
for applications which require low throughput or relaxed timing
constraints. For case studies, this implies that one should only
consider applications with short run times, because a long run
time will inevitably eventually create errors as it communicates
across its slot boundary. However, short run times inevitably
cast doubt on whether the tested system actually works with
industry-grade use cases, especially since programmable hard-
ware is readily available. Network components such as switches
further aggravate this and support our argument that real-time
communication experiments conducted only with high-level
software prototypes should be handled with care.

On the other hand, using programmable hardware for
validating real-time communication frameworks bore more ad-
vantages than drastic throughput improvements. For example,

the timing variance for each code instruction and action differs
among workstations, because of differences among interrupt
controllers, motherboards, and processors. The FPGA allows
cycle-accurate simulation and offers similar delays on each
board instance. Thus, our current and future experiments lead to
precise, reproducible results. This increase in precision allows
researchers to place more confidence in the results.

Programmable hardware also enabled us to implement our
model more faithfully than software-based implementations.
Again, this is partially due to the increase in determinism, but
also due to the natural way of implementing concurrently exe-
cuting structures. Concurrent tasks inside the communication
framework can be implemented as parallel processes on the
FPGA board, and they will truly concurrently execute. For
example, if we want to extend the hardware implementation
of the NCP to allow multiple concurrent threads via multiple
future() instructions. We can achieve this easily by synthesizing
multiple NCPs onto the FPGA that run in parallel.

Finally, hardware synthesis also requires careful thinking
about the system model, functionality, and timing. Debugging
is difficult and programming by trial and error is virtually
impossible. This leads to a clean and well-documented imple-
mentation.

C. Verification Step Simplifies Software Requirements

As can be easily seen from the examples in Section II-A, such
Network Code programs may not necessarily always behave
well together. Simply consider one program always transmit-
ting packets and the result will be collisions, scrambled data, and
nondeterministic behavior. Finding such bugs in the programs
becomes more difficult as Network Code includes the flow con-
trol instruction if (), which implements a conditional branch. For
this reason, we developed a verification framework [18] that al-
lows checking properties of Network Code programs.

The experience that we got is that by relying on running ver-
ified programs. we can significantly reduce the required func-
tionality in the NCP. Without this, the NCP would need to pro-
vide functionality for error detection and error recovery. For
example, the NCP does not require checks on internal state
corruption such as invalid program counters, invalid memory
cell accesses, invalid jump locations, tight loops locking up the
NCP, and incompatible data formats and type checking when
receiving messages and storing the values in the variable space.
This significantly contributes to the NCP’s low footprint.

D. Comparison With Commercially Available Systems

Several industrial and research systems enable real-time com-
munication on Ethernet; most notably of the commercial sys-
tems are Powerlink Ethernet [13], PROFINET [22], SERCOS
III [21], VARAN [19], Modbus [20], and EtherCAT [12].

Each of these systems has a different set of goals in mind, but
they try to maximize throughput by for example modifying the
Ethernet header while providing bounded communication de-
lays. Some of them also permit transmitting non real-time traffic
in a dynamic, optional phase of the communication round. Our
approach with conditional state-based schedules differs from
what these products and also other research prototypes offer:
throughput optimization comes from the application layer by

336 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 5, NO. 3, AUGUST 2009

providing a flexible communication framework that can adapt
to the application needs. We have shown this in previous work
[18] and briefly paraphrase the example here.

Consider a system with one input and temporal triple modular
redundancy (TMR) for the input to mask one fault. The tradi-
tional setup is that the system uses three sensors to sample that
single input, all three measurements get transmitted to a voting
controller who then performs a majority vote to determine the
final value. A stateless communication schedule without con-
ditions requires three slots per communication round. A con-
ditional state-based schedule can perform a preliminary voting
after receiving two samples, and if the voting is already deci-
sive—i.e., the first two slots contain the same value within a
specified error bound—then the third slot will be used for other
purposes or a new communication round starts immediately.
Depending on the fault frequency and the speed of the voting
algorithm, this can save up to one third of the bandwidth. How-
ever, this assumes that the choices can be made faster than trans-
mission time of additional data. We showed that this is feasible
for 100 Mb/s Ethernet in this work.

Another advantage of the presented communication system
over commercially available and most research systems is that
provides flexibility—conditional branching—but stays verifi-
able [18]. This is important for safety-critical applications that
require evidence-based certification.

VII. CONCLUSION

In this work, we addressed the problem jitter and long exe-
cution times of guards can diminish the benefits of state-based
communication schedules. Our approach was to synthesize a
soft processor called NCP which is a logic core (intellectual
property core) for Network Code programs, and a coprocessor
for time-triggered protocols in general. The processor imple-
ments a superscalar architecture in which multiple instructions
execute concurrently. We discussed the development of the
NCP, specifically its concurrency controller and presented an
example which clearly shows the benefits of the superscalar
architecture.

The measurements showed that high throughput is fea-
sible for systems with state-based communication schedules.
More specifically, the NCP meets the design goal to provide
a real-time—capable communication system comparable in
throughput with standard Ethernet. Finally, we also elaborated
on our lessons learnt during the development and described our
design choices in the discussion section of this work.

We have already used the NCP in a case study to build a
closed-loop medical control system. The selected clinical envi-
ronment requires support for a dynamic system in which med-
ical devices may be added or removed on the fly. The environ-
ment also eventually requires system certification. We found
that being able to express and verify the communication be-
havior of the system in Network Code before testing and deploy-
ment was very helpful in building such a system. The demon-
stration has been showcased at the annual event of the Health-
care Information and Management Systems Society (HIMSS)
in 2009. Although related work [35] shows advantages of con-
ditional state-based schedules, we still consider evaluating its
benefits on the development cycle as future work.

ACKNOWLEDGMENT

We would like to thank K. Perry for helping with the robust-
ness tests and the reviewers of their excellent feedback on the
earlier revisions of this article.

REFERENCES

[1] R. Court, “Real-time Ethernet,” Comput. Commun., vol. 15, no. 3, pp.
198-201, 1992.

[2] N. Malcolm and W. Zhao, “The timed-token protocol for real-time
communications,” Computer, vol. 27, no. 1, pp. 35-41, 1994.

[3] K. Shin and C.-J. Hou, “Analytic evaluation of contention protocols

used in distributed real-time systems,” Real-Time Syst., vol. 9, no. 1,

pp. 69-107, 1995.

S. Kweon, K. Shin, and G. Workman, “Achieving real-time commu-

nication over Ethernet with adaptive traffic smoothing,” in Proc. 6th

IEEE Real Time Technol. Appl. Symp. (RTAS 2000), Washington, DC,

2000, p. 90.

R. Caponetto, L. lo Bello, and O. Mirabella, “Fuzzy traffic smoothing:

Another step towards statistical real-time communication over Ethernet

networks,” in Proc. 1st Int. Workshop on Real-Time LANS Internet Age

(RTLIA), 2002, pp. 33-36.

S.-K. Kweon and K. Shin, “Statistical real-time communication over

Ethernet,” IEEE Trans. Parallel Distrib. Syst., vol. 14, no. 3, pp.

322-335, 2003.

J. Loeser and H. Haertig, “Low-latency hard real-time communication

over switched Ethernet,” in Proc. 16th Euromicro Conf. Real-Time Syst.

(ECRTS), Washington, DC, 2004, pp. 13-22.

C. Venkatramani and T. Chiueh, “Design, implementation, and evalua-

tion of a software-based real-time Ethernet protocol,” in Proc. Conf.

Appl., Technol., Architectures, and Protocols for Comput. Commun.

(SIGCOMM), New York, 1995, pp. 27-37.

[9] P. Pedreiras, L. Almeida, and P. Gai, “The FTT-Ethernet protocol:
Merging flexibility, timeliness and efficiency,” in Proc. 14th Euromicro
Conf. Real-Time Syst., Jun. 2002, pp. 134-142.

[10] P. Pedreiras, P. Gai, L. Almeida, and G. Buttazzo, “FTT-Ethernet: A
flexible real-time communication protocol that supports dynamic QoS
management on Ethernet-based systems,” IEEE Trans. Ind. Informat.,
vol. 1, no. 3, pp. 162-172, Aug. 2005.

[11] K. Steinhammer, P. Grillinger, A. Ademaj, and H. Kopetz, “A Time-
Triggered Ethernet (TTE) switch,” in Proc. Conf. Des., Autom. Test in
Europe (DATE), Leuven, Belgium, 2006, pp. 794-799, 3001.

[12] Real-Time Ethernet Control Automation Technology (EtherCAT),
IEC/PAS 62407, E. Group, 2008.

[13] Ethernet Powerlink V2.0—Communication Profile Specification, Eth-
ernet Powerlink Standadisation Group (EPSG), 2003.

[14] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications. Norwell, MA: Kluwer, 1997.

[15] J. Loeser and H. Hartig, “Real time on Ethernet using off-the-shelf
hardware,” in Proc. 1st Int. Workshop on Real-Time LANs Internet Age
(RTLIA 2002), 2002, pp. 59-62.

[16] G. Weiss and R. Alur, “Regular specifications of resource requirements
for embedded control software,” in Proc. 14th IEEE Real-Time and
Embedded Technol. Appl. Symp. (RTAS), 2008, pp. 159-168.

[17] P. Pop, P. Els, and Z. Peng, “Performance estimation for embedded
systems with data and control dependencies,” in Proc. 8th Int. Work-
shop on Hardware/Software Codesign (CODES), New York, 2000, pp.
62-66.

[18] S. Fischmeister, O. Sokolsky, and I. Lee, “A verifiable language for
programming communication schedules,” IEEE Trans. Comput., vol.
56, no. 11, pp. 1505-1519, Nov. 2007.

[19] Varan—Versatile Automation Random Access Network. [Online].
Available: www.varan-bus.net Mar. 2009

[20] “Modbus Application Protocol Specification V1.1b,” White paper,
Dec. 2006.

[21] Real-time Ethernet SERCOS III, IEC/PAS 62410, May 2005.

[22] R.Pigan and M. Metter, Automating With PROFINET: Industrial Com-
munication Based on Industrial Ethernet. New York: Wiley, Dec.
2008.

[23] R. E. Walpole, R. H. Myers, S. L. Myers, and K. Ye, Probability &
Statistics for Engineers & Scientists, 8th ed. Englewood Cliffs, NJ:
Prentice-Hall, Mar. 2008.

[4

—

[5

—

[6

—_

[7

—

[8

[

FISCHMEISTER et al.: HARDWARE ACCELERATION FOR CONDITIONAL STATE-BASED COMMUNICATION SCHEDULING ON REAL-TIME ETHERNET 337

[24] M. Li, T. V. Achteren, E. Brockmeyer, and F. Catthoor, “Statis-
tical performance analysis and estimation of coarse grain parallel
multimedia processing system,” in Proc. 12th IEEE Real-Time and
Embedded Technol. Appl. Symp. (RTAS), Washington, DC, 2006, pp.
277-288.

[25] P. Ienne and R. Leupers, Customizable Embedded Processors: De-
sign Technologies and Applications, 1sted. San Mateo, CA: Morgan
Kaufmann, Jul. 2006.

[26] M. Jacome and G. De Veciana, “Design challenges for new application
specific processors,” IEEE Design & Test of Computers, vol. 17, no. 2,
pp- 40-50, 2000.

[27] M. Anand, S. Fischmeister, and I. Lee, “An analysis framework for
network-code programs,” in Proc. 6th Annu. ACM Conf. Embedded
Softw. (EmSoft), Seoul, South Korea, Oct. 2006, pp. 122-131.

[28] M. Anand, S. Fischmeister, and I. Lee, “Composition techniques for
tree communication schedules,” in Proc. 19th Euromicro Conf. Real-
Time Syst. (ECRTS), Pisa, Italy, Jul. 2007, pp. 235-246.

[29] S. Fischmeister and R. Trausmuth, “A programmable arbitration layer
for adaptive real-time systems,” in Proc. Int. Workshop on Adaptive and
Reconfigurable Embedded Syst. (APRES), 2008, pp. 27-31.

[30] S. F. et al., “Network Code Language Specification,” Univ. Pennsyl-
vania, Philadelphia, PA, Tech. Rep., 2007, manual & specification.

[31] K. K. M. Gries, Building ASIPs; the MESCAL Methodology. Berlin,
Germany: Springer-Verlag, 2005.

[32] S. Leibson, Designing SOCs With Configured Cores: Unleashing the
Tensilica Xtensa and Diamond Cores. ~San Mateo, CA: Morgan Kauf-
mann, 2006.

[33] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers—~Principles, Tech-
niques, and Tools, ser. World Student Series of Computer Science, J.
T. DeWolf and M. A. Harrison, Eds. Reading, MA: Addison Wesley,
1986.

[34] J. D. Patterson, Computer Organization and Design, 2nd ed. San
Mateo, CA: Morgan Kaufmann, 1997.

[35] G. Weiss, S. Fischmeister, M. Anand, and R. Alur, “Specification and
analysis of network resource requirements of control systems,” in Proc.
12th Int. Conf. Hybrid Systems: Computation and Control (HSCC), San
Francisco, CA, Apr. 2009, pp. 381-395.

Sebastian Fischmeister (S’97-M’04) received the
Dipl.-Ing. degree in computer science from the Vi-
enna University of Technology, Vienna, Austria, in
2000 and the Ph.D. degree in computer science from
the University of Salzburg, Salzburg, Austria, in De-
cember 2002.

He is an Assistant Professor with the Department
of Electrical and Computer Engineering, University
of Waterloo, Waterloo, ON, Canada. His primary re-
search interests include software technology and dis-
tributed systems for real-time embedded systems.

Robert Trausmuth (M’08) received the Dipl.-Ing.
and Ph.D. degrees in technical physics from the Tech-
nical University of Vienna, Vienna, Austria, in 1991
and 1996, respectively.

He is a Professor with the Department of Com-
puter Engineering, University of Applied Sciences,
Wiener Neustadt, Austria, since 1998. His primary
research interests include distributed control systems

and real-time communications. Recent projects in-

clude the CERN ATLAS Central Detector Control

System (profiling and driver development) and the

CIMIT Medical Device Plug and Play System (FPGA system implementation).
Prof. Trausmuth is a member of the IEEE Computer Society.

Insup Lee (S’80-M’82-F’01) received the B.S.
degree in mathematics from the University of
North Carolina, Chapel Hill, in 1977, and the Ph.D.
degree in computer science from the University of
Wisconsin, Madison, in 1983.

He is the Cecilia Fitler Moore Professor of Com-
puter and Information Science and the Director of
PRECISE Center, University of Pennsylvania. His re-
search interests include real-time systems, embedded
systems, formal methods and tools, medical device
systems, cyberphysical systems, and software engi-
neering. The theme of his research activities has been to assure and improve the
correctness, safety, and timeliness of real-time embedded systems.

Prof. Lee has published widely and received the Best Paper Award at RTSS
2003 with I. Shin on compositional schedulability analysis. He received IEEE
TC-RTS Technical Achievement Award in 2008. He was Chair of the IEEE
Computer Society Technical Committee on Real-Time Systems (2003-2004)
and an IEEE CS Distinguished Visitor Speaker (2004—-2006). He has served on
many program committees and chaired several international conferences and
workshops, and also on various steering committees, including the Steering
Committee on CPS Week, Embedded Systems Week, and Runtime Verification.
He has served on the editorial boards of several scientific journals, including
IEEE TRANSACTIONS ON COMPUTERS, Formal Methods in System Design, and
Real-Time Systems Journal. He is a founding Co-Editor-in-Chief of the KIISE
Journal of Computing Science and Engineering since September 2007. He was
a member of the Technical Advisory Group (TAG) of the President’s Council
of Advisors on Science and Technology (PCAST) Networking and Information
Technology (NIT).

