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Abstract—This work addresses the challenge of computing
worst-case response times of hard real-time applications deployed
on multiprocessor systems. In particular, the worst-case response
time analysis (WCRTA) focuses on the communication between
distributed tasks of hard real-time applications. The proposed
WCRTA models the communication as a pipelined communi-
cation resource model. This model incorporates the effect of
pipelining, and the parallel transmission of data. Applications of
such a model include multiprocessor systems that use complex
interconnects such as network-on-chips (NoC)s with priorities. In
this paper, we present an exponential analysis, and a polynomial
analysis, and prove its correctness. As an application, we apply
the pipelined communication resource model to priority-aware
NoCs, and we compare the proposed analyses against prior anal-
ysis techniques. Our experimental evaluation on two instances of
4× 4 and 8× 8 NoCs with 512,000 synthetic benchmarks shows
48.3% and 66.7% improvement in schedulability for the two NoC
sizes over prior work.

I. INTRODUCTION

Hard real-time applications must guarantee that their tem-
poral requirements are met at all times. This requires a worst-
case response time analysis (WCRTA), which provides a
method to compute the upper-bounds on the amount of time
it takes tasks of an application to complete execution. Such an
analysis is essential in determining whether a hard real-time
application meets its application deadlines. If it does, then the
application is deemed schedulable; otherwise, unschedulable.
The requirement to deliver tight worst-case response time
(WCRT) estimates is paramount when developing WCRTA
techniques because it improves schedulability.

An important challenge in distributing hard real-time sys-
tems onto modern computing platforms is in developing
WCRTA techniques that combine communication and compu-
tation execution latencies. Such WCRTA techniques must con-
sider the worst-case latency of data transmissions across the
communication medium connecting the processing resources,
and its effect on any dependent computation tasks to determine
accurate WCRT estimates. To address this challenge, re-
searchers proposed various WCRTA techniques aiming to pro-
vide tight and accurate WCRTs of such distributed hard real-
time systems [1], [2], [3]. These efforts make the fundamental
assumption that the communication occurs over a single shared
bus interconnect. A shared bus interconnect consists of a single
communication resource that only allows mutually exclusive
access. This presents a traditional communication resource
model, but, it does not apply to computing platforms prevalent
today. Nowadays, platforms consist of multi-processor systems

with multiple processing resources that are typically connected
using communication resources such as a network-on-chip
(NoC). Modelling the interconnect as a single shared bus
interconnect does not accurately model the communication
resources available in such platforms. Furthermore, it does not
capture the pipelined nature of the communication resources
that allow for parallel transmission of data between process-
ing resources across multiple stages of the communication
resources. This prohibits accurately predicting the latencies
offered by communication resources such as NoCs resulting
in gross over-estimates for the WCRTs.

We find that an important challenge in distributing hard
real-time applications onto modern computing platforms is in
devising WCRTA techniques that incorporate a communication
resource model representative of modern communication in-
terconnects. To this end, we propose a WCRTA technique that
uses a pipelined communication resource model. We present
the theory behind the WCRTA, which includes two variants
of the analysis. The first is an exponential analysis, and the
second is a polynomial. In general, the exponential analysis
is intractable; however, the polynomial analysis is tractable.
We present an application of the pipelined communication
resource model by constructing two instances of priority-
aware NoCs as presented by Shi and Burns [4], [5], [6].
Our experimental evaluation of this application uses a large
suite of synthetic benchmarks varying the utilization on the
NoC. We contend that using synthetic benchmarks for the
NoC application is the correct method for evaluating the
strengths and weaknesses of the proposed WCRTA technique.
This is because concrete deployments of software provide a
restricted exploration space. With synthetic benchmarks, we
are able to stress the analysis techniques by varying parameters
such as communication interconnect utilization. We compare
the proposed WCRTA technique against known prior works
including that of Palencia and Gonzalez [2], and a transactional
extension of the work by Shi and Burns [4]. Every approxi-
mated analysis technique uses the methodology proposed by
Maki and Turja [3]. We show application schedulability, and
the execution times of the analysis for both the exponential
and polynomial WCRTA techniques. The results indicate that
the schedulability of ORTAP is 48.3% and 66.7% higher than
the schedulability of OFLA and Palencia, respectively.

II. RELATED WORK

Tindell and Clark [1] introduce a WCRTA for a transactional
task model where multiple tasks within the transaction can be



distributed onto multiple processing resources interconnected
via a shared bus. Each transaction is a sequence of dependent
tasks. The task offsets between task activations guarantee
the linear precedence order of task execution. By integrating
the notion of offsets, the WCRTA by Tindell and Clark
eliminates the pessimism introduced by assuming all tasks are
released simultaneously. Hence, they [1] define a new set of
conditions for creating the critical instant by considering inter-
task offsets. Palencia and Gonzalez [2] extend Tindell and
Clark’s WCRTA by including dynamic offsets, and allowing
them to be larger than the period. Since the exact analysis
has exponential time complexity in number of tasks, Palen-
cia and Gonzalez [2] present an approximated version of it
that is computable in polynomial time. Later on, Maki and
Turja [3] propose an optimization in calculation of WCRTs.
The improvement comes from subtracting a new term from
the interference function, and that results to less pessimism
and tighter response times.

An alternative analysis technique known as delay calcu-
lus [7] presents a method to calculate the end-to-end latency
of an application. It also uses a pipelined resource model;
however, the assumptions and the target for the model are
different than ours. In particular, delay calculus requires that
the task executes completely before proceeding to the next
stage of the pipeline. In our model, we do not have this
restriction. We find that by not having this restriction, we can
model communication resources such as NoCs that support
switching techniques that operate at the flit-level such as
wormhole switching.

Our previous work [8] presents an offset-based flow-level
analysis (OFLA) for calculating the WCRTs of applications
deployed on a multi-processor system based on the analysis
by Shi and Burns [4], [5], [6]. Note that our work focuses
on the priority-aware NoC proposed by Shi and Burns [4],
[5], [6], [9] that uses run-time arbitration as opposed to
time-division multiplexing NoCs such as those proposed by
Goossens et al. [10]. This work also extends the application
model from sequentially dependent tasks to more generalized
directed acyclic graph dependencies (DAG). OFLA reaches
higher schedulability and tighter response times compared to
previous methods. The work presented in [8] is significantly
different than the proposed WCRTA in this paper. The primary
difference is that OFLA views the pipelined communication
resource as a single indivisible resource unit. This means
two datums being transmitted on different stages of the same
pipeline are said to be interfering with each other. Clearly,
this is not an accurate representation of modern interconnects.
Our WCRTA in this paper addresses this issue by analyzing
interferences at each stage. We compare the proposed analysis
in this paper with OFLA as well.

III. SYSTEM MODEL

In this section, we describe the processing and communica-
tion resource model, and our task model. We also present an
overview of offsets and jitters of tasks.

Fig. 1: Illustrative example of processing and communication
resource model.

A. Processing and Communication Resource Model

We use an abstract model to represent the deployment
platform consisting of a set of processing resources (PR)s
interconnected with pipelined communication resources (CR)s.
Naturally, computation tasks execute on computation re-
sources, and communication tasks on communication re-
sources. We assume that such a mapping of tasks to re-
sources is available. Figure 1 illustrates this model. Notice
that between two PRs, there are pipelined CRs: one with 5
stages, and another with 3 stages. Data transmitted on the CRs
travels through the first stage followed by the next, and so on.
Simultaneous transmission of data on stages is allowed. This
means that while data is being transmitted on a later stage,
new data can be transmitted on an earlier stage in parallel. The
communication tasks responsible for transmitting over the CRs
(as well as computation tasks executing on the PRs) support
fixed priority preemptive scheduling. The transmission latency
on each stage is divided into time slots, and we transmit a
datum in a time slot. Hence, when a datum transmits in a time
slot t on stage s1, it becomes ready for transmission at time
t+1 on stage s2, and so on. When a datum becomes ready for
transmission in a slot t, then it will actually be transmitted in
that slot unless it is preempted by a higher priority datum. A
time slot t is a time interval [t, t+ 1) (we use both notations
interchangeably).

In our model, buffers exist at the processing resources and
between stages. We generally assume that there is enough
buffer space for storing data. We, however, as a direct result
of our WCRTA, can obtain an upper-bound on the required
buffer space.

One possible architectural implementation of our proposed
interconnect is a worm-hole switched priority-aware network-
on-chip with flit-level preemption [4]. Processing resources, in
our model map to the network processing elements including
the routers, and communication resources map to links. Data
transmitted by PRs are broken down into smaller units called
flits and each flit is transmitted in one cycle. Parallel transmis-
sion of data on multiple links is achieved through worm-hole
switching.

B. Task Model

We model a real-time system as a set of n applications A :=
{A1, A2, ..., An} where each application Ai ∈ A is denoted
by a 4-tuple 〈GAi , Di, Ti, J

R
i 〉. The application is a directed-

acyclic graph (DAG) with a task graph GAi
= 〈ΓCi ,ΓMi 〉 con-

sisting of a set of nodes ΓCi that represent computation tasks
and a set of edges ΓMi that represent communication tasks,
respectively. Ai has an end-to-end deadline Di, period Ti, and



release jitter JRi . A computation task of Ai, τik ∈ ΓCi has
a worst-case execution time (WCET) of Cik when executed
on some processing resource (PR) vcik , and priority Pik. A
communication task of Ai, τik ∈ ΓMi transmits data across
a series of contiguous communication resources (stages) δik
from PR vsik to PR vdik with priority Pik, and a worst-case
transmission latency Lik per communication resource is used.
The worst-case transmission latency Lik is the latency that
an instance of the task τik takes to transmit data on a single
communication resource when it does not suffer interferences
from any other tasks. We use the notation τikc to refer to the
c-th instance (job) of task τik. For clarity of presentation, we
use the function schedule Θ(t, s) to denote the assignment of
datums of the various jobs to the CR. More specifically, each
time slot t on a stage s of the CR is either transmitting a
datum or is idle.

Regarding a NoC implementation, computation tasks will
execute on the processing elements of the NoC. Communica-
tion tasks are messages communicated between the computa-
tion tasks. Messages are transmitted on a set of contiguous
links that form paths between the processing nodes.

We restrict the task graph to be single rooted, and for it to
be a computation task that is activated at the application’s
period, and has a maximum release jitter JRi . The release
jitter JRi is the worst-case delay in the release time of the
application or the first task in the application’s task graph.
The exit task is also a computation task of the task graph
without any successor computation tasks. Ai is schedulable if
and only if the WCRT of each exit task is less than or equal
to Di. Notice that a communication task enforces precedence
constraints between other computation and communication
tasks. For example, a communication task τik executes only
after its source computation task completes execution, and the
destination computation task only begins after both the source
computation task, and the corresponding communication task
completes execution. We do not place any restrictions on the
deadlines, the release jitters, and the periods such that the
deadline and/or the release jitter can be larger than the period.
We assume distinct priority assignment to the tasks, but, we do
not enforce any specific priority assignment to the computation
and communication tasks, i.e., the priority assignment does not
have to follow the order or precedence of the tasks in the task
graph GAi

. We also refrain from discussing priority sharing
for brevity; however, this can be considered an extension to the
presented work. Furthermore, the problem of optimally assign-
ing priorities to tasks is orthogonal to this work. Additional
details of the proposed task model are available here [8].

C. Offsets and Jitters
Our task graph represents precedence dependencies between

computation tasks through communication tasks. We use off-
sets and jitters to ensure that these precedence constraints
are satisfied. We also support dynamic offsets as introduced
by Palencia and Gonzalez [2]. The root task is activated
periodically with a period Ti. Each task τik in the application
is activated after a specific time interval from the activation of
the root vertex. We call this time interval, offset Φik, which

is the best-case release time of task τik. This occurs when
the preceding tasks execute for their WCET without suffering
interferences from higher priority tasks. The offset for the root
task is zero. A task’s offset is equal to the sum of the WCETs
of the tasks along the path leading to that task starting from
the root vertex. There might exist multiple paths leading to a
task, the offset, in that case, is equal to the maximum offset
of all paths leading to that task. If interference exists, then the
task release can be delayed from its best-case release time. The
release jitter of a task is the maximum difference between its
activation time and its release time, i.e., it is the difference
between the best-case and the worst-case release times of the
task. Again, if multiple paths lead to the task, then the release
jitter is equal to the maximum jitter from all paths. The worst-
case release time of a task, from the activation of the root
vertex, is the sum of its offset Φik and release jitter JRik. Note
that the release jitters of the tasks depend on their WCRTs, and
the computation of WCRTs depends on the release jitters. This,
therefore, requires iteratively computing WCRTs and assigning
jitters until either a fixed point is reached or the application is
unschedulable. Figure 2 shows a schedule to illustrate offsets,
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Fig. 2: A schedule to illustrate offsets, jitters, and response
times.

jitters, and response times. This example has two applications
Ai and Aj . Ai has two tasks τi1 and τi2 such that τi2 can
only execute after τi1 completes (dependence). Aj has multiple
tasks that all have higher priorities than tasks of Ai such that
they cause interference. Up arrows denote release times. Task
τi1 releases at time 0, but it experiences interference from a
task in Aj delaying its execution to time 3. Notice that τi1
releases at time 0; however, it could be released at any time
up to and including its release jitter, which is the application’s
release jitter JRi1 = JRi . τi1 suffers another interference from
another task of Aj at time 5 causing τi1 to delay its end time to
12. The worst-case response time Ri1 of τi1 is 12. The best-
case release time for τi2 is the WCET of task τi1 because
it is dependent on τi1 completing its execution. Hence, Φi2
is 6. τi2 releases at time 12, which is the end time for τi1.
The difference between the release time of τi2 and its Φi2
provides the release jitter JRi2. The WCRT of τi2 is denoted
by Ri2, which is 16. Note that we denote R̂i2 as the WCRT
from the task’s activation. For τi2, this is 10.

IV. ORTAP
ORTAP computes the WCRT for communication tasks by

considering the pipelining and parallel data transmission of



jobs on the pipelined CR. We present an exponential and a
polynomial analysis. We also prove that each of these analyses
gives a safe upper-bound for the WCRT of the communication
task under analysis.

A. Direct and Indirect Interference Sets

Given a task under analysis τab, a directly interfering task
is a higher priority task τij that preempts the transmission of
τab along its CR δab. The set of all higher priority tasks that
preempt τab along δab is its direct interference set SD(τab). We
use the symbols SDi (τab) and S

s

D
i (τab) to denote the directly

interfering set of tasks from application Ai along CR δab, and
on a particular stage s, respectively.

Definition 1: Direct interference. A communication task
τab suffers direct interference from task τij on stage s of its
CR δab if and only if s ∈ δab ∩ δij ∧ (Pab < Pij).

Definition 2: Direct interference set. The set of communi-
cation tasks from application Ai directly interfering with τab
on stage s of its CR δab is S

s

D
i (τab) = {τij | ∀τij ∈ ΓMi , s ∈

δab ∩ δij ∧ (Pab < Pij)}.
Task τab suffers indirect interference from task τkl when

task τab has direct interference with task τij which has direct
interference with task τkl; however, tasks τab and τkl do
not directly interfere with each other. Note also that for
τkl to indirectly interfere with τab, the direct interference
between τij and τkl must occur before τij interferes with
τab. The indirect interference set SIij(τab) is the set of tasks
indirectly interfering with τab through task τij . For simplicity
of the formal definitions of indirect interference, we use the
function pre(δij , s1, s2)→ {true,false} to know whether stage
s1 precedes s2 on δij .

Definition 3: Indirect interference. A communication task
τab suffers indirect interference from task τkl if and only
if (s1 ∈ δab ∩ δij) ∧ (s2 ∈ δij ∩ δkl) ∧ (δab ∩ δkl =
∅) ∧ pre(δij , s2, s1) ∧ (Pab < Pij < Pkl).

Definition 4: Indirect interference set. The set of commu-
nication tasks indirectly interfering with task τab through task
τij is SIij(τab) = {τkl | ∀τij ∈ ΓMi ,∀τkl ∈ ΓMk , (s1 ∈ δab ∩
δij)∧(s2 ∈ δij∩δkl)∧(δab∩δkl = ∅)∧pre(δij , s2, s1)∧(Pab <
Pij < Pkl)}.

Tasks in the indirect interference set SIij(τab) do not share
any stage with task τab, but they must still be considered
in the analysis because they can delay τij . We account for
such interference by computing an indirect interference jitter
term JIij(τab) for τij in Section IV-D. Similarly to [4], the
interference jitter JIij(τab) is then summed to the release
jitter JRij to obtain the maximum jitter suffered by τij before
reaching the first stage on which it causes interference on τab.

B. Derivation of a Response Time Estimate

We focus on deriving an upper-bound R̂ to the response time
of the task under analysis τab. Since indirect interferences are
accounted for by indirect interference jitter, we only consider
directly interfering tasks. Let {s1, . . . , sM} be the ordered set
of stages traversed by τab along its path δab where M is the
number of stages in δab. Note that if task τij in SDi (τab)
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Fig. 3: An example schedule. Up arrows are release times, and
the task under analysis τabc is in black.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig. 4: An example of the stage-normalized schedule.

interferes with τab on a non-contiguous set of stages, then τij
must be split into two or more directly interfering tasks such
that each of the new tasks interferes with τab on a contiguous
set of stages.

In our derivation, we first consider the transmission of any
job τabc of task τab in any valid schedule Θ(t, sk) on all
stages of δab. We discuss how to compute an upper-bound
R̂ to the response time of τabc for that specific schedule;
for clarity, we measure the response time from the activation
time of τabc itself. Next, we show that the upper-bound can
be maximized by modifying the pattern of release times of
jobs of the tasks in SDi (τab), as well as the jobs of τab
itself. Finally, we show that independent of the schedule (e.g.,
Θ(t, sk)) and the specific job instance c of τab, the proposed
release time modification always yields a pattern within a
finite set of critical activation patterns. Hence, we can derive
a safe response time upper-bound for τab by computing the
maximum value of the response time upper-bound over all
critical activation patterns.

We first introduce two model transformations to help us
in our discussion. The transformations do not alter the trans-
mission semantic of the model, but they simplify reasoning
about the correctness of our proposed analysis. Note that
based on the model in Section III, we consider that jobs of
the same communication task are transmitted in FIFO order.
Hence, when analyzing the job under analysis τabc, we simply
assume that the priority of any job τabc′ that follows τabc, i.e.
with c′ > c, is lower than the priority of τabc. The second
transformation involves the schedule Θ(t, sk). Note that if any
job τijp is released on stage sk at time t, the job can not
start executing on a successive stage sk+l (with k + l ≤ M )



before time t+ l. Therefore, release times can not be directly
compared across different stages. To solve this issue, we define
a stage-normalized schedule where the transmission schedule
on successive stages is moved earlier in time so that release
times coincide across all stages.

Definition 5: Stage-normalized schedule. Given a sched-
ule Θ(t, sk) over all stages in δab, the corresponding stage-
normalized schedule is Θ̄(t, sk) = Θ(t+ k − 1, sk).
An example of a stage-normalized schedule is shown in Fig-
ure 4. The reported schedule is the stage-normalized version
of the schedule presented in Figure 3, and it will be used
as a running example throughout this section. Any datum
transmitted at time t on stage s2 in Figure 4 is transmitted
at time t + 1 in Figure 3; any datum transmitted at time t
in s3 in Figure 4 is transmitted at time t + 2 in Figure 3;
and so on. Also note that as a consequence of this model
transformation, a datum transmitted in time slot t on stage sk
will now be transmitted in the same slot t on stage sk+1 if
the schedule is not busy transmitting a higher priority datum.
This property will significantly simplify the proofs of Lemmas
1 and 3, since it allows us to compare the busy/idle state of
the schedule on two stages sl, sq independent of the distance
q − l between the stages. We next formalize the concept of
a busy interval on stage sk, which is common to analysis of
systems with fixed-job priority.

Definition 6: Pabc-level busy interval. We say that [t, t′)
is a Pabc-level busy interval on stage sk in Θ̄ if the stage-
normalized schedule continuously transmits jobs with priority
greater than or equal to Pabc in slots 〈t, . . . , t′−1〉. An interval
[t, t′) that is not Pabc-level busy is then Pabc-level idle.
Pabc-level busy intervals allow us to determine the interference
caused by higher priority jobs on τabc in every stage sk of δab.
For simplicity and since lower-priority jobs do not affect the
schedule of τabc in any way, assume that all jobs in Figure 4
have higher priority than the job under analysis. Then as an
example, [0, 2), [3, 7) and [9, 12) are all maximal-length Pabc-
level busy intervals on s3; also note that [3, 5), as well as any
other interval contained in a maximal-length busy interval, is a
Pabc-level busy interval by itself. In single-resource systems,
the concept of busy interval helps the analysis because the
response time of a job is necessarily bounded by the length of
the unique busy interval in which it appears. However, in our
situation τabc is transmitted within different Pabc-level busy
intervals on each stage. To effectively use the concept of busy
interval, we thus define a new abstraction, called busy chain,
which concatenates Pabc-level busy intervals across all stages;
as we will later prove, the busy chain is defined in such a way
that each higher priority job can interfere with τabc only once.

Definition 7: Busy chain. Let tM be the time at which the
job under analysis τabc finishes executing on its last stage sM
in Θ̄, i.e., its last datum is transmitted in slot tM − 1 (interval
[tM − 1, tM )). For each stage sk in δab starting from sM , let
tk−1 be the earliest possible time such that [tk−1, tk) is a Pabc-
level busy interval on sk; if the stage-normalized schedule is
not Pabc-level busy in slot tk−1 on sk, then tk−1 = tk. Hence,
〈[t0, t1), . . . , [tM − 1, tM )〉 is the busy chain for τabc in Θ̄.

It is easy to see that every job τabc admits a unique busy
chain for a given stage-normalized schedule Θ̄. An example
of a busy chain is reported in Figure 4, where t4 = 13, t3 =
5, t2 = 3, t1 = 3, t0 = 1. Note that since tk−1 is defined as the
earliest possible time such that [tk−1, tk) is a Pabc-level busy
interval on sk, it follows that Θ̄ must be Pabc-level idle in slot
tk−1 − 1 (interval [tk−1 − 1, tk−1)); in fact, the schedule is
always idle before t0, . . . , t3 in stages s1, . . . , s4, respectively,
in Figure 4. Also note that since stage s2 is Pabc-level idle
in [t2 − 1, t2) = [2, 3), when analyzing s2 according to the
definition, we set t1 = t2 = 3.

Let t̂ be the activation time of τabc. The response time of
τabc in Θ̄ is tM − t̂ = (tM − t0) − (t̂ − t0). We can thus
obtain an upper-bound on the response time of τabc by fixing
t̂ and t0 and computing an upper-bound on the length of the
busy chain tM − t0, similarly to how the maximum length of
the busy interval is used to bound response time in [2]. The
following lemma proves the key property of the busy chain
for interfering higher priority jobs.

Lemma 1: Consider the busy chain of τabc in Θ̄. A given
datum of any job τijp cannot be transmitted both within the
Pabc-level busy interval [tl−1, tl) on sl and within [tq−1, tq)
on sq with q > l.

Proof: Note that since τijp is executed in the busy chain,
it must hold that Pijp > Pabc. Consider a datum of τijp that
is transmitted on sl in slot t′l with tl−1 ≤ t′l < tl. In the
stage-normalized schedule, the datum becomes ready on sl+1

at the same time t′l < tl. By definition of a busy chain, the
schedule on sl+1 is Pabc-level idle in [tl − 1, tl). Hence, the
datum must be transmitted on sl+1 in a slot t′l+1 < tl − 1;
otherwise, it would be transmitted at tl−1 and the slot would
not be Pabc-level idle. If q = l + 1, this concludes the proof;
otherwise, note that t′l+1 < tl−1 implies t′l+1 < tl+1. We can
then repeat the same argument to show that on stage sl+2, the
datum is transmitted in slot t′l+2 < tl+1−1. By induction, we
can then obtain t′q < tq−1 − 1, concluding the proof.

Intuitively, Lemma 1 implies that every datum of an interfer-
ing job τijp needs to be counted only once towards the length
of the busy chain of τabc. However, different datums of the
same job can be transmitted within the busy chain on different
stages. For example in Figure 4, the first datum of the task
released at time 3 on s3 is transmitted within [t2, t3) on stage
s3, while the second datum is transmitted within [t3, t4) on
s4. We use this property to compute the desired upper-bound
to tM − t0 in Lemmas 2 and 3. The following two lemmas
provide a way to compute the length of interfering jobs on
each stage.

Definition 8: Interfering job set. S
k

J is the set of all jobs
with priority higher than or equal to Pabc that are transmitted
on stage sk.

Definition 9: Workload. W̄S
k

J (t, t′) is the sum of the trans-

mission times of all jobs in set S
k

J that are released in the

interval [t, t′] in schedule Θ̄.
Note that S

k

J includes τabc, as well as any previous jobs of τab.

Furthermore, note that by definition, the workload W̄S
k

J (t, t′)



includes jobs that are released at time t′ included.
We are now ready to compute an upper bound on the

length of the busy chain tM − t0. Our methodology works by
induction: we first compute the maximum length of the busy
chain segment [t0, t1) on stage s1 in Lemma 2 (base case).
We then compute an upper bound to [t0, tk) for each stage
sk in Lemma 3 (induction step), up to stage sM . The main
intuition is that the busy chain is formed by a sequence of
Pabc-level busy intervals on each stage; hence, on each stage
sk, the transmission times of jobs in S

k

J must be sufficient to
continuously transmit in interval [tk−1, tk). We thus bound the
length of [t0, tk) by computing the sum of transmission times
of jobs that can be transmitted within continuous Pabc-level
busy intervals up to stage sk. We will show that we can use
the defined workloads W̄S

1

J , . . . , W̄S
k

J to compute such sum
(note that workloads are defined based on release times of jobs,
not when they are transmitted); furthermore, since Lemma 1
stipulates that a job datum cannot contribute to the busy chain
on more than one stage, we will need to ensure that each job’s
transmission time is counted only once.

Lemma 2: Consider the busy chain of τabc in schedule Θ̄.
Then for any value ∆ such that:

∆ = W̄S
1

J (t0, t0 + ∆), (1)

∆ is an upper-bound to t1 − t0.
Proof: By contradiction, assume that t1 > t0 + ∆. Since

by definition of a busy chain the schedule is Pabc-level busy
on s1 in [t0, t1), it follows that [t0, t0+∆+1) must be a Pabc-
level busy interval as well. Also by definition of a busy chain,
the schedule is Pabc-level idle on s1 in [t0− 1, t0). Hence, no
job in S

1

J released on s1 before t0 can be transmitted within

the interval [t0, t0 + ∆ + 1). Similarly, no job in S
1

J released
at or after t0 + ∆ + 1 can be transmitted in [t0, t0 + ∆ + 1).
Therefore, W̄S

1

J (t0, t0 + ∆) is the sum of the transmission

time of all jobs in S
1

J that can be executed in [t0, t0 + ∆ + 1).

Since W̄S
1

J (t0, t0 + ∆) = ∆, there are not enough data units
to transmit continuously in the interval [t0, t0 +∆+1), which
has a duration of ∆ + 1 slots; this creates a contradiction.

Since we are interested in the tightest possible upper-bound
to the response time of τabc, we simply compute the minimal
value w1 of ∆ for which Lemma 2 holds as:

w1 = min{∆|∆ = W̄S
1

J (t0, t0 + ∆)}. (2)

As an example, when we apply Lemma 2 to the stage-
normalized schedule in Figure 4, we obtain w1 = 8 and thus
t0 +w1 = 9, which safely over-approximates the length of the
busy chain on s1. In fact, it is easy to see that the value of w1

is equal to the length of the longest Pabc-level busy interval
starting at t0. Furthermore, it is also easy to see that such
busy interval must have finite length as long as the sum of
the utilization (e.g., Lij/Ti) of tasks of jobs in S

k

J is less than
one; therefore, under such assumption we can always compute
a valid value for w1.

Lemma 3: For 1 ≤ k ≤M , wk is an upper-bound to tk−t0,
where:

wk = min{∆|∆ = W̄S
k

J (t0, t0 + ∆) + wk−1−

W̄( S
k−1

J
⋂
S
k

J )(t0, t0 + wk−1)} (3)

Proof: Note that for k = 1, Equation 3 reduces to
Equation 2. Also, the intersection

(
S
k−1

J
⋂
S
k

J
)

represents the

set of jobs with priority higher than or equal to Pabc that are
transmitted on sk as well as on the previous stage sk−1.

The proof proceeds by induction. Assume that for all
stages up to sk−1, the hypothesis holds and furthermore wk−1

includes the transmission time of all jobs in S
k−1

J released in

[t0, t0 +wk−1]. By Lemma 2 and definition of W̄S
1

J (t, t′), this
is true for k − 1 = 1 (base case). We need to prove that it
holds for stage sk (induction step).

Similar to Lemma 2, assume by contradiction that tk >
wk + t0. We show that the maximum sum of transmission
lengths of jobs transmitted in the busy chain on s1, . . . , sk
in [t0, t0 + wk + 1) is wk; this creates a contradiction since
there are not enough data units to cover an interval of wk +
1 slots. No job in S

k

J released at or after t0 + wk + 1 can

be transmitted in [t0, t0 + wk + 1). We will next prove that
no job in S

k

J released before t0 can be executed in the busy
chain on stage sk (Pabc-level busy interval [tk−1, tk)). Finally,
according to Lemma 1, any datum of a job contributing to the
busy chain on stages s1, . . . , sk−1 can not contribute to the
busy chain on sk. Therefore, we can upper-bound the sum of
the transmission lengths on jobs transmitted in the busy chain
in [t0, t0 +wk + 1) by taking the workload W̄S

k

J (t0, t0 +wk),

summing the maximum length of the busy chain wk−1 up to
stage sk−1, and subtracting the transmission time of jobs that
are released in S

k

J within [t0, t0 + wk + 1) but were already

counted in wk−1, which is W̄( S
k−1

J
⋂
S
k

J )(t0, t0 + wk−1); this

is equivalent to computing wk according to Equation 3. This
concludes the induction step, since we have also shown that
wk indeed includes the transmission time of all jobs in S

k

J

released in [t0, t0 + wk].
We still need to prove that no job in S

k

J released before
t0 can be executed in the Pabc-level busy interval [tk−1, tk).
Assume that a job τijp ∈ S

k

J is released before t0 on stage
sl, with l ≤ k. Let t′l be the slot during which the last datum
of τijp is transmitted on sl. Then it must be t′l < tl−1 − 1,
otherwise, τijp would be transmitting during the Pabc-idle slot
[tl−1−1, tl−1). We then use the same reasoning as in Lemma
1 to show that t′k < tk−1 − 1, where t′k is the slot during
which the last datum of τijp is transmitted on sk.

Figure 4 shows the values of w1, . . . , w4 computed for the
figure’s schedule. Let us consider w2 = W̄S

2

J (t0, t0 + w2) +

w1 − W̄(S
1

J
⋂
S
2

J )(t0, t0 + w1). As previously discussed, w1

includes the transmission times of all jobs on s1 including the
task under analysis τabc (in solid black). W̄S

2

J (t0, t0 + w2)



includes the transmission times of the jobs between the time
interval [4, 10]. Notice that the job in [0, 2) is not included
since it is released at time 0 < t0 = 1. We then subtract
W̄(S

1

J
⋂
S
2

J )(t0, t0 + w1) which comprises the jobs that were

included in w1 but are also transmitted on s2. This results
in w2 = 10 and t0 + w2 = 11. Similarly t0 + w3 = 15,
and t0 + w4 = 19. Note that w1, . . . , w4 significantly over-
approximate the length of the busy chain; this is because the
data transmitted on stage s1 in [3, 8) and the datum transmitted
on s2 and s3 in [5, 6) is counted in the workload despite not
being part of the chain. However, as we show in the next
section, the over-approximation allows us to greatly reduce
the number of different job release time patterns that we need
to check to find the worst-case response time of τab.

C. Critical Activation Patterns

Lemma 3 gives us a way to compute an upper-bound R̄
on the response time of τabc based on the pattern of release
times of interfering jobs in Θ̄: (1) we first compute the bound
wM for the length of the busy chain tM − t0, and (2) we
then obtain R̄ = wM − (t̂ − t0). Note that R̄ represents the
response time of τabc in the stage-normalized schedule Θ̄. We
can compute the response time R̂ in the original schedule Θ
as R̂ = R̄ + M − 1. Finally, since R̂ and R̄ are measured
from the activation time of τabc, we can obtain the response
time from the activation of the root vertex of application Aa
as R = R̂+Φab. Unfortunately, this procedure is not feasible,
since we would need to compute R̄ for all jobs τabc of τab,
and all possible release patterns to obtain the worst-case. To
address this, we present the following lemma to show that
we only need to consider a finite set of release patterns and
jobs to determine the worst-case. The key idea is that we can
create a worst-case pattern by releasing each interfering job as
soon as possible at or after t0; this maximizes the workloads
computed in Lemmas 2 and 3.

Lemma 4: Consider applying the following rules to the
release pattern of jobs in Θ̄:

1) Every job τijp that is activated before t0 and can be
released at or after t0 is released at t0.

2) Every job τijp that is activated after t0 is released
immediately at its activation time.

3) The activation time of every application τi is moved
earlier in time until one job of τi is released at time t0
after suffering maximum jitter.

Then the response time bound R̄ computed for the modified
release pattern will be no less than the response time bound
computed for the original pattern.

Proof: Consider any interval [t0, t0 + ∆] as in Lemmas 2
and 3. If a job was released in [t0, t0 + ∆] in the original
pattern, then it will still be released in [t0, t0 + ∆] in the
modified pattern. This is because Rules 1 and 2 force any job
that could be released within [t0, t0 +∆] to indeed be released
within the interval. Furthermore, Rule 3 can not cause any job
released at or after t0 to be released before t0. Therefore, the
value of W̄S

k

J (t0, t0 + ∆) for any set S
k

J computed in the
modified pattern will be greater than or equal to the value

computed in the original pattern. It is then easy to see that
for all stages sk, the computed value of wk can not decrease
after applying Rules 1, 2, and 3. Since R̄ = wM − (t̂ − t0),
to conclude the proof it suffices to note that the activation
time t̂ of τabc in the modified pattern can not be larger than
in the original pattern. This is because Rule 3 can move the
activation time of τabc to occur earlier but not later in time.

(a) Original release pattern.

(b) Modified release pattern.

Fig. 5: Release patterns of jobs of application Aa.

Figure 5a shows an example timeline including t0, the
beginning of a busy chain. It also shows activation times (down
arrows) t̂−2, . . . , t̂2 for several jobs of τab, as well as jobs of
another higher priority task τak of application Aa. Note that
the first job of τak cannot be released at or after t0. Rule
1 applies to the first three jobs of τab and the second and
third job of τak; they are activated before t0 and have enough
jitter to be released at or after t0. These jobs are released at
t0. Rule 2 applies to the last two jobs of both tasks; they
are activated after t0. These jobs are released immediately at
their activation times. Finally, Figure 5b shows the modified
pattern after applying Rule 3; the activation time of Aa is
moved earlier in time until the second job of τak is released
at t0 after suffering maximum jitter.

We call the modified pattern obtained in Lemma 4 a critical
pattern. Let τabc′ , with c′ ≤ c, be the first job of τab released at
or after t0. The number of critical patterns for τabc where τabc′
is the first such job is then (

∣∣SDa (τab)
∣∣+1) ·

∏
∀i6=a

∣∣SDi (τab)
∣∣.

The application under analysis Aa is activated at a time
such that either a job of any interfering task in SDa (τab)
or τabc′ is released at t0 after suffering maximum jitter,
providing

∣∣SDa (τab)
∣∣+1 combinations. Every other application

Ai is activated at a time such that a job of any interfering
task in SDi (τab) is released at t0 after suffering maximum
jitter, providing

∣∣SDi (τab)
∣∣ combinations. Each of the possible

critical activation patterns is characterized by a tuple v of
indices, one per transaction. Each index v(i) identifies the
task of application Ai that coincides with the beginning of the
busy chain. Lemma 4 represents the equivalent of Theorems 1
and 2 in Palencia and Gonzalez [2], which prove that a critical
instant for the task under analysis can be built by releasing one



task of each application at the critical instant after suffering
maximum jitter. Intuitively, the beginning of the busy chain t0
represents the equivalent of the critical instant, except that it
accounts for transmission on multiple stages and must thus
include patterns that would not be valid in single-resource
systems. For example, note in Figure 4 that the schedule is
not Pabc-level idle at time t0 on stages s2 and s3.

Given a critical pattern, the index of the first job τabc′
released at or after t0 is relevant because it determines the
activation time t̂ of τabc. However, the time difference t̂− t0
used to compute R̄ depends only on the difference c− c′. In
other words, the same critical release patterns apply to all jobs
τabc of τab as long as we vary the number of jobs of τabc that
are released in [t0, t0 + wM ].

D. Indirect Interference Jitter

Given a task under analysis τab, the phase ϕijk between
any task τij and the beginning of the busy chain of a critical
activation pattern created by task τik is given by:

ϕijk = Ti − (φik + JRik + JIik(τab)− φij) mod Ti

where φij is the reduced offset of task τij to the period 0
to Ti and is given by: φij = Φij mod Ti and JIik(τab) is the
interference jitter suffered by τik and is given by:

JIik(τab) = Rik(τab)− Lik − JRik − φik

The interference jitter JIik(τab) represents the interference suf-
fered by flow τik only due to flows in the indirect interference
set of task τab, SIik(τab). We use the notation Rik(τab) to
denote the response time of task τik only due to interference
from higher priority tasks in the set SIik(τab). As an example,
Figure 5b shows the phase ϕabv(a) = ϕabk between τab and
the beginning of the busy chain created by τak, assuming
that Jak = JRak + JIak(τab). Note that for the first job of τab
activated after t0, ϕabk is exactly equal to the length of the
interval t̂− t0 used in Section IV-C.

E. Exponential Analysis

Now we are ready to present the formulation for the
exponential response time analysis. Let us use the term critical
instant for the beginning of the busy chain, t0, of a critical
activation pattern. We introduce a numbering scheme to track
the number of job instances that we need to consider in a busy
chain. We use p = −1 to refer to the instance activated in the
interval [t0−2∗Ta, t0−Ta), p = 0 in the interval [t0−Ta, t0),
p = 1 in the interval [t0, t0 + Ta), and so on. Note that
the numbering scheme corresponds with the indices of t̂p in
Figure 5; furthermore, we have t̂p−t0 = ϕabv(a)+(p−1)∗Ta.
The first job instance that we consider is one with the least
index that has enough jitter to be part of the busy chain. Hence,
the first job instance pv0,ab = −bJ

R
ab+ϕabv(a)

Ta
c+ 1.

Lemma 5: The worst-case contribution of an application Ai
to the busy chain for τab on stage sl when the activation of

task τik coincides with the critical instant is given by:

Wik(τab, l, t) =
∑

∀j∈S
l

D
i (τab)

(⌊JRij + JIij(τab) + ϕijk

Ti

⌋
+
⌊ t− ϕijk

Ti

⌋
+ 1
)
∗ Lij

Proof: By definition, a workload W̄S
l

J (t, t′) includes the

transmission times of all jobs in the set S
l

J that are released

in the interval [t, t′]. The set S
l

J includes all jobs of higher

priority tasks of application Ai, S
l

D
i (τab), that contribute to

the workload on stage sl. Consider an arbitrary higher priority
task of application Ai, τij . According to Rule 1 of Lemma 4,
all job instances of τij that are activated before the critical
instant and have enough jitter that allows them to contribute
to the workload, are released at the critical instant. The first
term of the summation accounts for these job instances, this
is similar to the derivation in [2]. The second term simply
applies Rule 2 of Lemma 4. The job instances belonging to
Rule 2 are a series of periodic activations starting ϕijk time
units after the critical instant. Note, however, that by definition
of a workload, we need to account for activations released at
time t′ (end of the interval) included. Hence, the 1 added to
the second term to account for these activations.

We further explain Lemma 5 using Figure 5b applied to
task τak, where v(a) = k. The first term bJ

R
ak+J

I
ak(τab)+ϕakk

Ta
c

accounts for the second and third jobs that are activated before
the critical instant. The second term b t−ϕakk

Ta
c + 1 accounts

for the two jobs that are activated after the critical instant.
Note that according to the definition of the workload, if the
nominator t−ϕakk is such that it exactly matches the period,
then we will still consider the last job to be part of the worst-
case contribution Wak(τab, l, t).

For clarity of presentation, we define W ′ik(τab, l, t) as the
worst-case contribution of an application Ai on the response
time of task τab on stage sl−1 solely due to tasks that are
common on stages sl−1 and sl, i.e., in the set S

l−1
D
i (τab) ∩

S
l

D
i (τab). We also use p

l

v
B,ab to denote the largest-numbered

job instance in the interval wl.
Lemma 6: For each activation pattern v, the worst-case

length of the busy chain for each job p of task τab up to
stage sl is determined by:

w
l

v
ab(p) = w

l−1
v
ab(p

′) +
∑
∀i

Wiv(i)(τab, l, w
l

v
ab(p))

−
∑
∀i

W ′iv(i)(τab, l, w
l−1

v
ab(p

′)) + (p− pv0,ab + 1) ∗ Lab

where p′ = p if p ≤ p
l−1

v
B,ab, else p′ = p

l−1

v
B,ab.

Proof: This proof directly descends from Lemma 3. In
the above equation, if we remove the restriction to a specific
job instance p, then we compute w

l

v
ab which is the length of the

busy chain up to stage sl where c = p
l

v
B,ab. Thus, computing

wl as introduced in Lemma 3. The only difference is that



w
l

v
ab separates interference from higher priority tasks and jobs

from the same task into different terms. In order to compute
the w

l

v
ab(p) for a specific job instance then we only consider

interference from higher priority tasks while excluding any job
instances that are activated after p. Similar to Lemma 3, and
using Lemma 5, to compute w

l

v
ab(p) we use w

l−1
v
ab(p

′) plus any

interference on stage sl while subtracting interferences that are
common on stages sl−1 and sl. We restrict instances from the
task τab only up till p. Note that we use p′ instead of p in
w
l−1

v
ab(p

′). This is due to the fact that a certain p might only

exist on stage sl but not sl−1, making w
l−1

v
ab(p) undefined. In

such case, the w that can be considered from the previous stage
is only up till the maximum p existing on it, i.e., p

l−1

v
B,ab.

Note that for stage s1, w
1

v
ab(p) is equal to∑

∀iWiv(i)(τab, 1, w
1

v
ab(p)) + (p− pv0,ab + 1) ∗ Lab.

To obtain p
l

v
B,ab for any stage sl, we simply replace w

l

v
ab(p)

and w
l−1

v
ab(p

′) by w
l

v
ab and w

l−1
v
ab, i.e., we compute a busy

interval instead of a response time of a specific job instance.

We also replace p by (b
w
l

v
ab−ϕabv(a)

Ta
c − b

w
l−1

v
ab−ϕabv(a)

Ta
c). This

simply accounts for new job instances of τab that exist on
stage sl but not sl−1.

Theorem 1: The worst-case response time of task τab is
obtained by:

Rab = max
∀v

(
max

p=pv0,ab... p
M

v
B,ab

(R
M

v
ab(p))

)
+M − 1

where R
M

v
ab(p) = w

M

v
ab(p)− ϕabv(a) − (p− 1) ∗ Ta + Φab.

Proof: Using Lemma 6, we can find the worst-case length
of the busy chain for each job p on stages along the path δab
of τab for a particular activation pattern v. We also showed
that the response time for a job of τab is R̄ = wM − (t̂ −
t0), i.e, R̄ = w

M

v
ab(p) − ϕabv(a) − (p − 1) ∗ Ta for job p. To

obtain the response time R
M

v
ab(p) measured from the activation

of application Aa, rather than the activation of τab, we also
need to add the offset Φab. Next, we compute the maximum
worst-case response time across all job instances, which gives
us the worst-case response time of τab in v. From Lemma 4,
we consider the maximum worst-case response time across all
activation patterns to obtain the WCRT of task τab, Rab.

F. Polynomial Analysis

The difficulty with the exponential analysis is that it is expo-
nential in the number of critical activation patterns. Hence, we
derive an upper-bound on the interference caused by an appli-
cation Ai as the maximum interference caused by considering
each task in Ai to coincide with the critical instant. We use
the notation W ∗i (τab, l, t) = max∀k∈S

l

D
i (τab)Wik(τab, l, t) to

compute this upper-bound on a specific stage sl. We use this
approximation only for higher priority applications and not
application Aa to which the task under analysis τab belongs.
The number of critical activation patterns that we must con-
sider is thus reduced to

∣∣SDi (τab)
∣∣ + 1. In what follows, we

derive a polynomial WCRTA for our pipelined communication
model. For clarity of presentation, we use W ′′∗i (τab, l, t) =
max∀k∈S

l

D
i (τab)W

′′
ik(τab, l, t) where W ′′ik(τab, l, t) is the worst-

case contribution of an application Ai to the busy chain for
task τab on stage sl−1 solely due to tasks that are on stage
sl−1 but not sl, i.e., in the set S

l−1
D
i (τab)\S

l

D
i (τab).

Lemma 7: For a critical instant created with task τac, the
worst-case length of the busy chain for each job p of task τab
up to stage sl is determined by:

w
l
abc(p) =

∑
s=2...l

∑
∀i6=a

W ′′∗i (τab, s, w
s−1abc

(p′))

+
∑
∀i

W ∗i (τab, l, w
l
abc(p)) +

∑
s=2...l

W ′′ac(τab, s, w
s−1abc

(p′))

+Wac(τab, l, w
l
abc(p)) + (p− pv0,ab + 1) ∗ Lab

Proof: We first transform the interference from Lemma 6
into a more convenient form for the discussion. Consider
using Lemma 6 to compute a busy interval (through drop-
ping p as shown earlier). Let us focus on the interfer-
ence from higher priority tasks and disregard jobs from
the same task (they are not affected by the approxi-
mation). The interference is accounted for by the terms
w
l−1

v
ab +

∑
∀iWiv(i)(τab, l, w

l

v
ab) −

∑
∀iW

′
iv(i)(τab, l, wl−1

v
ab)

of Lemma 6. The term w
l−1

v
ab can be expanded into∑

∀iWiv(i)(τab, l − 1, w
l−1

v
ab) −

∑
∀iW

′
iv(i)(τab, l − 1, w

l−2
v
ab).

We expand all terms until reaching the first stage s1. Hence,
we get:∑
∀i

Wiv(i)(τab, 1, w
1

v
ab) +

∑
∀i

Wiv(i)(τab, 2, w
2

v
ab)

−
∑
∀i

W ′iv(i)(τab, 2, w1
v
ab) + . . .

+
∑
∀i

Wiv(i)(τab, l − 1, w
l−1

v
ab)−

∑
∀i

W ′iv(i)(τab, l − 1, w
l−2

v
ab)

+
∑
∀i

Wiv(i)(τab, l, w
l

v
ab)−

∑
∀i

W ′iv(i)(τab, l, w
l−1

v
ab)

Recall that
∑
∀iW

′
iv(i)(τab, l, wl−1

v
ab) is the interference on

stage sl−1 from tasks in the set S
l−1

D
i (τab)∩S

l

D
i (τab). Hence the

terms,
∑
∀iWiv(i)(τab, l−1, w

l−1
v
ab)−

∑
∀iW

′
iv(i)(τab, l, wl−1

v
ab)

can be rewritten as
∑
∀iW

′′
iv(i)(τab, l, wl−1

v
ab) which is the

interference due to tasks in the set S
l−1

D
i (τab)\S

l

D
i (τab). This

is intuitive since the first term is interference from the set
S
l−1

D
i (τab) and the second term is the interference from the set

S
l−1

D
i (τab)∩S

l

D
i (τab). So their difference yields the interference

in the set S
l−1

D
i (τab)\S

l

D
i (τab). Therefore, we can write the

interference in Lemma 6 in the form:
∑
∀iW

′′
iv(i)(τab, 2, w1

v
ab)

+ . . . +
∑
∀iW

′′
iv(i)(τab, l, wl−1

v
ab) +

∑
∀iWiv(i)(τab, l, w

l

v
ab). Or

in a more compact form
∑
s=2...l

∑
∀iW

′′
iv(i)(τab, s, ws−1

v
ab) +∑

∀iWiv(i)(τab, l, w
l

v
ab).



Next, we consider the first stage on path δab of τab. The
interference on stage s1 is equal to

∑
∀iWiv(i)(τab, 1, w

1

v
ab).

Using the approximation introduced earlier, the interference
will be equal to

∑
∀iW

∗
i (τab, 1, w

1

v
ab). Since the approximation

considers the maximum interference that can be achieved
by Ai through considering each task to coincide with the
critical instant, then doing the summation over all higher
priority applications yields an interference that is greater than
or equal to considering any individual activation pattern, i.e.,
W ∗i (τab, 1, w

1

v
ab) is an upper-bound of

∑
∀iWiv(i)(τab, 1, w

1

v
ab).

This is similar to the derivation in [11].
Let us consider the second stage s2. The interfer-

ence on this stage is equal to
∑
∀iW

′′
iv(i)(τab, 2, w1

v
ab) +∑

∀iWiv(i)(τab, 2, w
2

v
ab). This is the sum of interfer-

ences from tasks that are only on stage 1 and tasks
that exist on stage 2. Now consider the approxima-
tion

∑
∀iW

′′∗
i (τab, 2, w

1

v
ab) +

∑
∀iW

∗
i (τab, 2, w

2

v
ab). Since

W ∗i (τab, 2, w
2
abc) ≥ Wiv(i)(τab, 2, w

2

v
ab) and the same

holds for the interference that occurs only on stage 1,
W ′′∗i (τab, 2, w

1

v
ab) ≥ W ′′iv(i)(τab, 2, w1

v
ab). Hence, the approx-

imation on stage s2 yields an upper-bound to the interference
on that stage. Similarly this can be extended to all stages until
stage M .

Lastly, in this Lemma, we only apply the approximation to
higher priority applications, i.e., ∀i 6= a. Hence, we compute
an upper-bound for the interference from all higher priority
applications. To find the polynomial worst-case response time
for task τab, we need to consider all possible critical instants
from application Aa.

Theorem 2: The worst-case response time of task τab is
obtained by:

Rab = max
∀c∈SD

i (τab)∪b

(
max

p=pv0,ab... p
M

v
B,ab

(R
M
abc(p))

)
+M − 1

where R
M
abc(p) = w

M
abc(p)− ϕabv(a) − (p− 1) ∗ Ta + Φab.

Proof: The proof is similar to the proof of Theorem 1.

V. EXPERIMENTAL EVALUATION

For the experimental evaluation of the proposed WCRTA,
we present an application of a priority-aware NoC as presented
by Shi and Burns [4], [5], [6]. This NoC supports wormhole
switching with flit-level preemption. Details of the NoC ar-
chitecture are available in [4]. In particular, we propose two
instances of NoCs with sizes 4×4 and 8×8 for the deployment
platform. Each node in the NoC is a PR in the processing
and communication resource model, and each link between
two nodes represents a stage in the pipelined communication
resources. A computation task executes on the node, and the
communication task transmits data across multiple links to its
destination node. These links of the NoC correspond to the
different stages of the CR. We experiment with exponential
and polynomial versions of the offset-based flow-level analysis
(OFLA) [8], and Palencia and Gonzalez’s [2] (PAL) analyses,
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Fig. 6: Run-time comparison of various WCRTA techniques.

and the proposed analysis (ORTAP). We also add the optimiza-
tion by Turja and Maki [3] to all polynomial versions. We
randomly generate DAGs to represent arbitrary applications
with a specified number of tasks.

We setup the experiments with the following parameters.
We use 10 applications per test. The number of tasks per
application is varied in the range (3,10). The application period
is randomly chosen in the range (1.000,1.000.000) and the
deadline is chosen as a coefficient (e.g. 10x) of the period.
The applications are prioritized using rate-monotonic priority
assignment, and an arbitrary priority assignment scheme is
chosen for priority of tasks within each application. The ap-
plication release jitter is set to zero (i.e. JR = 0). Task offsets
and jitters are calculated based on the methods presented in
Section III-C. The communication utilization (UM) is equally
divided between applications ranging from 10% to 4800% in
steps of 60 and the PR utilization is set to 500%. Random
application mapping is used, and for the communication tasks
the routes are selected by a shortest path algorithm. For each
configuration, 100 random test cases are executed.

Figure 6 displays the run-time of the six WCRTA tech-
niques. This includes the exponential and polynomial versions
for ORTAP, OFLA, and PAL. The results show that the run-
time of the exponential versions grow exponentially as we
increase the number of tasks per application when compared
to the polynomial. It also shows that the run-time for the
exponential ORTAP is larger than others with the exception of
exponential PAL. Exponential ORTAP performs the WCRTA
for an exponential number of activation patterns on multiple
stages, thus the large run-time. Exponential PAL considers
indirect interference as direct interference. This increases the
number of activation patterns that have to be considered which
is exponential in an exponential analysis. Thus, leading to a
higher execution time even compared to exponential ORTAP.

Figure 7 shows the average schedulability of application
for the various WCRTA techniques. For each figure, we have
10 tasks per application, and for each NoC size we use the
deadline of each application to be twice its period, and one
where the deadline is ten times its period. Figure 7a shows
that the schedulability of the exponential version of ORTAP
is higher compared to both the exponential versions of OFLA
and PAL. Furthermore, as we increase the utilization of the
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Fig. 7: Schedulability of application sets with 10 tasks per application.

NoC, we observe that ORTAP has a higher schedulability
than the other analysis techniques. This is because ORTAP
is able to better analyze workloads with a large amount of
interference per stage. Since such interferences do not exist
when the utilization is low, all three techniques do equally
well. This holds for all graphs in Figure 7. From Figure 7b,
we make the same observations with the period set to ten times
that of the period. Notice that increasing the deadline results
to higher schedulability for all analyses simply because the
deadline is larger. Figure 7c and 7d shows the schedulability
of the polynomial versions of the analysis. Once again, the
polynomial version of ORTAP outperforms OFLA and PAL
in terms of schedulability.

VI. CONCLUSION

We present a WCRTA analysis for a pipelined communi-
cation resource model. A concrete application of this model
is in estimating worst-case latencies across communication
interconnects such as a priority-aware NoC. In developing this
WCRTA technique, we construct an exponential analysis, and
its corresponding polynomial analysis. We provide proofs of
correctness to ensure that the analysis does indeed provide
the upper-bounds. To evaluate the analysis, we create two
instances of a NoC, and deploy a large suite of synthetic
benchmarks. These synthetic benchmarks are essential and
necessary to stress the analysis technique. We compare our
WCRTA against prior works, and our results show that the
schedulability of ORTAP is 48.3% and 66.7% higher than the
schedulability of OFLA and PAL for the two NoC sizes.
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