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Abstract—Tracing is a well-established method for debugging
programs. Current approaches aim only at preserving functional
correctness during the instrumentation. Preservation of func-
tional correctness is a necessary feature of all instrumentation
tools. However, few existing instrumentation tools preserve extra-
functional properties of a program. Specific classes of software
are unable to leverage software instrumentation; e.g., timing for
real-time systems, memory consumption for embedded software,
and tracing bandwidth for on-board software.

We present the first instrumentation framework, INSTEP, that
preserves logical correctness and a rich set of extra-functional
properties. INSTEP derives instrumentation alternatives based
on the developer’s instrumentation intent (II), abstracts the
program and prunes the search space, and then instruments the
program based on constraints and cost models of competing prop-
erties. We demonstrate and experiment with a fully automated
framework of INSTEP with different IIs and extra-functional
properties. We also experiment with a large automotive case study
to show the scalability of INSTEP.

I. INTRODUCTION

Tracing is a well-established method for analyzing and de-
bugging programs. Developers use this technique to diagnose
the faulty behavior of software programs. Program instrumen-
tation is the modification of program code to trace its execution
and extract information at run time. A necessary feature of the
instrumentation process is maintaining the logical correctness
of the program after instrumentation. However, preserving the
functional correctness alone is often insufficient.

Software systems are rich in extra-functional (or non-
functional [1], [2]) requirements such as timing, code sizes,
communication bandwidth, power consumption, and memory
consumption. Current instrumentation techniques are unfit for
such systems, because these techniques ignore such extra-
functional properties. Consequently, using a current instrumen-
tation framework for such systems can introduce side effects
that produce unintended behavior. For instance, embedded
software run on microcontrollers that might have limited on-
chip RAM. Instrumenting such software programs might lead
to exceeding the memory limit. Another example is time-
sensitive programs in the field of real-time embedded systems.
Instrumentation of a real-time program might cause it to
exceed its time budget or deadline.

Changing the location of the instrumentation code in a
program can have an effect on the extra-functional properties.
Consider, for instance, the function in Listing 1. The function
prints the value of z in the if and else statements, and prints w
before returning. Calling this function 10 million times has an
execution time of around 2.29 seconds on a 2.5GHz dual core

platform. The printf() calls can be slightly modified by
removing the calls at labels A and B, and printing both z and w
in the call at label C. This reduces the execution time to around
1.75 seconds. Hence, the proper placement of instrumentation
code can affect the performance and thus can help meet
extra-functional properties like timing. Similar examples for
other properties like binary size or communication channel
throughput are straightforward.

i n t simple ( i n t x , i n t y ) {
i n t z ,w ;
i f (x % 2 = 0){

z = x + 100 ;
A : printf ("%d\n" ,z ) ;

} e l s e {
z = x ∗ 9 ;

B : printf ("%d\n" ,z ) ;
}
w = (z / 2 ) ∗ y ;

C : printf ("%d\n" ,w ) ;
re turn w + z ;

}

Listing 1: Simple Example

Maintaining an extra-functional property during instrumen-
tation is complicated and managing multiple properties si-
multaneously is even more so. Extra-functional properties
can be competing where meeting one property might break
another. The instrumentation framework needs to weigh and
trade off such competing properties. As an example, assume
that the instrumentation framework can choose from several
variables to instrument and locations in the source code where
to instrument them. It might be the case that instrumenting,
for example, six variables at one location minimizes the instru-
mentation time. However, at the same time, the system might
have insufficient bandwidth to store and communicate the six
variables at once and thus splitting up the instrumentation
would be favorable. At that point minimizing both execution
time and memory bandwidth is impossible.

This work presents a static instrumentation framework that
gives the developer unprecedented control over what to in-
strument and what to preserve. It thereby presents the first
fully-implemented instrumentation mechanism that considers
multiple competing extra-functional properties. INSTEP uses
trees to represent instrumentation intents (IIs) and automata to
represent cost models. The work provides insight into pruning
the search space of instrumentation alternatives to find a fea-
sible instrumentation. The experiments demonstrate the usage



of IIs and cost models together with four different constraints
and objectives.We experimented with multiple benchmarks as
well as an industrial automotive module. The experimental
results show the accuracy of INSTEP in honoring constraints
and demonstrate its practicality and scalability.

The framework is directly applicable to a variety of use
cases, including debugging and testing. In testing and oracle
selection, the number of test inputs required to achieve a
certain level of fault finding can be reduced through selecting
an oracle that has a higher percentage of internal program
variables [3]. However, increasing the number of internal
variables used by the oracle, increases perturbation to extra-
functional properties which may lead to violation of some
constraints. Therefore, it is essential to choose an oracle which
reduces test cases but at the same time preserves constraints.

II. EXTRA-FUNCTIONAL INSTRUMENTATION OVERVIEW

INSTEP is a static instrumentation framework that con-
siders multiple competing extra-functional properties while
instrumenting a program. Developers start by specifying their
instrumentation intents. IIs specify variables of interest, their
weights, and logical relations among them. Section III explains
IIs in more detail. The II specification allows the framework to
extract at run time the information which is most valuable to
the developer. INSTEP also permits developers to specify cost
models for the different extra-functional properties of interest.
A cost model is a weighted automaton that assigns different
costs to actions like variable instrumentation and variable
bit-width assignment. This helps INSTEP to maximize or
minimize certain properties and satisfy constraints on others.

Figure 1 shows the block diagram for INSTEP. The frame-
work operates in two phases: (1) the partial program derivation
phase and (2) the determinising instrumentation phase. In the
partial program derivation phase, INSTEP transforms the input
program into a partial program based on the IIs. A partial
program is one containing non-deterministic choices which
have to be resolved [4].

The partial programs in INSTEP contain possible alterna-
tives of where to execute the instrumentation. In the deter-
minising instrumentation phase, INSTEP transforms the non-
deterministic partial program into a deterministic instrumented
program. This transformation is based on cost models for com-
peting extra-functional properties together with any constraints
on any property. In this phase, the framework attempts to find
a feasible solution that satisfies all constraints and maximizes
the objectives (or minimizes them based on their semantics).

Separating the framework into two phases fosters modular-
ity and reuse. The use of partial programs as an intermediate
representation shows promise [4] and allows for the modularity
of the design to support extensions like different language
processors or different back-ends. One possible extension, for
example, is generating multiple instrumented programs that
cover all the IIs (in case one is not enough) and at the same
time honor constraints. Another reason is re-using the partial
program for instrumentation after, for example, relaxation of
cost models or constraints.

The development of the framework involved solving a set
of challenges that are specific to its two phases of oper-

Instrumentation
Intent (II)

Input Program

Constraints

Cost Model

Instrumented
ProgramPartial Program

Partial-Program
Derivation Phase

Determinising 
Instrumentation 

Phase

Fig. 1: Extra-functional instrumentation framework

ation. Section III discusses the partial program derivation
phase. It specifies the instrumentation intent representation
and addresses the first challenge of deriving instrumentation
alternatives from the IIs to create a partial program. Section IV
discusses the determinising instrumentation phase. It describes
the representation of automata-based cost models and gives
examples of various extra-functional properties. It also ad-
dresses the second and third challenges. The second challenge
is pruning the search space of the partial program. The third
challenge is the formulation of an optimization problem from
the cost models, the constraints, and the partial program.
Solving this optimization problem yields a deterministically
instrumented program.

III. PARTIAL PROGRAM DERIVATION

In this phase, INSTEP uses two inputs: (1) the input
program and (2) the instrumentation intents (IIs). With these,
INSTEP extracts the program’s CFG and generates instrumen-
tation alternatives based on the IIs. This section describes the
inputs and the generation process in detail.

A. The Input Program

INSTEP uses CIL [5] to extract the input program’s control-
flow graph (CFG). INSTEP supports data structures in MISRA
C [8] compliant programs (more details in Section VI).
INSTEP supports advanced constructs such as nested state-
ments and recursive functions. A CFG is a directed graph
G = 〈V,E〉 which captures the program’s inter-procedural
control flow. Each vertex v ∈ V in the program’s CFG
represents a basic block in the program. A basic block is
a unit of execution in the program and has a single entry
and exit point. In our model, each basic block contains at
most one assignment to any variable of interest. Thus, if a
basic block in the original CFG contains two assignments for
variables mentioned in the IIs, then our model will split it
into two basic blocks. Each block will contain only one of the
assignments and one block will follow the other. The set of
edges, E ⊂ V × V , represent the flow of control in the CFG.

Listing 2 shows a sample input program which is part
of the sqrt benchmark from the SNU benchmark suite [6].
Figure 2a shows the CFG for the input program before splitting
any basic blocks. Basic block 〈B,C,D〉 contains all three
statements B, C, and D. Assuming that the IIs contain the
variables dx, x, val, diff, flag, Figure 2b shows the modified
CFG after splitting basic block 〈B,C,D〉 into three separate



basic blocks B, C, and D. INSTEP uses this modified CFG
for its transformations.

A : i f ( !flag ) {
B : dx = (val−(x∗x ) ) / ( 2 . 0 ∗x ) ;
C : x = x + dx ;
D : diff = val−(x∗x ) ;
E : i f (fabs (diff ) <= min_tol ) {
F : flag = 1 ;

}
}

G :

Listing 2: Input Program
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Fig. 2: Input program CFGs

B. The Instrumentation Intent

The input IIs in INSTEP represent a set of required in-
strumentations specified by the developer. An II follows a
tree structure specifying variables of interest specific to this
particular II and values representing the importance of these
variables. The tree of an II specifies a logical relation between
the variables. For example, consider statement B in Listing 2.
If a developer wants to trace variable dx, he might be interested
in either variable dx or variables val and x. This intent has
the following propositional logic expression: (dx∨ (val∧x)).
As Figure 3a shows, the II for this statement consists of
two branches where the ANDed variables lie on the same
branch, and the ORed variables lie on different branches.
The developer assigns the values based on the importance or
usefulness of the variables. The particular IIs in Figure 3a
only uses values 1, 0, and 1 for the variables dx, val, and x,
respectively. This encodes that variable val alone is useless
without variable x and that variables val and x have an equal
value to dx. Figure 3 shows the IIs for the statements B, C,
D, and F of the input program in Listing 2.

A node in an II tree can contain more information than just
a variable’s name. For example, in Figure 3b INSTEP requires
a separation in the II between variable x on the left hand side
(LHS) of statement C and variable x on the right hand side
(RHS). Line numbers are also required to identify the locations
of the variables.
II Specification. An II can originate from different sources.
During a debugging session, the developer will most likely
specify the II. A simple tool based on program slicing could
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Fig. 3: Instrumentation intent

generate IIs from a high-level specification. This engineering
effort, however, is outside the scope of this work. If variables
are equally important, the developer can leave the II values
at their defaults as in Figure 3a (experimentation in this
paper uses default values). Testing tools and tracing tools can
also generate the IIs based on a high-level specification [7].
The results show that our framework is robust and tolerates
inaccuracies in the model.

C. The Derivation

After extracting the input program’s CFG and parsing the
IIs, INSTEP finds instrumentation alternatives for the different
variables in the IIs. An instrumentation alternative is one or
more locations in the code where a variable can be instru-
mented to extract its desired state before it changes. Normally,
an instrumentation alternative is a single basic block (one loca-
tion) at which a variable can be instrumented (recall that each
basic block contains at most one assignment to any variable of
interest). An alternative, however, can be multiple basic blocks
(more than one location). Consider the example in Figure 4
which shows a code snippet and its corresponding CFG. The
variables of interest are x, w, and z. One instrumentation
alternative of variable x is at the end of block J (one location).
Another alternative, can be after the if-condition (block K) and
before the branch sink P. Blocks L and M (together) can be
instrumented to cover all sub-paths between nodes K and P
and provide a valid instrumentation alternative. Therefore, if an
alternative is comprised of multiple basic blocks, this means
that all these blocks have to be instrumented to represent a
valid instrumentation of the variable.

J : x = 2 ;
K : i f (y > 3){
L : z = x∗4 ;
} e l s e {

M : w = x∗3 ;
N : z = w + 4 ;
}

P :

(a) Code
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Fig. 4: Branch example

The instrumentation engine finds locations in the modified
CFG that permit instrumentation. The engine coarsely follows
the following rules:

1) Variable is on the LHS of a statement: INSTEP inserts



instrumentation alternatives in the current block and all
following blocks until the variable’s value is overwritten.

2) Variable is on the RHS of a statement: INSTEP in-
serts instrumentation alternatives from the last variable’s
assignment prior the current basic block until the next
block that overwrites the variable’s value.

3) Variable is on both sides of the statement: (as in state-
ment C of Listing 2) INSTEP inserts instrumentation
alternatives from the last variable’s assignment until the
current use of the variable in the statement (alternatives
for the RHS). It also inserts alternatives from the current
assignment of the variable until the variable’s value gets
re-assigned (alternatives for the LHS).

Note that these are only the coarse rules used by the engine
and that the implementation contains more detailed rules.
The exact locations of the alternatives depend on the type
of the basic blocks, branches in the CFG, etc. Consider a
variable var that is assigned in a basic block B. To fulfill
the aforementioned rules, the instrumentation engine should
be able to traverse the CFG upwards (towards the root) and
downwards (away from the root) from B to find instrumenta-
tion alternatives for var. Algorithm 1 briefly describes how the
instrumentation engine finds alternatives moving downwards
from B. The algorithm for traversing the CFG upwards is
omitted for conciseness and space constraints. We describe
the operation of Algorithm 1 along with a few cases out of
around 366 different cases that INSTEP covers.

Algorithm 1 takes as input: the CFG G, the variable var
for which instrumentation alternatives are to be found, and the
basic block B in which var exists. The CFG can have blocks of
the following types: branch (if or switch statement) which has
more than one child, loop-start, loop-break, return (a return
statement), and instruction (instructions with no branches).
The function addAlt adds the start or end of a basic block as
an instrumentation alternative. Recall that an alternative can be
multiple basic blocks. Algorithm 1 may also find alternatives
for one of the multiple blocks that form an alternative. For
instance, consider the example in Figure 4. If Algorithm 1 is
finding alternatives for variable x, then after storing blocks L
and M as one alternative, it will store N as an alternative for
M. Hence, when storing an alternative, function addAlt keeps
track of which block the alternative is for (details are omitted
from the algorithm for clarity). The enqueue operation used in
the algorithm, will only enqueue a block if it was not marked
as visited. The algorithm starts by instrumenting the end of
the input block B and enqueueing its child (an instruction
block always has one child). The dequeued block is handled
according to its type.

We describe a few cases that explain the operation of
Algorithm 1. Consider, for example, Listing 2 and its CFG in
Figure 2b. If INSTEP is finding instrumentation alternatives
for variable diff, then the first instrumentation alternative will
be the end of basic block D. Normally, children of an if-block
are an alternative as well, however, in this case, the if-block
E has a branch sink G which is also one of its children.
Instrumenting the child F alone is not an alternative, because
it will leave subpath 〈E,G〉 without instrumentation. Hence,
INSTEP bypasses the if-block and chooses its sink G as an

Algorithm 1 Find Alternatives Downwards
Input: CFG, instrumentation variable var, basic block B
Output: Instrumentation alternatives

1: Let Q be an empty queue
2:
3: Call addAlt(end of B) and mark B as visited
4: Enqueue B’s child in Q
5: while Q is not empty do
6: Dequeue B from Q
7: if B is a loop-start then
8: Let C be the loop-break block
9: Enqueue C’s child in Q if the loop does not modify var

10: else if B is an instruction block and does not modify var then
11: Call addAlt(end of B)
12: Enqueue B’s child in Q unless a back edge connects them
13: else if B is a branch source then
14: Let C be the branch sink (if exists)
15: If var is not modified between B and C, enqueue C in Q
16: If C is not B’s child, mark C as visited
17: if C does not exist or C is not B’s child then
18: for Each block D in B’s children do
19: if D is an instruction block then
20: if D does not modify var then
21: Call addAlt(end of D) and enqueue D in Q
22: else
23: Call addAlt(start of D)
24: end if
25: else
26: Call addAlt(start of D) and enqueue D in Q
27: end if
28: end for
29: end if
30: end if
31: Add B to the set of visited vertices
32: end while
33: return Instrumentation alternatives

alternative. Note that this will only be possible, if no subpath
modifies the variable diff. Another example is: if INSTEP
finds the start of a loop, then INSTEP will continue finding
alternatives following the break of the loop only if the variable
is not modified inside the loop. A third example is: if the
algorithm encounters a loop-break (without first encountering
a loop-start), this means that block B is inside a loop. The
algorithm, in that case, will not find alternatives beyond the
loop break because information is missed by instrumenting
outside the loop.

D. The Partial Program
The partial program is an intermediate representation that

contains all possible instrumentation alternatives. The deriva-
tion phase of the framework inserts the instrumentation alter-
natives in the input program to generate the partial program.
Listing 3 shows the partial program for the input program
in Listing 2 after INSTEP inserted the instrumentation al-
ternatives. Note that the notation in the listing is only for
illustration purposes, because an instrumentation alternative
must hold more information. For example, the framework
needs to know which alternatives must simultaneously exist if
on parallel branches. For the statement C, Listing 3 uses x.l
and x.r to differentiate between the left and right x variables,
respectively. (II1, val), for example, represents a location
where the variable val from II1 can be instrumented.



IV. DETERMINISING THE INSTRUMENTATION

In this phase, INSTEP processes three inputs: (1) the partial
program from the first phase, (2) constraints on the instru-
mentation, and (3) cost models for instrumentation methods.
INSTEP uses these three inputs to formulate an optimization
problem and attempts to solve it using local searching [9] to
find a feasible solution. A feasible solution is a selection of
the instrumentation alternatives that satisfies the constraints,
and maximizes or minimizes other objectives that may exist.
This section describes the constraints, the cost models, the
formulation of the optimization problem, and the final output
of INSTEP.

(II1 ,val ) , (II1 ,x ) , (II2 ,x .r ) , (II3 ,val )
A : i f ( !flag ) {

(II1 ,val ) , (II1 ,x ) , (II2 ,x .r ) , (II3 ,val )
B : dx = (val−(x∗x ) ) / ( 2 . 0∗x ) ;

(II1 ,dx ) , (II1 ,val ) , (II1 ,x ) , (II2 ,x .r ) , (II2 ,dx ) , (
II3 ,val )

C : x = x + dx ;
(II1 ,dx ) , (II1 ,val ) , (II2 ,x .l ) , (II2 ,dx ) , (II3 ,val )

, (II3 ,x )
D : diff = val−(x∗x ) ;

(II1 ,dx ) , (II1 ,val ) , (II2 ,x .l ) , (II2 ,dx ) , (II3 ,diff
) , (II3 ,val ) , (II3 ,x )

E : i f (fabs (diff ) <= min_tol ) {
F : flag = 1 ;

(II4 ,flag )
}

}
G : (II1 ,dx ) , (II1 ,val ) , (II2 ,x .l ) , (II2 ,dx ) , (II3 ,diff ) , (

II3 ,val ) , (II3 ,x ) , (II4 ,flag )

Listing 3: Partial Program

A. Specifying Constraints

Constraints are restrictions on the instrumented program
that might prevent it from achieving the maximum value of
the instrumentation intent or the highest output for any other
objective. Constraints primarily pose limits on some extra-
functional properties. For example, one constraint may be
a limit on the code size of the program after instrumen-
tation. Another constraint might be a limit on the memory
consumption while running an instrumented program. Finally,
an upper limit of the debugging budget added to the worst-
case execution time (WCET) for the instrumentation [10], [11]
is another form of constraint. Enforcing such constraints on
the instrumentation process requires knowledge of the cost
functions. A cost model specifies the cost for the different
aspects of instrumentation. Modern modeling systems like
UML/MARTE and AADL facilitate specifying the different
constraints and cost models by the developer.

B. Cost Models

In this context, cost models are simply weighted automata
that describe costs of actions. The development of the cost
models themselves is out of the scope of this work. Figure 5
shows two cost models for instrumentation points. Figure 5a
represents a code size cost model for adding a printf() in-
strumentation point for Integers on an ARM Cortex-M3. The
cost for the first variable is 14 bytes of code and 8 bytes
for each extra variable that can be added in the same printf()
statement. The first variable has a cost of 14 because it includes
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Fig. 5: Cost models

instructions for a function call which are added once for an
instrumentation point of this type. Figure 5b shows a code size
cost model for writing the instrumented variable to a buffer
array using gcc on an Intel Core i5-2520M CPU. Each variable
would add 32 bytes of code to the program.

The values in a cost model depend on many factors.
Example factors include the used hardware, the type of instru-
mentation (e.g., printf() to the serial port of a chip, saving to
a buffer, sending over TCP/IP), and the type of variable (e.g.,
integer, double, character). There might also be an overhead
cost for including a library required for instrumentation (to use
the network stack for example). The use of automata provides
a general concept that, for instance, also supports extending
INSTEP to consider caches and costs of reading from cache
versus main memory [4]. This work considers cost models for
code size of instrumentation points, timing of instrumentation
points, and detection latency. A cost model for the timing of a
printf() instrumentation point may look like that of code size.
Detection latency is the latency between assigning the variable
and instrumenting it.
Accuracy of Cost Models. Cost models are widely used
to estimate performance costs of certain operations such as
writing to memory and data transmission [4], [12]. It is clear
that adding cost models for all details of the target architecture
complicates the analysis but provides more precise results. We
assess the effect of using inaccurate cost models on the output
of INSTEP. This is discussed in more detail in Section V.

C. The Formulation
INSTEP combines the cost models, the constraints, and the

partial program into an optimization problem. In its current
form, INSTEP supports four main extra-functional properties:
II values, code size, execution time, and detection latency.
Each of these can be used in objectives and constraints. For
example, a developer can choose to minimize code size or set
an upper limit as a constraint. It is easy to extend INSTEP
to consider types of variables, different instrumentation types,
and other properties such as memory consumption and tracing
bandwidth (for TCP/IP). The formulation in the examples
below uses printf() to a serial port as the instrumentation type.

1) Decision Variables: The framework creates a boolean
variable for each instrumentation variable in the IIs indicating
whether the variable is instrumented or not. It also creates
a boolean variable for each instrumentation alternative to
indicate whether the alternative is chosen or not. Variable flag
in Listing 3, for example, has two instrumentation alterna-
tives so the framework will create three variables; II4 flag,
II4 flag F e, and II4 flag G s denoting the instrumentation
of variable flag, instrumenting flag at the end of node F , and



instrumenting flag at the start of node G, respectively. For each
variable, the framework creates the following constraint:

−var +
∑

alternatives ≥ 0

This encodes that the variable is instrumented only if one of
its alternatives is chosen. For variable flag in Listing 3 the
constraint will be:

−II4 flag + II4 flag F e + II4 flag G s ≥ 0

2) II Values Property: INSTEP will maximize the total
value of all IIs or meet a minimum value, if the developer
specifies a constraint. The value of an II is the maximum
of the values of all variables in an II tree. The value of a
variable is the summation of the values on the path leading
to the variable’s node in the II tree from its root. This value
of a variable is only realizable if it is instrumented and all its
ancestor variables as well. If a variable exists more than once
in a tree, the maximum of these values is taken. For example,
considering II1 in Figure 3a, its value is equal to:

V 1 = max(II1 dx ∗ 1, II1 val ∗ 0, II1 val ∗ II1 x ∗ (0 + 1))

This shows that instrumenting variable val alone is useless and
also reflects that variable x is useful only if val is instrumented
as well.

3) Code Size Property: As for the timing and code size,
cost models specify the costs of instrumentation for these two
extra-functional properties. Hence, each instrumentation point
that INSTEP inserts in the code will have a cost that needs
to be considered. For example, consider the instrumentation
point at the start of node A in Listing 3. It has four variables
available for instrumentation. To formulate the cost in terms of
code size, consider the cost model in Figure 5a. Simply, if any
of the variables is instrumented at that point, a cost of 14 bytes
will be incurred and 8 bytes for each extra variable. This can
be formulated as follows, taking into account that a variable
can appear more than once at the same instrumentation point
in a partial program:

code A s = (14− 8) ∗ (II1 val||II1 x||II2 x.r||II3 val)

+ 8 ∗ (II1 val||II3 val) + 8 ∗ (II1 x||II2 x.r)

This computes the extra overhead for the first variable of
the instrumentation point if any variable is instrumented. It
also incurs the cost of a variable only once if it exists in
multiple IIs. INSTEP formulates a similar cost function for
each instrumentation point with regards to timing.

The framework represents the total code size after instru-
mentation as the total of (1) original code size, (2) any
overhead for using printf() instrumentation (cost incurred if
any instrumentation point exists), and (3) the cost of all
instrumentation points with respect to code size. The developer
can specify minimizing code size as an objective or set a limit
on the total code size that should not be exceeded.

4) Execution Time Property: As for timing, to respect a
given debugging time budget, INSTEP requires knowledge
of the WCET of the program, the WCET of the different
basic blocks, function calls, and the worst-case number of
iterations of each basic block. This work assumes the presence

of correct but maybe conservative WCET analysis tools, which
is a common assumption for most works in real-time systems.
INSTEP extracts function calls through static analysis, and
obtains all other information through the RTBx data logger and
RapiTime [13], which is a measurement-based WCET analysis
tool. The timing of the main function of the program from
start to end, after instrumentation, can be either minimized
as an objective or be constrained with a developer-specified
debugging budget. To formulate the effect of instrumentation
on the timing of the code, INSTEP formalizes a cost of a
function as the maximum timing of all paths in the function.
This formulation is a conservative approximation as it ignores
cache effects, branch prediction, etc. Taking the maximum of
all paths requires enumerating all paths which is exponential.
Therefore, INSTEP traverses the CFG of a function and in-
stead of enumerating paths, it takes the maximum of subpaths
from a branching source node to its sink. This is a practical
over-approximation and worked well in the experiments.

INSTEP also prunes paths according to the following rules:
• If the subpaths between a branch source and sink, do not

have instrumentation points or function calls, INSTEP
will prune the max function to the subpath with the largest
timing.

• If a subset of the subpaths has instrumentation points
and/or function calls, INSTEP will only consider this
subset along with the largest timing subpath.

INSTEP can further prune the CFGs (through abstracting them
for example), but this will only be effective for complex timing
cost models that include more architecture-related information.

The cost of a function is equal to the cost of its basic blocks
multiplied by the number of iterations of the blocks and taking
the maximum of subpaths in case of branches. The cost of a
block is equal to the WCET of the block, the WCET of any
instrumentation point in the block (from the cost model), and
any function calls in the block. The cost of a function call is
simply equal to the cost of the called function. Note that the
cost of calling and returning from a function is already part
of the WCET of the calling block. The cost of the function in
Listing 2 and Figure 2b would be:

func = (A+ t A s) ∗WA ∗ IA + (B + t B s+ t B e)

∗WB ∗ IB + (C + t C e) ∗WC ∗ IC + (D + t D e)

∗WD ∗ ID + E ∗WE ∗ IE + (F + t F e) ∗WF ∗ IF
+ (G+ t G s) ∗WG ∗ IG

where t B s and t B e, for example, are the costs of
the instrumentation points at the start and end of node B,
respectively. In practice, the path 〈E,G〉, for example, might
be worse, with respect to timing, than the path 〈E,F,G〉;
however, this is an approximation that INSTEP uses in its
current form. If the WCET of the instrumented program
exceeds the specified debugging budget, INSTEP will find the
instrumentation point causing the violation (increase in WCET
of block does not match expected increase from cost model),
remove the instrumentation point and rerun the analysis to
ensure that constraints are met. The experiments show that
the violations do not often occur, and if they do, the number
of retries is low. This is because INSTEP can use one WCET



analysis report (provides WCET of basic blocks) to detect
multiple violations of the instrumentation process.

5) Detection Latency Property: The detection latency of
a variable is the minimum of the detection latencies of its
instrumentation alternatives. A function like 1/x can represent
this property where x is the amount of time from the specified
variable location until its instrumentation. Since the instrumen-
tation is at the granularity of the basic blocks, the detection
function will only be defined at possible instrumentation
locations (start and end of blocks). A developer’s goal might
be minimizing latency, i.e., maximizing the detection function
or specifying a constraint on the detection latency. Several
paths might exist between a statement and the instrumentation
alternative. In such case, the maximum latency of the different
subpaths is chosen. If a variable has ancestors in the II, then
the detection latency is the maximum of its detection latency
and latencies of all its ancestors. The detection latency of an
II is the minimum across all its nodes.

D. The Instrumented Program

After INSTEP formalizes the optimization problem, it uses
local search to find a feasible solution. Local search is used
because the problem is highly non-linear with a large num-
ber of decision variables resulting from the instrumentation
alternatives. Such combinatorial model is out of the scope
of current state-of-the-art solvers relying on classical tree-
search techniques [9]. Local search attempts to find candidate
solutions by applying local changes in the search space.
The solution would be an assignment to the defined boolean
variables which can be easily used to transform the partial
program into an instrumented program. Local search either
returns an infeasible solution, if the constraints can never be
satisfied, a feasible solution, or an optimal solution. A solution
is infeasible if, for example, the specified constraint for code
size is below the original code size. If the input constraints are
at least equal to the corresponding values of the input program,
i.e., if, for example, WCET constraint is at least equal to the
input program WCET, then local search will always find a
feasible solution.

For our experiments, we used the standard setup for local
search and it worked reasonably well as Section V demon-
strates. The pseudo-random number generator seed is set to
zero. The simulated annealing level is set to one. The search
is parallelized over two threads. The experimental results show
the applicability and practicality of our approach. Finding the
best configuration parameters for local search is out of the
scope of this work.

V. EXPERIMENTATION

This section presents experimentation using the fully auto-
mated framework INSTEP.

A. Experimental Setup

There are three sets of experiments:
1) We experiment with the SNU real-time benchmark

suite [6]. It contains 17 C benchmarks that have 120
lines of code on average, and implement numeric and
DSP algorithms.

2) We run an experiment on the web server example [14]
for NXP LPC17xx ARM-based microcontrollers. This
program implements a dynamic web server and has a
total of 1,846 lines of C code.

3) We conduct an experiment on an automotive control
module. It has 177,298 lines of C code and 6,297 basic
blocks. This number excludes definitions in header files,
since the industrial partner provided only parts of the
overall application. Consequently, the experiments on
this program only show the scalability of INSTEP and
applicability to industrial code, without showing the
results on the WCET analysis.

The benchmarks are run on a Keil MCB1700 board running
a 100 MHz ARM Cortex-M3 processor-based MCU.

Metrics: We quantitatively evaluate the accuracy and pre-
cision of the framework using the following metrics:
• WCET of the instrumented program: We run a WCET

analysis for the instrumented program. The WCET should
be less than or equal to the input program’s WCET plus
a specified debugging time budget.

• Number of retries: If the WCET of the instrumented
program exceeds the debugging time budget, INSTEP
will remove the instrumentation points that cause a
higher WCET than expected. Finding these instrumen-
tation points is straightforward. The WCET analysis
tool outputs the WCET of each basic block before and
after instrumentation, and basic blocks that now violate
the constraints are immediately visible. INSTEP then
reanalyzes the WCET of the modified program. We
report the number of retries required to produce the final
instrumentation.

• INSTEP execution time: The size of the inputs (e.g.,
number of IIs, code size) can increase the time that
INSTEP needs to generate the instrumented program.
This metric indicates the applicability of INSTEP to
large-scale software programs used in industry.

• Number of instrumentation alternatives in the partial
program: As the code size of the input program in-
creases, it becomes more challenging to derive an instru-
mented program honoring the extra-functional properties
while maximizing objectives. A large program offers
multiple locations for instrumenting a variable which also
complicates the optimization problem.

Extra-functional Properties: The experimentation consid-
ers four extra-functional properties: the II values, code size,
execution time, and detection latency. We use a printf() to the
serial port of the microcontroller for instrumentation. Thus,
the code size cost model is the one shown in Figure 5a. The
cost for the first variable is 14 bytes of code and 8 bytes
for each extra variable that can be added in the same printf()
statement. Additionally, there is an overhead cost of 460 bytes
for including the library required for instrumentation. A cost
model for the timing of a printf() instrumentation point is
similar to that of code size but with different values. The
first variable in a printf() statement costs 4,000 cycles, and
each extra variable in the same printf() statement costs 3,850
cycles as measured on the target platform. Finally, the function
1/x represents the cost model for detection latency. Execution



time and code size properties are considered constraints to
the optimization problem. We limit the debugging budget
(constraint) by a 10% increase in the WCET of the input
program [15]. The code size constraint is arbitrarily chosen
to be an additional 554 bytes to the input program size.
554 bytes are the size of the input library plus five separate
printf statements where each instruments a single variable. The
optimization has two objectives: maximizing II values and
minimizing the detection latency.

Choice of IIs: Each SNU benchmark is run with 1,100
different inputs and has two different sets of IIs: (1) a
maximum of 30 input IIs, and (2) a maximum of four IIs. The
IIs were randomly chosen to avoid any bias in the experimental
results. Note that only six out of 15 benchmarks had enough
variables to form 30 IIs. For the rest of the benchmarks and
for the first set of the IIs, the maximum number of IIs were
input to INSTEP. The web server experiment has 79 IIs as
input. This is the maximum number of IIs available in the web
server software. The automotive module experiment has three
versions. The objective of the first version is to instrument
all assignments of an arbitrary local variable in a function,
resulting in nine IIs. The second version instruments the five
most occurring global variables in the program, which is
equivalent to 54 IIs. Whereas the third version instruments
the five most occurring local variables across all functions
represented in 21 IIs.

B. Experimental Results

The results of the different sets of experiments show that
instrumented benchmarks do not violate any of the constraints.
The results also show that INSTEP satisfies more IIs com-
pared to a naive instrumentation. They also demonstrate the
scalability and applicability of INSTEP to industrial software.

Figure 6a shows the ratio of the WCET of the instrumented
benchmark to that of the input. Figure 6b shows the increase in
code size of the instrumented benchmarks. Benchmarks select
and sqrt have a WCET ratio of 1 and no increase in code
size for II Set 2. This means that INSTEP did not instrument
any variables so as not to violate any of the constraints. The
figures show that the increase in both the WCET and code size
are within the specified constraints. Note that benchmarks bs
and insertsort are omitted from the results, because inserting
any instrumentation point in any of them would violate a
constraint. Hence, INSTEP left these two benchmarks intact
without instrumentation.

INSTEP vs Naive Instrumentation: The code size con-
straint was set such that it comprises five printf() statements
with a single variable each. This means that a naive instru-
mentation will most probably satisfy five IIs at most. Out of
34 experiments, 17 had more than five IIs. In 14 out of these
17 experiments, INSTEP satisfied more than five IIs with a
maximum of 26 for the automotive module. This indicates the
strength of the framework in finding alternatives and merging
them to satisfy the most IIs and honor constraints. Figure 7
also shows the percentages of the input IIs that INSTEP was
able to satisfy. For some benchmarks, the satisfied number of
IIs in the second set is less than four, while being much larger
for the first set. This depends on which subset of IIs from the

first set are chosen for the second. It might be the case that the
chosen subset of IIs violate constraints thus satisfying none of
the IIs as it is the case with select and sqrt benchmarks.

Retries: Retries were required in 16 out of 38 experiments.
In most of the cases, one retry was required and at most four
retries were needed with an average of 0.85 retries. The num-
ber of retries is low due to the ability of INSTEP to find (and
remove) multiple instrumentation points causing a violation to
the debugging budget using one WCET analysis report. The
reason is that one WCET analysis report is sufficient to detect
violations in each basic block of the program’s CFG. The low
number of retries shows the practical feasibility and viability
of INSTEP even for large programs.

Execution Time: The execution time increases as the input
program has a more complicated or larger CFG, more IIs,
etc. The execution time has a reasonable average of 2.64
seconds with a maximum of 32 seconds for instrumenting the
automotive module. The reported time does not include the
time required for applying local search. Figure 6c shows the
time required by local search to find the best reported feasible
solution within 10 minutes. In 30 out of 38 experiments, local
search found the solution in only one second. All other times
in the figure appeared only once with a maximum of 261
seconds. This shows that a satisfactory solution can be found
in a reasonable amount time.

Instrumentation Alternatives: The number of equations
and expressions in the optimization problem exceeded 1,500
and 33,000, respectively which shows the complexity of the
problem. The number of alternatives reached 3,041 which indi-
cates the efficiency of the tool in finding multiple alternatives.
It also shows that INSTEP scales and can accommodate this
large number of alternatives within reasonable time limits.
INSTEP also handles the large number of equations and
expressions, and local search finds satisfactory solutions that
satisfy a large number of IIs in an acceptable time frame.

Inaccuracy of Cost Models: To test the effect of inaccurate
cost models on the output of INSTEP, the experiments were
repeated using modified cost models for time and code size.
Two modified versions of the cost models were used: (1)
underestimated models which reduce the cost of transitions
in the original time and code size models by 500 cycles and
2 bytes, respectively, and (2) overestimated models which
increase the cost of transitions by the same values for both
of the original models. Underestimating the cost model can
lead to more violations which increase the number of retries.
In 60% of the experiments, the number of retries did not
change, and increased by only one retry in the rest of the cases.
Overestimating the cost model might reduce the number of
satisfied IIs. In 80% of the experiments, the number of satisfied
IIs did not change, and decreased by only one otherwise. This
shows that inaccuracies in the cost models can be tolerated by
INSTEP which can still output satisfactory results.

VI. DISCUSSION

This section discusses some issues regarding the limitations
and applicability of this work.
Logical Correctness. INSTEP preserves the logical (func-
tional) correctness of a program after instrumentation. The
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only modification that INSTEP makes to a program is the
insertion of instrumentation points. These instrumentation
points only read variables from memory locations and there
is no concurrent variable access. For all experiments, the
outputs from the instrumented programs matched those of the
uninstrumented programs.
MISRA C Compliance. INSTEP supports instrumenting data
structures in MISRA C [8] compliant programs which re-
stricts, for instance, the usage of pointers and unions. MISRA
C also restricts the usage of dynamic memory allocation
(malloc()). Extending INSTEP to consider memory con-
sumption of the software as an extra-functional property is
therefore restricted to static memory allocation.
Concurrency. With the current WCET analysis tools in
place, INSTEP only supports instrumenting foreground/back-
ground systems and multi-programming systems with run-
to-completion semantics. Concurrency complicates computing
the budgets and testing whether a block will exceed its
budget; however, the underlying concepts still apply and can
be extended given the available tools.
Hardware Tracing. One limitation on hardware tracing is that
some systems do not support hardware debugging. Hardware
tracing also offers traces at a low system level, e.g., instruction
level. This makes software tracing more suited to debugging
at a higher object level, e.g., debugging a task control block.
Another aspect is the evolution of the tracing mechanism
along with the software being debugged. If the software is
modified or updated, a software tracing mechanism can be
easily maintained along with it, as opposed to a hardware
tracing module or device.

Partial Tracing Information. In this work, the examples
and experiments focus on tracing data variables. Similarly,
INSTEP can trace control flow and function calls. INSTEP
focuses on extracting information while preserving the input
program’s extra-functional properties. This definitely limits
the amount of information that INSTEP can extract from the
program. INSTEP, however, attempts to maximize the satisfied
IIs as the experiments demonstrate. Note also that partial
traces are useful for analyzing and understanding programs,
as well as for optimizations [16]. Moreover, INSTEP is easily
extensible to generate multiple instrumentations of the same
input program to satisfy all IIs (if possible). This allows
extracting more tracing information but from different program
runs (which is a limitation to the debugging process).

VII. RELATED WORK

Manual instrumentation is highly flexible, the devel-
oper [19], however, can not estimate its underlying effect on
the extra-functional properties of the program. An automatic
instrumentation tool parses the program, may generate a CFG,
and inserts instrumentation points. GCC profiling and code
coverage tool is an example of an automatic instrumentation
tool. Binary-level instrumentation tools insert instrumentation
points into binary executables either statically or dynamically
during the program execution. Static binary instrumentation
tools include Morph [20] and EEL [21]. Dynamic instru-
mentation tools rewrite the instructions executed at run time
based on the instrumentation specification. Pin [22] and Dy-
namoRIO [23] are examples of dynamic instrumentation tools
which do code transformation during program execution.



Other software and hardware instrumentation methods [24],
[25], [26] were proposed to enable tracing and system logging.
All the instrumentation approaches mentioned so far are poor
at maintaining the extra-functional properties of the program.
They affect the program’s behavior especially the temporal
behavior [11]. Partial instrumentation can be used to respect
timing constraints [16]. Fischmeister et al. [10] presented time-
aware instrumentation which honors the original program’s
timing, especially the worst case behavior. Kashif and Fis-
chmeister [11] apply program transformation techniques to
increase the effectiveness of time-aware instrumentation.
Multi-Objective Compilation. Naik and Palsberg [17] present
a framework for code-size-aware compilation. They formulate
register allocation as an Integer Linear Programming (ILP)
problem. In our optimization problem, the model of the input
IIs and the cost models introduce non-linearity. Moreover,
merging instrumentation alternatives to reduce overhead of
instrumentation points makes the problem highly non-linear.
Therefore, the authors’ approach is inapplicable in our case.

Lee et al. [18] introduce a framework to balance the trade-
offs between code size, execution time, and energy consump-
tion when developing an embedded system. The framework
satisfies the design constraints and assigns code/WCET pairs
to the tasks to minimize the system cost function. In our
problem, the alternatives for instrumenting variables are huge
reaching more than 3,000 alternatives for one of our test cases.
In addition to choosing the alternatives that satisfy the most
IIs, INSTEP also picks the least number of variables that
satisfy these IIs. This makes our problem harder because the
choice of an alternative might lead to a smaller code size, for
instance, if it satisfies more than one II. In the work by Lee
et al., however, the effect of choosing a code/WCET pair is
clearly tangible on the overall code size and the schedulability
of the system. This is different from our problem.

VIII. CONCLUSION

Current tracing and instrumentation tools only preserve
functional correctness of the program. Unfortunately, some
application domains require tools that not only consider the
functional correctness, but also consider extra-functional prop-
erties such as timing. In this work, we propose INSTEP;
an instrumentation framework that preserves extra-functional
properties. To generate the instrumented program, INSTEP
derives a partial program based on the developer’s II. Then,
it formulates an optimization problem according to the input
cost models and constraints, and solves the problem using
local search. The design of INSTEP allows for the reusability
of partial programs and for future extensions. INSTEP, in
its current state, honors four extra-functional properties.We
conducted experiments on benchmarks as well as an industrial
automotive module. The experimental results show the accu-
racy and precision of the tool in honoring constraints. They
also show the practicality and scalability of INSTEP.
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