
Lowering Overhead in Sampling-based
Execution Monitoring and Tracing

Johnson J Thomas

Dept. of Elect. and Comp. Engineering
University of Waterloo

j22thoma@uwaterloo.ca

Sebastian Fischmeister

Dept. of Elect. and Comp. Engineering
University of Waterloo

sfischme@uwaterloo.ca

Deepak Kumar

Dept. of Elect. and Comp. Engineering
University of Waterloo

Abstract
Debugging is an important phase in the embedded software devel-
opment cycle because of its high proportion in the overall cost in
the product development. Debugging is difficult for real-time ap-
plications as such programs are time-sensitive and must meet dead-
lines in often a resource constrained environment.

A common approach for real-time systems is to monitor the
execution instead of stepping through the program, because step-
ping will usually violate all deadline constraints. We consider a
sampling-based approach for monitoring, because of its predictable
overhead for the system compared to traditional monitoring. How-
ever, the sampling-based approach can easily have high overhead
depending on the length of branches and the granularity of the mon-
itoring effort. To reduce this overhead, we instrument the program
with markers that will permit us to sample less frequently and thus
reduce the overhead.

This leads to the interesting problems of (a) where to place the
markers in the code and (b) how to manipulate the markers. While
related work investigates the first part, in this work, we investi-
gate the second component of the problem. We investigate differ-
ent instrumentation schemes and propose two new schemes based
on bitvectors that significantly reduce the overhead for sampling-
based execution monitoring.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—tracing

General Terms Theory, Algorithms, Experimentation

Keywords sampling, monitoring, tracing, debugging, embedded
system

1. Introduction
In software development, debugging is the phase where developers
remove software defects from the program. Studies show that 30 to
50 percent of the development cost is spent on testing and debug-
ging hence suggesting that debugging is costly [18]. Consequently,
it is important to investigate new methods for debugging to increase
productivity.

We use software instrumentation as the debugging technique
to perform tracing. In this context, we instrument a control flow

graph and then run the instrumented control flow graph to produce
a trace. This trace is used to determine the execution path that the
program had taken and hence helping in resolving conflicts that had
happened during the program execution.

Recently, sampling-based debugging has been suggested [15]
as a method to trace program execution especially for real-time
systems. The key advantage of this approach is that it provides
bounded overhead when tracing programs as the sampling period
of the tracer is inversely proportional with the overhead for debug-
ging and tracing. Traditional approaches to monitoring insert such
as the one used by GNU gprof insert tracing code in the program
and it is impossible to estimate the impact of the profiling code on
the system. This is especially inconvenient for real-time programs
where the application must meet deadlines or follow specific peri-
odic behaviour.

Despite the advantage of predictability, the major problem is
that the sampling-based approach can incur high overhead. The
sampling period essentially defines the overhead as it specifies how
frequently the tracer investigates the program status. Obviously
the more frequently this happens, the higher the overhead. While
as long as the tasks meet the deadline, such overhead may not
necessarily pose a problem for real-time systems but still limits the
applicability to those systems and real-time applications that have
sufficient slack. The less slack an application has with respect to
the deadlines, the less overhead it can tolerate. Thus, reducing the
overhead increases the range of applicability of this approach.

The common approach, as proposed in related work, is to in-
troduce markers in the program to be able to differentiate among
similarly looking paths when considering the taken samples. This
concept introduces two interesting problems: (a) where to place the
markers in the code and (b) how to manipulate the markers. While
related works has investigated the problem of where to place mark-
ers [15], this work looks into different marker schemes and func-
tions.

For example, we propose the BITVEC
+ scheme which uses a

combination of setting, clearing bits as well as increments. Based
on the given set of paths to instrument, the scheme uses the mech-
anism that is more appropriate or feasible. This property led us to
believe that the scheme will outperform the related approaches. As
we will show in the evaluation, this intuition is correct.

The contributions of this work include:

• Evaluating expressiveness of different schemes for markers. We
investigated four different schemes with different mechanisms
for markers to see whether one of them is strictly more expres-
sive than the others. This was also part of the learning experi-
ence to finally design BITVEC

+ .

• Two new expressive marker schemes. Based on the experi-
ence looking at the different schemes, we designed two new

101

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
LCTES’11 April 11-14, 2011, Chicago, Illinois, USA.
Copyright ©2011 ACM 978-1-4503-0555-6/11/04…10.00.

expressive schemes for handling markers called BITVEC and
BITVEC

+ . Each of them is used in different applications.

• Theorems for failure conditions of the new schemes. Related
work [15] showed that instrumentation schemes might result in
a livelock situations where the scheme cannot make progress
or cannot solve the instrumentation problem. Analogous to this
concept, we present failure conditions for our two proposed
schemes.

• Improvement over related work. In general, BITVEC
+ and

BITVEC result in better performance than related work by a
factor of two after 50 instrumentations. Also, the two schemes
reduce interference [15] and thereby increase monotonicity by
a factor of two over related approaches with similar memory
demands and a factor of 15 when considering the basic SAT
solution scheme.

The paper is structured as follows: Section 2 introduces sam-
pling based execution monitoring. We then define the system
model and certain terminology used in the paper (Section 3) which
is followed by looking into the expressiveness of instrumenta-
tion schemes (Section 4) which involves an overview of various
schemes and comparison of these schemes. We then propose our
approach BITVEC and BITVEC

+ (Section 5) which consist of the
theorem for its failure condition and algorithm for its working. Fol-
lowing, we introduce the various experimental methods and metrics
(Section 6) we use in order to perform and get results. We then pro-
ceed to interpret the results (Section 7) and discussion on some
further observations (Section 8). By drawing conclusions, we close
the paper in Section 10 .

2. Sampling-based Execution Monitoring &
Problem Motivation

In execution monitoring, the developer wants to record an execu-
tion trace of the program under test for the purpose of, for instance,
debugging, profiling, testing, or runtime verification. In our setting
the system consists of two parts: the executing program, and a mon-
itor. The monitor observes the executing program and needs to log
the program’s execution path. In a sampling-based approach, the
monitor periodically examines the state of the program and stores
the state in a file. For example, the monitor will store the program
counter and time stamp each time it takes a sample.

The key advantage of sampling-based execution monitoring is
the bounded overhead of the monitoring system. The overhead
linearly decreases with the sampling period and sample size, so a
high sampling period generally leads to lower overhead than a low
sampling period assuming the same sample size.

The key problem in sampling-based execution monitoring is to
increase the sampling period. Notorious cases, such as programs
with short conditional branches, will result in a low sampling pe-
riod, if the resolution needs to be given at the granularity of basic
blocks.

Listing 1 shows a simple C program with three basic blocks
labeled A, B, and C. Figure 1(a) shows the resulting control flow
graph. If the developer wants to monitor the execution using the
sampling-based method, then the monitor will have to execute
at the speed of shortest best-case execution time of A + B or
A + C; otherwise, the developer might be unable to reconstruct
the execution flow assuming that it records the basic block id
(vertex A, B, or C) and a time stamp. Figure 1(b) shows the timing
diagram for the example. It demonstrates that, assuming all basic
blocks take an execution time of 1 time unit, after two time units,
it will be impossible to decide whether the program took the path
A → B → A or A → C → A. Thereby the sampling rate for the
program will be Δt = 2 (more details on the formal model are in
Section 3).

1 A : i f (x < 5) {
B : x ++

3 goto A ;
} e l s e {

5 C : x−=10;
goto A ;

7 }

Listing 1: Illustrative example.

To increase the sampling period and thereby reduce the over-
head, we introduce markers in the program. A marker is a normal
variable that the monitor and the program together control to per-
mit the developer to decide which paths the program executed even
with long sampling periods.

In the example, we introduce the marker m1 and instrument
the vertex C. Figure 1(c) shows the instrumented control flow
graph. Vertex C will increment the value of the marker m1. The
monitoring program will store the basic block id (vertex A, B,
or C), the current value of m1, and a time stamp. The timing
diagram in Figure 1(d) shows that introducing the marker increases
the sampling period to Δt = 4, because only after five time units
will the program have two or more paths with the same number of
increments of m1 and the same basic block ids.

A”

B

A

C

B

C

A

c)

A B A
AC

Reaching A
with m1 = 1
at Δt = 4

a)

d)

b)

inc(m1)

at Δt = 2
Reaching A

A
B A

C A’

B
C
B’
C’

A
A’
A’

Figure 1: Example of a single instrumentation to extend Δt

3. System Model & Terminology
The following describes the system model and terminology. Our
model closely follows the one presented in [15]. However, we ex-
tend the model with a generic instrumentation function to manipu-
late markers.

To analyze and reconstruct the execution path of the application,
we convert a source program to a directed graph, representing the
program’s control flow. The resulting control-flow graph is defined
as G := 〈V, E〉. Each vertex v ∈ V represents a basic block in
program. An edge e := 〈vs, vd〉 represents a transition from source
vertex vs to a destination vertex vd. The transition itself takes no
time. Each basic block has a best-case execution time (i.e., the
shortest time that it takes to execute the program block considering
all software and hardware side effects). The best case execution
time of blocks can be calculated using either static analysis tools
or standard measurement-based analysis tools [1]. We define this
execution time via c(v) and in our graphical presentation show c(v)
on the outgoing edges of v whenever necessary. If an edge lacks an
annotation, we will assume an execution time of one (i.e., if the
edge e = 〈vs, vd〉 has no annotation, then c(vs) = 1).

A path is a walk vi → vi+1 → . . . → vk in the graph G with
a start vertex vi and a end vertex vk. The execution time of a path,
denoted as cp(p), is the sum of all vertices along that path (i.e.,
cp(p) =

P
c(vi) for all vi ∈ p)

To bound overhead, our approach samples the executing pro-
gram on a periodic basis. We define a sample as a tuple s :=

102

〈t, v, state〉 with t being the time stamp when the sample has been
taken, v being the basic block (vertex), and state being some addi-
tional program state information such as stack, variables, history. A
sample is taken in periodic intervals based on the sampling period
Δt.

Two paths p1 and p2 intersect with respect to a sampling period
Δt, iff after taking two samples, one at time t1 and one at time
t2 = t1 + Δt, the two samples for both paths are identical with
respect to timing and state.

In our approach, the state recorded in a sample is one or multiple
marker variables. We will insert code in the program to manipulate
the marker variables at run time and thus distinguish among dif-
ferent paths (see Section 2 for the example). We will use different
schemes that change a marker’s value. The marker function I spec-
ifies how the marker changes. In a simple case, the function might
be an increment: I(m) = m + 1; however, we will also discuss
complex functions. A vertex will be able to apply the marker func-
tion several times in sequence, if the scheme permits this. The result
is a simple composition of the function resulting in (I ◦ I)(x).

The instrumentation problem for a pair of paths is as follows:
Given a control flow graph G and a set of intersecting paths p1, p2

with respect to Δt, where to apply the marker function I such that
the two paths no longer intersect.

We solve the instrumentation problem in an instrumentation
step. It consists of the following sub steps: (a) finding a set of
paths that intersect and need to be differentiated, (b) deciding
which vertices to instrument along these paths, and (c) inserting
the marker function I in these vertices. For example, Figures 1(a),
1(b), and 1(c) show an instrumentation step. Figure 1(a) shows the
original control flow graph. In Phase (a) of the instrumentation step,
we find the path pairs shown in Figure 1(b). An algorithm then
decides to increment vertex C (Phase (b)), and finally applies the
marker function to C. Figure 1(c) shows the resulting control-flow
graph after completing the instrumentation step.

We call an instrumentation successful, if it solves the present
instrumentation problem, meaning that it can apply the marker
function in vertices to differentiate between the given intersecting
paths.

Obviously, the instrumentation problem occurs iteratively for a
given control flow graph. Figure 1(b) shows the instrumentation
problem for Δt = 2. After successfully instrumenting the graph,
a new instrumentation problem occurs for Δt = 4 as shown in
Figure 1(d).

4. Expressiveness of Instrumentation Schemes
The underlying idea is to insert markers in the program and in-
cluding them in the sample. If these markers are well placed in the
program, then it will drastically increase the optimal sampling pe-
riod [15]. A longer sampling period translates into less overhead
for a monitoring system.

A good instrumentation depends on both, choice of type of
changes to be made to the marker and places in the software where
these changes occurs. In a particular scheme of instrumentation we
make a particular type of change to marker. We now investigate
different schemes to manipulate the marker and compare their
expressiveness with each other.

4.1 Overview of Different Schemes
Single Increment Scheme. The first scheme is the single increment
scheme (proposed in [15]). In this scheme a marker is a single value
initially set to zero. The function I is defined as I(m) = m + 1
which increments the marker’s value by one.
Multiple Increment Scheme. The second scheme, called multiple
increment scheme (proposed in [15]) extends the single increment
scheme by permitting multiple applications of the marker function

I in a vertex. The scheme also uses a single variable which is
initially set to zero and the marker function I(m) = m + 1;
however, a vertex can increment the marker multiple times. The
key strength of the the two different increment schemes is that it
can maintain history information. We will see in the examples that
we can construct cases that require such history information.
Assignment Scheme. Our next scheme for instrumentation is the
assignment scheme (similar scheme proposed in [8]). This scheme
assumes the marker to be a single variable, and it assigns values
to markers rather than incrementing them. As such, the marker
function is I(m) = k where k is an arbitrary value that might
differ in each vertex.

Assigning a new value to the marker implies that the last as-
signed value, which represents history information, is lost. This is
unlike the single and multiple increment scheme in which the his-
tory of previous applications of the marker function is preserved.
As we will show later, the assignment scheme solves some simple
instrumentation problems which have no solution using increment
scheme.
Bit vector Scheme. The bit vector scheme uses markers as a bit
fields instead of variables. The scheme assumes that the bit fields
are initially set to zero. The marker function then sets and clears bits
at a specific location in the bit field. For example a marker function
can be I(x) = x[1] ↑ & x[0] ↓, which will set bit two and clear bit
one in the bit vector x. Every vertex can have a different version of
the marker function and thus set and clear different bits.

This scheme is interesting, because it can maintain but also se-
lectively clear history information. For example, if each vertex sets
a different bit, then the scheme will maintain history information.
If one vertex clears a bit that has been set in a previous vertex,
then the scheme will selectively clear the history that the execu-
tion has passed through that vertex. Yet a salient part is that the
scheme falls behind the increment-based schemes when it comes
to building history, because the bit vector scheme, as we use it,
requires the marker function to know what bits to set and clear
and thus the history is finite with respect to the defined marker
functions. In the increment-based schemes, the history is infinite
as the marker value can always be incremented. In other words,
increment-based schemes can count to infinity while the bit vector
scheme can only count up to the point that the marker function has
been defined. The length of the bit vector at any instant would be
equal to the number of instrumentation steps performed, since ev-
ery instrumentation step would use a single bit of the bit vector to
distinguish the paths that intersect.We will demonstrate examples
that show the difference between the increment scheme and the bit
vector scheme.

4.2 Comparison in Expressiveness
Table 1 summarizes the results for the different schemes and points
to the counter examples for the different schemes. The table is read
in a way that the row indicates the scheme under scrutiny and the
column indicates the scheme to which we compare it to. So for
example the element in row one, column three points to Figure 2
which is the counter example in which the single increment scheme
is superior to the assignment scheme.

The table also contains the entry less powerful when comparing
the single increment scheme to the multiple increment scheme.
This means that any case which can be instrumented by single
increment can also be instrumented by multiple increment.

. . .A B C
4

Figure 2: Counter example 1: self loop.

103

Single Increment Multiple Increment Assignment Bit Vector
Single Increment - Less powerful Figure 2 Figure 2

Multiple Increment Figure 4 - Figure 5 Figure 2
Assignment Figure 4 Figure 6 - Less powerful
Bit vector Figure 4 Figure 6 Figure 5 -

Table 1: Comparison table for different schemes

Figure 2 presents the counter example with the self loop. The
assignment and bit vector schemes are unable to successfully in-
strument this control flow graph, while, the single and multiple
increment-based schemes can find an instrumentation. The reason
is that the example requires to build history by repetitively applying
the marker function I, as the execution repeatedly passes through
B.

C

B B BA

C

B

C

Figure 3: Timing diagram for Figure 2.

Figure 3 shows the timing diagram for the example. As stated
in the model, all edges with no annotation have a delay of one. The
edge leaving C has a delay of 4, thus the path A → B → C
intersects with A → B → B → C at Δt = 4.

Increment-based schemes can successfully instrument this
graph, because no marker value is a fix-point for the marker func-
tion I(x) = x + 1, whereas they are fix points for assignment and
the bit vector scheme.

D

A

B C

DC E

B

Figure 4: Counter example 2: Timing diagram that shows a permutation.

Figure 4 shows a counter example that lists the weakness of
the single increment scheme over other schemes. The example has
already been presented in previous work [15], and we list it here for
the sake of completeness.

The graph contains three paths p1 = A → B → C → E, p2 =
A → C → D → E, and p3 = A → D → B → E. To
distinguish the path pair {p1, p2} we have to instrument either B or
D but not both, similarly for {p2, p3} either C or B and for p3, p1

either D or C. Clearly there is no successful instrumentation with
the single increment scheme because it produces the same value
at the end of both the paths of the pathpair. We can instrument
the above graph with multiple increment scheme by incrementing
marker once at B and twice at C. Same problem can be solved
with assignment or bit-vector based scheme by assigning different
values to the marker or setting different bits of the marker at
vertices B, C, D respectively.

4

B

C

A D E . . .

Figure 5: Counter example 3: delay.

Figure 5 shows a problem for the assignment scheme for the
marker function. In the first instance of the instrumentation prob-
lem at Δt = 3, we have two intersecting paths p1 = A → B → D
and p2 = A → C → D. These two paths can be distinguished
using the assignment scheme by assigning a marker value in either
B or C.

Let’s assume, that the scheme assigns the value m1 = xB at B
and we proceed. Having resolved this path pair now we get a set
of intersecting paths {p3, p4, p5} with p3 = A → B → D →
E, p4 = A → C → D → E, and p5 = A → B → C → D →
E. Paths p3 and p5 have the same value for m1 = xB and need to
be differentiated.

At this point, the assignment-based scheme faces a problem, be-
cause it can neither instrument D or C. Vertex D is shared in both
paths and any instrumentation of D in the future will overwrite the
value of m1. Therefore, it will decrease the sampling period again
to Δt = 3 as the current paths p1 and p2 will become indistinguish-
able again. The assignment-based scheme also cannot instrument
C, because then paths p4 and p5 will be indistinguishable. Thus,
the assignment-based scheme fails at this example.

Other schemes can easily instrument this by incrementing the
marker in B and C or by setting different bits at B and C.

B

C

A D

Figure 6: Counter example 4: diamond.

Figure 6 demonstrate problem associated with the increment-
based schemes. Basic idea is that, although we may be increment-
ing a marker at different vertices on different paths, at the end, the
aggregated value of the marker is similar. This property makes the
increment-based scheme ineffective when one path in a path pair is
just the permutation of vertices in the other path of path pair, in such
case any instrumentation (single or multiple increment, whereas
Figure 4 only applies to single increment) will lead to same value
of the marker at the end. Figure 6 generate this kind of path pairs
which are shown in Figure 7.

D

B

C

D

D

B

C

. . .

. . .

C
A

B

D

Figure 7: Timing diagram for Figure 6.

There are two types of intersecting path pairs: one with odd
path length and other with even path length. If we consider a path
pair having paths of odd length, then we can instrument the paths.
If we consider a path pair having paths of even length, then one
path will be the permutation of vertices of another path. Paths

104

A → B → C → D and A → C → B → D form a pair
of intersecting paths of that kind. Obviously no instrumentation
using single or multiple increments can solve this instrumentation
problem, but simply assigning two different values to the marker at
vertex B and C successfully differentiates the paths.

The above examples clearly suggest that none of the methods
when applied individually are expressive enough to make the paths
of a path pair distinguishable in all cases.

5. Our Approach
Based on the insights gained from observing the expressiveness of
different schemes as discussed in Section 4 and especially Table 1,
we now investigate two schemes based on bit vectors. BITVEC is
the direct implementation of a bit vector scheme and BITVEC

+ is a
hybrid of increment and a bit vector scheme.

5.1 BITVEC

The BITVEC algorithm follows a greedy approach in finding the
vertices that can be instrumented in order to distinguish them at the
time of sampling. It tries to find the distinct vertices on the paths or
set of vertices that can manipulate a bit either by setting or clearing,
so that the paths are distinguishable at the time of sampling.

Terminology and Definitions. G is the control flow graph. p1 and
p2 are the two intersecting paths. G′ is the instrumented control
flow graph that has successfully solved the instrumentation prob-
lem. We denote V (p) to represent the set of vertices that lie on the
path p. The function firstv(p) returns the first vertex on the path
p. The function loccv(v, p) returns the index of the last occurrence
of the vertex v in path p. For example, loccv(A, [A → B → B →
A]) = 4 and loccv(A, [A → B → A]) = 3.

Function 1 shows the algorithm for BITVEC . We first calculate
δ which is the set difference between the union set of V (p1) and
V (p2) and the intersection set of V (p1) and V (p2). If the set δ
contains elements, then we pick one of the vertices from δ for
instrumentation; otherwise, we need to investigate whether BITVEC

can successfully instrument the path pair.
If δ is empty, then we reverse the paths (remember that the last

assignment to the marker overwrites previous ones), and store all
vertices that distinctively occur last in one path into a temporary set
Vable. All other vertices, e.g., vertices that occur on both paths at
the same position, are removed. Once we went through the whole
path, if Vable is empty, then BITVEC is unable to instrument the
path pair (following Theorem 1). If Vable contains vertices, then
we pick the first two of them since these were the first two vertices
that differed.

The complexity of the algorithm is linear with respect to the
number of vertices in V . Calculating δ is linear because represent
each of the paths p1 and p2 as an array of bits of size |V | and
perform bit operations to obtain union, intersection and difference
operations. In the function itself, the while loop traverses through
the paths and thus has linear complexity as well.

Theorem 1 (BITVEC Failure Condition). For two intersecting
paths p1 and p2, BITVEC will be unsuccessful in distinguishing
the paths, if and only if the following conditions hold:

1. (V (p1) ∪ V (p2)) − (V (p1) ∩ V (p2)) = ∅
2. �v1, v2 such that loccv(v1, p1) = loccv(v2, p2)

Proof. Proof is in the form of two parts: if and only if.

if: We use a proof by contradiction method for one and two
vertices. Assuming that the graph can be instrumented with the
conditions mentioned above being true.

We assume to instrument one vertex. Assume that you find one
instrumentable vertex that after instrumentation will distinguish the

Function 1 Instrument graph with BITVEC

Input: Control flow graph G, paths p1, p2

Output: Instrumented control flow graph G′

δ ⇐ (V (p1) ∪ V (p2)) − (V (p1) ∩ V (p2))
if δ = ∅ then

reverse paths p1 and p2

while |p1|
= 0 ∨ |p2|
= 0 do
if firstv(p1)
= firstv(p2) then

add firstv(p1) and firstv(p2) to Vable

end if
remove firstv(p1) and firstv(p2) from p1 and p2

end while
if Vable = ∅ then

BITVEC terminates
else

add first two vertices added to Vable to Vinstr

end if
else

add one vertex of δ to Vinstr

end if

if |Vinstr| = 2 then
set a bit in one vertex, clear the same bit in the other vertex

end if
if |Vinstr| = 1 then

set a bit for the vertex
end if

two paths. This vertex must be unique for the two paths. This
clearly cannot hold, because condition one in the theorem states
that such a vertex does not exist.

We assume to instrument two vertices. Assume that you find two
instrumentable vertices that after instrumentation will distinguish
the two paths. First, the two vertices must be shared between the
paths (c.f., condition 1 in the Theorem). If you still find two such
vertices, then the two vertices must set and clear a bit at distinct
positions in the paths with no other vertex overwriting the bit in
the remaining parts of the paths. There exist no such two vertices,
because of condition 2 in the theorem.

We assume to instrument n vertices. Trying to instrument n
vertices is similar to instrumenting one or two vertices. If the
remainder of n

2
is 1, then if we can instrument the paths, we will be

able to also instrument them with one vertex only. If the remainder
of n

2
is 0, then if we can instrument the paths, with two vertices

only. The argument for both cases is that if the nth vertex makes
the difference, the algorithm would have found it as the first vertex
to try; and if the n − 1th and nth vertices make the different, the
algorithm would have found them when trying to instrument with
two vertices.

only if: We use a proof by contradiction for the ‘only if’ part. We
assume that either (V (p1) ∪ V (p2)) − (V (p1) ∩ V (p2))
= ∅ or
∃v1, v2 such that loccv(v1, p1) = loccv(v2, p2) or both.

• Case 1 (V (p1) ∪ V (p2)) − (V (p1) ∩ V (p2))
= ∅: (V (p1) ∪
V (p2)) is the union of the set of vertices on paths p1 and p2. If
(V (p1)∪V (p2))−(V (p1)∩V (p2))
= ∅ then we have vertices
present on either only p1 or p2. We can instrument any of these
vertices to distinguish the two paths.

• Case 2 ∃v1, v2 such that loccv(v1, p1) = loccv(v2, p2): Since
two such vertices exist, we can instrument one of these vertices
to set a bit and instrument the other vertex to clear the same bit,
hence making it distinguishable at the time of sampling.

105

• Case 3 (V (p1) ∪ V (p2)) − (V (p1) ∩ V (p2))
= ∅ and ∃v1, v2

such that loccv(v1, p1) = loccv(v2, p2): From Case 1 and Case
2, it follows that in Case 3, the paths can be instrumented.

From cases 1 to 3, it follows that if any of the two conditions in
the theorem is true, then the paths can be instrumented and hence
contradict the initial fact that the graph cannot be instrumented.

C

A B

A

B C

B

Figure 8: Two paths that cannot be instrumented using BITVEC .

Example 1. Figure 8 shows two paths that cannot be instrumented
using BITVEC . Note that vertex A and C has a delay of two,
while B has a delay of 1. Given the two paths, we can compute
the following elements:
V (p1) = {A, B, C}
V (p2) = {A, B, C}
V (p1) ∪ V (p2) = {A, B, C}
V (p1) ∩ V (p2) = {A, B, C}
(V (p1) ∪ V (p2)) − (V (p1) ∩ V (p2)) = ∅ (Condition 1 in Theo-
rem 1)

As seen in Figure 8, condition 2 of Theorem 1 also holds as
�v1, v2 such that loccv(v1, p1) = loccv(v2, p2). Since both condi-
tions hold, the example cannot be instrumented with BITVEC .

Note that for example the increment-based scheme is able to
instrument this by simply incrementing a marker at B.

5.2 BITVEC+

BITVEC
+ also follows a greedy approach similar to BITVEC in find-

ing vertices that can be instrumented so that the paths are distin-
guishable at the time of sampling. The only difference of BITVEC

+

and BITVEC is that BITVEC
+ uses increment based scheme for

those cases where BITVEC fails. The advantage of BITVEC
+ is a

further increase in sampling period compared to BITVEC but intro-
duces interference due to the use of increment based schemes.

Terminology and Definitions. The inputs, outputs, firstv(p)
and loccv(v, p) are similar in structure to Function 1. The func-
tion δfreq(p1, p2) of two paths calculates the set of vertices that
occur differently often on the two paths considering also the state
information in the vertex (in our case the marker values).

Function 2 shows the algorithm for BITVEC
+ . We first calcu-

late the δfreq(p1, p2) and then remove all vertices shared between
the two paths under consideration and assign this to δ′. If the δ′ set
still contains elements, then we can pick one of the vertices for in-
strumentation; otherwise, we need to investigate whether BITVEC

+

can successfully instrument the path pair.
If δ′ is empty, then we reverse the paths (remember that the last

assignment to the marker overwrites previous ones), and store all
vertices that distinctively occur in one path last in Vable. All other
vertices, e.g., vertices that occur on both paths at the same position,
are removed. Once we went through the whole path, if Vable is
empty, then we check to see whether δ is an empty set or not. If
δ is an empty set then BITVEC

+ is unable to instrument the path
pair (following Theorem 2) otherwise we pick up one vertex in δ,
initialize a marker i at the starting vertex of G and instrument this
vertex with i++ . If Vable contains vertices, then we pick the first
two of them.

The complexity of the algorithm is linear with respect to the
number of vertices in V . Calculating δfreq is linear, because exe-
cutes a single pass over both paths and counts how often vertices
occur. It then subtracts the shared vertices between the paths and

Function 2 Instrument graph with BITVEC
+

Input: Control flow graph G, paths p1, p2

Output: Instrumented control flow graph G′

δ ⇐ δfreq(p1, p2)
δ′ ⇐ δ − {V (p1) ∩ V (p2)}
if δ′ = ∅ then

reverse paths p1 and p2

while |p1|
= 0 ∨ |p2|
= 0 do
if firstv(p1)
= firstv(p2) then

add firstv(p1) and firstv(p2) to Vable

end if
remove firstv(p1) and firstv(p2) from p1 and p2

end while
if Vable = ∅ then

if δ = ∅ then
BITVEC

+ terminates
else

add one vertex of δ to Vinstr

increment flag ⇐ true
end if

else
add first two vertices added to Vable to Vinstr

end if
else

add one vertex of δ′ to Vinstr

end if

if increment flag is true then
initialize marker i at the starting vertex of G
perform i++ at v ∈ Vinstr

else
if |Vinstr| = 2 then

set a bit in one vertex, clear the same bit in the other vertex
end if
if |Vinstr| = 1 then

set a bit for the vertex
end if

end if

returns the delta set. In the function itself, the while loop traverses
through the paths and thus has linear complexity as well.

Theorem 2 (BITVEC
+ Failure Condition). For two intersecting

paths p1 and p2, BITVEC
+ will be unsuccessful in distinguishing

the paths, if and only if the following conditions hold:

1. δfreq(p1, p2) = ∅
2. �v1, v2 such that loccv(v1, p1) = loccv(v2, p2)

Proof. The condition δfreq(p1, p2) = ∅ signifies that the order of
vertices on path p1 is a permutation of the order of vertices on
path p2. Hence, (V (p1) ∪ V (p2)) − (V (p1) ∩ V (p2)) = ∅. The
proof trivially follows by combining Theorem 1 and the theorem
on single path pair termination in [15].

A

B C

C B

B

Figure 9: Two paths that cannot be instrumented using BITVEC+ .

106

Example 2. Figure 9 shows two paths that cannot be instrumented
using BITVEC

+ . Given the two paths, we can compute the follow-
ing elements: δfreq(p1, p2) = ∅ (Condition 1 in Theorem 2).

As seen in Figure 9, condition 2 of Theorem 2 also holds as
�v1, v2 such that loccv(v1, p1) = loccv(v2, p2). Since both con-
ditions hold, the example cannot be instrumented with BITVEC

+

.

6. Experimental Method
To validate the theorems and the concepts of this work, we ex-
tended an existing instrumentation engine [15]. The instrumenta-
tion engine provides a framework to test different instrumentation
schemes for the instrumentation problem defined above. We have
added the BITVEC and BITVEC

+ schemes to the instrumentation
engine. The implementation of these schemes is as easy or as diffi-
cult as implementing a counter or the single increment scheme.The
outputs of this engine are the instrumented vertices, the required
execution time, the resulting sampling period, and the amount of
extra memory used in the instrumented program.

For our input set, we generated about 5000 control flow graphs
using a modified version of Task Graphs For Free [14]. Each con-
trol flow graph has on an average 114 basic blocks and 218 edges.
The control flow graphs follow C program flows [29]. Control flow
graphs of real programs from test benchmarks are future currently
in progress. One experiment run works as follows: we first select a
control flow graph and a scheme (either increment based with 10 or
25 markers, BITVEC , or BITVEC

+) and then pass them to the in-
strumentation engine. The engine computes the instrumented con-
trol flow graph and returns the sampling period, vertices to instru-
ment, the required execution time, and the amount of extra memory.
We performed the computation on a standard dual-core workstation
with 2GB of memory and the simulations took reasonable execu-
tion time (tens of seconds per step). Since the instrumentation pro-
cess is performed offline, the actual execution time is negligible as
long as it is tolerable for the developer.

The data successfully passed the integrity checks of the engine
which were: (1) in BITVEC the increase in sampling period is strong
monotonically increasing and (2) on average, the sampling period
increases with the increase in the number of instrumentation steps.

The various metrics used for this experimentation are similar to
those chosen in related work [15]; except that we chose the name
monotonicity instead of usability. The metrics are described in the
sections below.

6.1 Instrumentation Performance Metric
To compare the performance of BITVEC and BITVEC

+ over the
increment schemes with 10 or 25 markers, we take the maximum
sampling period achieved in each run per algorithm and sum them
up: P =

P
max(Ti). This metric is robust against direct and

indirect interference defined in [15].

6.2 Monotonicity Metric
Monotonicity describes how often the sampling period decreases
after an instrumentation step. This is important to know, because it
means that although the instrumentation takes place (and overhead
increases), the sampling period actually decreased. Related work
calls this property usability. We use the following monotonicity
metric to evaluate various heuristics: M = NP

di
with

di =

j
0 if runi − runi+1 ≤ 0
runi − runi+1 otherwise

The term di denotes the decrement between two instrumen-
tation steps runi and runi+1, if the sampling period of runi

is greater than the subsequent runi+1.
P

di denotes the sum of

decrements in the entire instrumentation steps for a test case. N de-
notes the number of the instrumentation steps. The decrement rep-
resents the interference introduced by instrumenting the vertices.
Since monotonicity is the reciprocal of the sum of decrements, the
lesser the sum of decrements, the greater the monotonicity of the
strategy used.

6.3 Memory Use in the Instrumented Program
In contrast to related work, we also evaluate memory use in the in-
strumented program. As the schemes instrument the program, they
progressively need more memory as they use new markers. While
using more memory not necessarily invalidates approaches, we use
this metric to evaluate the performance especially for schemes with
low memory demands (e.g., single increment scheme). We compute
the metric as follows: mu = Δt

mem
.

7. Results
We used the experimental methods as discussed in Section 6 to
compare the results of the BITVEC and BITVEC

+ with the incre-
ment based schemes discussed in [15]. The results are categorized
and discussed below.

Comparison of Heuristics

Instrumentation step

S
am

pl
in

g
pe

rio
d

4000

6000

8000

10000

10 20 30 40 50

name

Single increment

Multi increment (25 markers)

Multi increment (10 markers)

bitvec

bitvec+

Figure 10: Comparing achieved sampling period of different schemes

The instrumentation performance of BITVEC and BITVEC
+ are

much better than the single and multi-increment schemes even if
they use multiple markers. Figure 10 shows the comparison of
the sampling period of different schemes with the increase in the
number of instrumentation steps. The x-axis shows the number
of instrumentation steps (i.e., 50 times solving an instrumentation
problem to increase the sampling period). The y-axis shows the
achieved sampling period. The higher the sampling period, the
better, because it means the lower the overhead. The graph clearly
shows the improvement in the sampling period using BITVEC

+ and
BITVEC schemes over the other schemes as they level off much
earlier. This is due to the fact that in BITVEC scheme only the
last change made to a bit on a path will be visible at the time
of sampling and we try to find two different vertices that can be
instrumented (one vertex to be assigned to set a bit and other
vertex is assigned to clear the same bit) which occur at the same
time stamp. Another reason for the increase in sampling period
for BITVEC is the use of multiple bits to remember the past traces.
BITVEC

+ shows further improvement compared to BITVEC due to
the fact that BITVEC

+ can instrument more cases than BITVEC .
The consequence of this result is that we can lower the overhead
of sampling-based monitoring with the new schemes BITVEC and
BITVEC

+ .
Figure 11 shows the progressive gain of sampling period over

adding memory. The x-axis shows the number of instrumentation

107

Progressive Gain of Sampling Time Over Adding Memory

Instrumentation step

S
am

pl
in

g
pe

rio
d/

m
em

or
y

us
e

500

1000

1500

2000

2500

3000

●

●

●
●

● ●

●

0 10 20 30 40 50

name

● Multi increment (25 markers)

bitvec

bitvec+

Multi increment (10 markers)

Single increment

Figure 11: Progressive gain of sampling period over adding memory

steps. The y-axis shows the ratio of sampling period to memory
used. The higher the value, the more sampling period we receive
for using memory in the instrumented application. In other words,
the higher the value, the more efficiently we are using the available
memory.

As the graph indicates, the single marker scheme performs best.
The main reason is that in the single marker scheme, the memory
used for each instrumentation step is constant (one marker) and the
sampling period increases as the instrumentation steps increases;
hence an increase in the ratio of sampling period to memory used.
BITVEC and BITVEC

+ attain lower values, as the number of instru-
mentation steps increases. This is due to the fact that BITVEC and
BITVEC

+ uses one bit of the bit vector in each instrumentation step.
Interestingly, the multi marker scheme also uses about the same
amount of memory as BITVEC and BITVEC

+ , however, it fails to
achieve similar performance (c.f., Figure 10). This experimentation
result shows that the BITVEC and BITVEC

+ scheme should be used
in those systems where sufficient memory can be allotted for the bit
vector.

Interference of Heuristics Relative to bitvec

In
te

rf
er

en
ce

 r
el

at
iv

e
to

 B
itv

ec

0

2

4

6

8

10

B
itv

ec

B
itv

ec
+

M
ul

ti
in

cr
em

en
t

(2
5

m
ar

ke
rs

)

M
ul

ti
in

cr
em

en
t

(1
0

m
ar

ke
rs

)

S
AT

Figure 13: Interference of different heuristics relative to Bitvec

Name Normalized SEM Absolute
1 Bitvec 1 0.0001 2
2 Bitvec+ 2 0.0001 3
3 Multi increment (25 markers) 2 0.0001 3
4 Multi increment (10 markers) 9 0.0003 14
5 SAT 12 0.0004 19
6 Single increment 109 0.0017 177

Table 2: Interference for different techniques normalized to bitvec

The interference level of BITVEC is very low or none because
BITVEC eliminates direct as well as indirect interference to a great

extent as conjectured in Section 5. Figure 13 shows the comparison
of the interference levels of different schemes relative to BITVEC

Ṫhe x-axis shows the different schemes. The y-axis shows the
interference relative to BITVEC . The black bars in Figure 13 show
the standard error of the mean. Table 2 shows the values in table
form and also includes the single marker case. Table 2 also shows
the standard error of the mean (SEM) for the different schemes.
SEM is the degree of deviation from the mean. The higher the
value of SEM, the more deviation and hence lower consistency in
the results. The figure and the table show that BITVEC has very
good monotonicity as it eliminates all interference. This makes it
useful for tooling, because users will never experience a drop in the
sampling period as they use the tool.

The monotonicity of BITVEC is high because BITVEC elim-
inates both direct as well as indirect interference. The lesser the
interference, the more is the monotonicity. Figure 12 shows the
monotonicity of different schemes. The x-axis shows the number
of instrumentation steps. The y-axis shows the sampling period.

Figure 12(a) shows the monotonic increase in test case 103. Fig-
ure 12(a) shows that the BITVEC and BITVEC

+ both follow the
technique until the point where BITVEC must terminate, because
it cannot further instrument. BITVEC

+ can continue, because it
uses the single increment method for that particular problem. Since
BITVEC

+ sometimes uses increment, one can see a drop in mono-
tonicity in the scheme. Test case 103 also shows that the bit vec-
tor schemes sometimes are slower at the beginning but might then
catch up later. This means that the single increment can sometimes
be the better scheme.

Figure 12(b) shows test case 104. The case is interesting, be-
cause it shows the erratic behaviour of single increment schemes
(see steps 40 to 50). The test case also shows a scenario where
BITVEC

+ experiences interference, because it uses markers (see
steps 47 and 48).

Figure 12(c) shows a notorious test case where BITVEC and
BITVEC

+ never catches up with the increment technique within the
first 50 instrumentation steps. We ran the test case for 100 steps
and it eventually creates steep increases on the sampling period
and then surpasses the multi increment scheme. The control flow
graph has 296 basic blocks and 619 edges. When looking at the
instrumentation trace, it seems that BITVEC

+ is stuck by solving
many individual problems while the single increment seems to be
able to solve them more quickly.

Figure 12(d) shows a test case where BITVEC
+ is far superior

to the other techniques. BITVEC follows the same path as BITVEC
+

until some point after which it can no longer instrument the paths.
The single marker and 10 markers techniques are the almost the
same with single marker having more interference.

Name Absolute Ratio Overall
1 bitvec 11045 0.834 0.189
2 Increment 2201 0.166 0.038

Table 3: Comparing when one technique is superior than the other in the
empirical data

Table 3 shows the comparison of the number of test cases where
BITVEC was better than the increment scheme and vice versa. As
shown in the table, BITVEC is superior to increment in 83.4% of
the test cases that were used during experimentation while incre-
ment was superior in the remaining 16.6%. The reason behind the
superiority of BITVEC over increment is that BITVEC can empiri-
cally instrument more cases than the single increment scheme (See
Theorem 1 vs the path pair termination in [15]). This result shows
that BITVEC is reliable in producing higher sampling periods and
hence reducing the overhead for sampling based monitoring.

108

Monotonicity of Test Case 103

Instrumentation step

S
am

pl
in

g
pe

rio
d

2000

4000

6000

8000

10000

12000

● ●
●

● ●
● ● ●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ● ● ●

●

●
●

● ● ●
● ●

●

● ●

10 20 30 40 50

name

● Single increment

bitvec+

Multi (10 markers)

bitvec

bitvec terminates

(a) BITVEC+ catching up late.

Monotonicity of Test Case 104

Instrumentation step

S
am

pl
in

g
pe

rio
d

2000

3000

4000

5000

6000

000

● ● ●
●

●
● ● ●

●
● ●

● ● ● ●

●

●

● ● ● ● ● ● ●

●

● ●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

10 20 30 40 50

name

● Single increment

bitvec+

Multi (10 markers)

bitvec

bitvec terminates

(b) Single marker showing erratic behaviour.

Monotonicity of Test Case 105

Instrumentation step

S
am

pl
in

g
pe

rio
d

2000

3000

4000

5000

●
●

● ●
● ● ● ●

●

● ● ●
●

● ●

● ● ● ●

●

● ●

●

● ●

●

● ●

●

●
● ● ●

●

● ● ●

●

●

●
●

● ●
●

● ● ●
●

●

●

10 20 30 40 50

name

● Single increment

bitvec+

Multi (10 markers)

bitvec

(c) BITVEC+ never catching up until step 50.

Monotonicity of Test Case 106

Instrumentation step

S
am

pl
in

g
pe

rio
d

2000

4000

6000

8000

10000

12000

bitvec terminates

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●
●

●

●

●

10 20 30 40 50

name

● Single increment

bitvec+

Multi (10 markers)

bitvec

(d) BITVEC+ far superior than the others.

Figure 12: Examples of behaviour with respect to monotonic increase in the sampling period.

8. Discussion
Some interesting observations can be made from the results ob-
tained. We study the monotonic behaviour of BITVEC and BITVEC

+

and observe that although the graph is monotonic in nature, there is
a case where BITVEC and BITVEC

+ gradually grows. Figure 12(c)
shows a case where BITVEC and BITVEC

+ never catches up com-
pared to instrumentation by a single marker. We suspect the reason
for this being that although both increment scheme and BITVEC are
greedy algorithms, increment based schemes make better decisions
which solve number of hidden paths as mentioned in related work
[15] while BITVEC solves one problem at a time. This observation
leads to interesting future work to try and decide based on the graph
structure which instrumentation scheme to use.

The applicability of the BITVEC and BITVEC
+ schemes depend

on the trade off between interference and sampling periods. If the
user rejects the notion that applying more instrumentation may de-
crease the sampling period, then BITVEC is the primary choice
for the algorithm. Whereas if the user accepts this behaviour, then
BITVEC

+ is more suitable, because it will achieve better overall re-
sults. As clearly indicated in Figure 12(b), the graphs of BITVEC

and BITVEC
+ are the same until a certain instrumentation step af-

ter which BITVEC can no longer instrument while BITVEC
+ uses

increment based scheme to further instrument the graph. However,
Figure 10 also shows that although BITVEC

+ can achieve higher
sampling periods compared to BITVEC , but it can introduce inter-
ference as indicated by a drop in Figure 12(b) between steps 40 and
50. Also another observation is that adding a marker incurs only
negligible overhead in code size and execution time since these
are single statements, however, investigating the influence of these
markers on different metrics is a potential area for future work.

9. Related Work
A large body of work has been established in the area of tracing
with general work on trace-based debugging [11, 21, 26]. In gen-
eral, the problem of placing probes and counters efficiently in a pro-
gram is hard [17] and many different variations of the tracing prob-
lem exist [7]. Different approaches to instrument and reduce the
overhead exist, for example, coalescing probes [20], labelling paths
similar to our assignment scheme [8], flexibility in setting probes
and thus reducing overhead [22, 5, 28], dynamic binary rewriting
to change the instrumentation at run time [24, 9, 6], running the
instrumentation only once per iteration [25], simulator-based ap-
proaches [30], time-aware instrumentation [16], and code duplica-
tion [3].

Tracing can also be implemented in hardware. Solutions such
as JTAG [12], Nexus [23], and ARM CoreSight [27] with, for
instance, the ETM permit inspecting and tracing the system at a
hardware level.

Often sampling has been used for profiling without the need
of full accuracy for recreating execution flows as necessary for
debugging and monitoring [19, 31, 32, 2, 13, ?, 10, 4]. Our work
uses sampling in a different context. Our work does not primarily
aim at profiling, but at begin able to reconstruct whole execution
paths using sampling.

10. Conclusion
Monitoring execution and tracing using sampling is an important
technique for real-time embedded applications that need to meet the
timing deadlines. The sampling-based approach permits computing
the overhead and thus permits engineering the system.

In the sampling-based approach, the major drawback is the
overhead that originates from required high sampling rates. In this
work, we have investigated several schemes for using markers to
reduce the required sampling rate and thus reduce the overhead.

109

Specifically, we have proposed the BITVEC and BITVEC
+ schemes,

established their failure conditions, and showed that they provide
superior performance than related work with respect to increasing
the sampling period, interference, and monotonicity.

Future work is to look into the specific problems shown in test
case 105 and defining a heuristic when to apply which instrumenta-
tion scheme. This could then also lead to a general framework that
uses different instrumentation schemes based on the best applica-
bility given the current instrumentation problem to be solved.

Acknowledgements
This research was supported in part by NSERC DG 357121-2008,
ORF RE03-045, ORE RE-04-036, ISOP IS09-06-037, the MI-
TACS Globalink Program and CMC Microsystems through CFI
20314.

References
[1] RapiTime. web page. http://www.rapitasystems.com/

rapitime.

[2] J.M. Anderson, L.M. Berc, J. Dean, S. Ghemawat, M.R. Henzinger,
S.-T.A. Leung, R.L. Sites, M.T. Vandevoorde, C.A. Waldspurger, and
W.E. Weihl. Continuous profiling: Where have all the cycles gone?
ACM Trans. Comput. Syst., 15(4):357–390, 1997.

[3] M. Arnold and B.G. Ryder. A framework for reducing the cost of
instrumented code. In Proc. of the ACM SIGPLAN 2001 Conference
on Programming Language Design and Implementation (PLDI),
pages 168–179, 2001.

[4] M. Arnold and P.F. Sweeney. Approximating the calling context tree
via sampling. Technical Report RC 21789, IBM T.J. Watson Research
Center, July 200.

[5] A. Ayers, R. Schooler, C. Metcalf, A. Agarwal, J. Rhee, and
E. Witchel. Traceback: First fault diagnosis by reconstruction of
distributed control flow. ACM SIGPLAN Not., 40(6):201–212, 2005.

[6] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent
Dynamic Optimization System. In Proc. of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation
(PLDI), pages 1–12, 2000.

[7] T. Ball and J.R. Larus. Optimally profiling and tracing programs.
ACM Trans. Program. Lang. Syst., 16(4):1319–1360, 1994.

[8] T. Ball and J.R. Larus. Efficient path profiling. In Proc. of the 29th
Annual ACM/IEEE International Symposium on Microarchitecture,
pages 46–57, 1996.

[9] D. Bruening, T. Garnett, and S. Amarasinghe. An Infrastructure
for Adaptive Dynamic Optimization. In Proc. of the International
Symposium on Code Generation and Optimization (CGO), pages
265–275, 2003.

[10] M. Burrows, U. Erlingsson, S.-T. A. Leung, M. T. Vandevoorde, C. A.
Waldspurger, K. Walker, and W. E. Weihl. Efficient and flexible value
sampling. ACM SIGPLAN Not., 35(11):160–167, 2000.

[11] J.-D. Choi, B.P. Miller, and R.H.B. Netzer. Techniques for debugging
parallel programs with flowback analysis. ACM Trans. Program.
Lang. Syst., 13(4):491–530, 1991.

[12] I. Chun and C. Lim. Es-debugger: the flexible embedded system
debugger based on jtag technology. Proc. of the 7th International
Conference on Advanced Communication Technology (ICACT),
2:900–903, 0-0 2005.

[13] J. Dean, J.E. Hicks, C.A. Waldspurger, W.E. Weihl, and G. Chrysos.
Profileme: Hardware support for instruction-level profiling on out-
of-order processors. In Proc. of the 30th Annual ACM/IEEE
International Symposium on Microarchitecture (MICRO), 1997.

[14] R.P. Dick, D.L. Rhodes, and W. Wolf. Tgff: Task graphs for free.
In Proc. of the Sixth International Workshop on Hardware/Software
Codesign (CODES/CASHE), pages 97–101, Mar 1998.

[15] S. Fischmeister and Y. Ba. Sampling-based Program Execution
Monitoring. In Proc. of the ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems (LCTES),
pages 133–142, 2010.

[16] S. Fischmeister and P. Lam. Time-aware Instrumentation of
Embedded Software. IEEE Transactions on Industrial Informatics,
2010.

[17] I.R. Forman. On the time overhead of counters and traversal markers.
In Proc. of the 5th International Conference on Software Engineering
(ICSE), pages 164–169, 1981.

[18] M.P. Gallaher and B.M. Kropp. The Economic Impacts of Inadequate
Infrastructure for Software Testing. National Institute of Standards &
Technologg Planning Report 02–03, May 2002.

[19] S.L. Graham, P.B. Kessler, and M.K. Mckusick. Gprof: A call graph
execution profiler. ACM SIGPLAN Not., 17(6):120–126, 1982.

[20] N. Kumar, B.R. Childers, and M.L. Soffa. Low overhead program
monitoring and profiling. In Proc. of the 6th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE), pages 28–34, 2005.

[21] J. R. Larus. Abstract execution: a technique for efficiently tracing
programs. Softw. Pract. Exper., 20(12):1241–1258, 1990.

[22] J.R. Larus and E. Schnarr. EEL: Machine-Independent Executable
Editing. In Proc. of the ACM SIGPLAN 1995 Conference on
Programming Language Design and Implementation (PLDI), pages
291–300, 1995.

[23] Ashling Microsystems Ltd. IEEE-ISTO 5001TM-1999, The Nexus
5001 Forum Standard. Nexus 5001 Forum, 2000.

[24] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V.J. Reddi, and K. Hazelwood. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation. In Proc.
of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 190–200, 2005.

[25] J. Misurda, J.A. Clause, J.L. Reed, B.R. Childers, and M.L. Soffa.
Demand-driven structural testing with dynamic instrumentation. In
ICSE ’05: Proc. of the 27th International Conference on Software
Engineering, pages 156–165, 2005.

[26] R.H.B. Netzer and M.H. Weaver. Optimal tracing and incremental
reexecution for debugging long-running programs. In PLDI ’94: Proc.
of the ACM SIGPLAN 1994 conference on Programming language
design and implementation, pages 313–325, New York, NY, USA,
1994. ACM.

[27] W. Orme. Debug and Trace for Multicore SoCs. ARM, September
2008.

[28] A. Srivastava and A. Eustace. ATOM: A System for Building
Customized Program Analysis Tools. ACM SIGPLAN Not., 39:528–
539, 2004.

[29] M. Thorup. All structured programs have small tree width and good
register allocation. Inf. Comput., 142(2):159–181, 1998.

[30] B.L. Titzer and J. Palsberg. Nonintrusive precision instrumentation
of microcontroller software. In LCTES ’05: Proc. of the 2005 ACM
SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools
for Embedded Systems, pages 59–68, 2005.

[31] J. Whaley. A portable sampling-based profiler for java virtual
machines. In Proc. of the ACM 2000 Conference on Java Grande,
pages 78–87, 2000.

[32] Y. Zhong and W. Chang. Sampling-based program locality
approximation. In Proc. of the 7th International Symposium on
Memory Management (ISMM), pages 91–100, 2008.

110

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

