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Abstract—Multi-mode systems work in configurations, but
face the challenge of ensuring timing guarantees during mode
changes. In a multi-mode system, a mode-change request occurs
when the system wants to operate in a new mode, but is already
running in one. One mode may include some tasks that are same
as that of another mode. Therefore, the new mode may have tasks
that are same as the old mode. Changing modes in such a way
to skip some already completed tasks can decrease the workload
of the new mode.

Traditional protocols for changing modes always look forward
in time to schedule tasks, although using already completed tasks
may avoid re-executing them in the new mode. Reusing common
tasks reduces the time to re-execute them while switching modes.
In this paper, we introduce the concept and design considerations
for a mode-change technique that may use completed tasks stored
in checkpoints to avoid unnecessary re-execution and facilitate
faster execution of new mode tasks. Through an example case-
study, experimental results demonstrate that the overhead of
using checkpoints is low, and using rollback facilitates faster
execution of new mode tasks if completed tasks stored in
checkpoints can be reused.

I. INTRODUCTION

Many systems that control physical objects run in multiple

modes. Systems require to operate in multiple configurations

for different functionalities and also to provide flexibility.

For example, an automobile system can have a particular

configuration or mode for stopping, starting, or cruising. The

transitions between modes can happen dynamically at run time

and are sensitive to the control of a system because of the

mode-change delay incurred during mode changes. Moreover,

some systems can have multiple modes of operation and

quality-of-service depends on the delay incurred during mode

changes.

A multi-mode system switches between modes when a

mode-change request (MCR) takes place. Systems operating in

different modes such as the initialization mode, an emergency

mode, and a fault-recovery mode may exhibit multiple be-

haviours. In this work, we consider that a multi-mode system

has a set of tasks, which are comprised of the following: (1)

old mode tasks, (2) new mode tasks, and (3) common tasks.

An old mode task belongs to the old mode while switching

to a new mode and is different than a new mode task. A new

mode task can either be a modified old task or a completely

new task. A common task has the same temporal behavior

(e.g., period and deadline) both in the old mode and the

new mode. A common task exists in different modes but can

avoid executing while switching modes. For example, a fault-

tolerant video monitoring system has two modes: high and

low quality. Switching from the low to high quality mode may

require executing (1) old mode tasks such as the low-quality

transmissions, (2) common tasks can include taking inputs

periodically from cameras, calculating average power usages,

or gathering information on faulty memory blocks, (3) new

mode tasks such as transmitting high-quality transmissions

will execute once switching to the new mode is completed.

During a mode change, the running tasks of the old mode

and the tasks of the new mode can use any of the two

types of protocols: synchronous and asynchronous. In a syn-

chronous mode-change protocol, tasks of the old mode that

are ready to run finish executing before the new mode tasks

are released. However, an asynchronous mode-change protocol

allows scheduling the tasks of the old and new modes based

on their priorities.

To the best of our knowledge, all work on multi-mode

systems only considered mode-change protocols that require

the system to move forward in time (i.e., the system makes

progress). These work lack the concept that a system might be

able to undo recent activities to reach faster to the new mode.

This paper proposes a novel idea to use execution information

of prior successful completed tasks stored in checkpoints when

they are suitable for faster mode changes. For some mode

changes, using prior completed tasks is inefficient because of

either unsupported rollback or high overhead. The proposed

mode-change model uses existing known protocols (i.e., mini-

mum single-offset protocols) for the proof of concept, but can

be applied to other mode-change protocols.

A checkpoint in computing refers to a state of the execution

of the system when it is saved. The state of execution refers to

a snapshot of the system at a certain time. Using checkpoints,

it is possible to reinstate a system from the saved state. For a

large system, saving the state of the system at each checkpoint

is memory intensive. To address this issue, a system can use

checkpoints to perform like atomic operations with negligible

overhead using copy-back cache and atomic update feature

of stable transaction memory (STM). Checkpoints are usually

used to provide fault-tolerance [13]. A system may re-execute

from a saved state for recovery upon detecting a fault or

an error. The method of using checkpoints for fault-tolerant

systems is popular and exists in many implementations [9],

[13], [4], [8]. However, in this paper, we propose to use the



concept of checkpoints in a multi-mode system.

Using checkpoints in changing modes can either avoid re-

executing successfully completed common tasks when switch-

ing to a different mode or the same mode insisting on undoing

recent activities. A system uses prior executions of the already

completed tasks stored at a checkpoint to utilize system

resources efficiently. Therefore, this work aims to model a

system that permits the transition from the old mode to the

new mode through the use of a checkpoint when an MCR

occurs. For example, if a system has two modes and they

have common tasks having earlier deadlines than other tasks,

then while changing modes the system will be able to use a

checkpoint if required that has already stored the completed

executions of the common tasks.

Using checkpoints for mode changes imposes a number of

requirements: (1) it is necessary to perform a schedulability

test to ensure that the checkpoints must not cause the tasks

of any mode to miss their deadlines, (2) it is required to

derive a bound on the number of checkpoints to keep the

number of checkpoints finite, (3) it is necessary to derive a

relationship between the bound on the number of checkpoints

and the number of mode changes, because a system cannot

allow an infinite number of mode changes in each hyperperiod,

and (4) to ensure efficiency and flexibility, the system should

avoid using a checkpoint if a better time-efficient transition is

available to switch from the old mode to the new mode upon

an MCR.

The design flow for the system to use rollback-supported

mode changes is as follows: (1) the system designer derives the

necessary overhead associated with a checkpoint for storing

and retrieving variables, (2) according to a synchronous or

an asynchronous mode-change protocol, a method calculates

the worst-case mode-change delay of the tasks, (3) using the

schedulability analysis conditions for a particular scheduling

policy and a number of allowable mode changes, a method

derives the specifications of a checkpoint to use as a periodic

task and the bound on the number of checkpoints, (4) the

implementation of system contains synchronization protocols

to ensure consistency while running the schedule in an appli-

cation.

To allow faster mode changes by reducing the time required

for re-executing common task, this paper presents a rollback-

based mode-change mechanism. This paper also presents:

• analysis of the mode-change delay in single proces-

sor or multiprocessors with or without checkpoints for

synchronous and asynchronous minimum single-offset

protocols,

• analysis of the periodic specifications of a checkpoint to

derive a bound on the number of checkpoints, and

• analysis for using checkpoints in multi-mode syn-

chronous and asynchronous minimum single-offset pro-

tocols.

The remainder of this paper starts with Section II, which

discusses some related work. Section III presents the system

model and assumptions. Section IV-A discusses the workflow

for using checkpoints in multi-mode systems such that the tim-

ing and synchronization requirements are met. Section IV-B

discusses checkpoint-based minimum single offset protocols.

Section IV-C provides analysis of mode-change delay for

using checkpoints in synchronous and asynchronous multi-

mode systems. Section IV-D explains how to derive a bound

on the number of checkpoints. Section V demonstrates the

applicability of using checkpoints in multi-mode systems

through experimental analysis. Section VI concludes the paper.

II. RELATED WORK

Multi-mode real-time systems in a uniprocessor platform

have been studied extensively in [16], where only one shared

processor is available to execute all tasks. Some recent works

such as [11], [22] on multi-mode real-time systems have fo-

cused on multiprocessor systems, where tasks can be executed

on several shared processors. A semantic framework for mode-

change protocols has also been proposed in [12].

In [16], Real and Crespo survey some mode-change pro-

tocols and categorize them between synchronous and asyn-

chronous protocols. A synchronous protocol avoids executing

the new mode tasks until all the old mode running task finish

their execution. An asynchronous protocol may have a less

mode-change delay than a synchronous protocol because of

scheduling new mode and old mode tasks together.

Tindell and Alonso [21] propose the idle time protocol,

in which the system allows execution of background tasks

besides periodic and sporadic tasks. This protocol uses the

operating system to perform the mode changes. However,

some protocols [17] allow the mode-change operation to be

performed on controllers that have no operating system.

Nelis et al. [11], [22] propose mode-change protocols for

scheduling multi-mode real-time systems on a multiprocessor

platform. They propose two variations of the minimum single

offset protocol [16] for multiprocessor systems: synchronous

and asynchronous. The synchronous minimum single offset

protocol for multiprocessors avoids scheduling tasks of the old

mode and the new mode simultaneously that the asynchronous

minimum single offset protocol can do.

Real-time systems use checkpoints for fault tolerance, but

not for mode changes. Several works exist on using check-

points to recover from faults. Koo and Toueg describe two

ways [9] of setting checkpoints: (1) each station locally

and independently creates checkpoints, and (2) all stations

create global checkpoints. The scheme allows stations to place

checkpoints dynamically. To protect systems from failures,

Bertossi et al. propose two types of recoveries [4]: (1) a

static schedule for recovery that consists of checkpoints at

periodic intervals, and (2) a dynamic schedule for recovery that

places checkpoints at each slot. Zhang and Chakrabarty present

techniques [24] to find out a checkpoint interval that is used

to insert checkpoints equidistantly for tolerating a bounded

number of faults. Chen and Ren determine the number of

checkpoints [8] for soft real-time systems based on the task

execution time and the task deadline miss probability. They

establish a mathematical model to find the optimal checkpoint

interval for soft real-time systems with the assumption that

all application tasks have the same priority. Izosimov et al.

use both re-execution and replication mechanisms [13] as

fault-tolerance techniques to deal with the transient faults.



Checkpoints are used for re-execution and placed at equidistant

intervals in a static schedule to tolerate faults.

A real-time system has to perform schedulability anal-

ysis prior using checkpoints. In [15], the authors propose

an optimization framework to obtain an optimal number of

checkpoints for a fixed priority preemptive scheduling scheme.

Bowen and Pradhan [5] provide an analysis on a proces-

sor and memory-based checkpointing schemes which allow

checkpoints to perform like atomic operations with negligible

overhead using copy-back cache and atomic update feature of

STM.

Our work aims to use rollback to a checkpoint to avoid

re-executing any common tasks. This mechanism can be

applied to any previous related work on multi-mode real-time

systems. Therefore, the related work on checkpoints for fault-

tolerance can still be applied together with the idea of avoiding

unnecessary executions if rollback is being used for mode

changes.

III. MODEL OF COMPUTATION

Assume that a multi-mode real-time system has n number

of operating modes M1,M2, . . . ,Mn. Each operating mode

Mk has to execute a task set T = {τ1, τ2, . . . , τs} containing

s number of independent tasks. Each task τi = (pi, di, ei) is

characterized by three parameters: the period pi, the deadline

di, and the worst-case execution time ei. Assume that ei, pi,

and di for each task τi are known a priori.

This work assumes the use of either single processor or

identical multiprocessors. An identical multiprocessor plat-

form has some processors having the same properties such as a

uniform memory architecture and execution speed. Therefore,

the processors are interchangeable. This work also assumes

the existence of a global clock or a clock synchronization

protocol as discussed, for instance, in [10], [23], [14]. A clock

synchronization protocol adjusts the offsets caused by clock

drifts.

Mode-change requests are common in multi-mode systems.

An event causes an MCR(x, y) to switch from the current

mode (i.e., old mode) Mx to a new mode My where x, y ∈
N

+. At the time of an MCR, the tasks that are ready to run

in the old mode complete their execution, and the system

disables the release of new instances of tasks from the old

mode. This work also assumes that at most one MCR is active

at any time. The modes of the system are scheduled using rate

monotonic (RM) scheduling algorithm for a single processor

or partitioned RM for multiprocessors, leaving the extension to

other scheduling schemes such as earliest deadline first (EDF)

for future work.

This work assumes that common tasks exist between any

two modes of the system, leaving the extension of varying

common tasks between different mode changes for the future.

This work also assumes that an MCR cannot be requested

during the transition between two modes. Depending upon the

types of application, a system decides whether to continue

execution of the current task or to abort it, because task

dropping is usually performed when it is feasible without loss

of data consistency. This work assumes that every task of the

old mode must complete its execution when an MCR occurs.

Definition 1 (Checkpoint-based multi-mode system proper-

ties). A checkpoint-based multi-mode system has the following

properties:

• W determines the workload consisting of a set of modes

and a scheduling policy.

• M = M1, . . . ,Mn is the set of n modes.

• T is the set of all tasks in the system.

• Tm = (τm1 , . . . , τms ) is the set of tasks in mode m ≤ n

and s ∈ N
+.

• Each task in Tm has an execution time (emi ), a dead-

line (dmi ), and a period (pmi ) and is characterized by

(pm1 , dm1 , em1 ).
• To ⊂ T denotes the set of old mode tasks.

• Tw ⊂ T denotes the set of new mode tasks.

• Tu denotes the set of common tasks such that Tu ⊂ To

and Tu ⊂ Tw.

• A checkpoint is a task τc ∈ T with period pc. The number

of checkpoints is the number of instances of periodic task

τc. For example, checkpoint τwc will denote instance w of

task τc such that w ∈ N
+.

• Tw
r ⊂ T denotes the set of tasks to reuse output for

checkpoint τwc .

• MCR(x, y), is a mode-change request function to switch

from mode x to y such that x, y ≤ n.

To ensure data consistency and prevent data corruption, our

work assumes the presence of distributed consensus proto-

cols [20]. In a synchronous mode-change protocol, distributed

consensus problems will not occur because the system allows

the tasks of the new mode to execute only after the tasks of

the old mode. On the other hand, to avoid inconsistency in

an asynchronous mode-change protocol, any task should not

access updated data that are incomplete due to preemption.

IV. USING CHECKPOINTS IN MULTI-MODE SYSTEMS

Using checkpoints in real-time systems is different than

that employed in a database system [15]. A checkpoint in a

multi-mode system stores the saved state of tasks that have

completed execution or the tasks that have completed after

the last checkpoint. The saved state contains everything that

is necessary to continue from the checkpoint.

Example 1. Consider a scheduling model R =
(W (M1,M2), RM) that has two modes in the workload

W . Mode M1 has three tasks: τ1(5, 5, 1), τ2(9, 9, 5), and

τ3(22, 22, 3). Mode M2 has also three tasks: τ1(5, 5, 1),
τ2(9, 9, 5), and τ3(24, 24, 1). Assume that the model uses a

checkpoint τc designed as a task which has the specification

(10, 10, 1). The modes share the common tasks τ1 τ2. Suppose

that the system already completed τ1 and τ2, and the state is

saved at τc which is associated with τ1 and τ2. If an MCR

occurs after τ2 completes execution to switch to M2, then the

system can use the checkpoint τc to retrieve the information

of completed τ1 and τ2.

Rollback-supported mode changes in real-time systems im-

pose challenges on where and how many checkpoints to use.

This analysis also depends on the overhead associated to

checkpoints and requires feasibility analysis. The overhead



analysis involves storing tasks information all that require

using checkpoints. Feasibility analysis involves meeting dead-

lines of all tasks in the presence of MCRs and avoids using

checkpoints if tasks do not support them. Our approach for

placing checkpoints is based on the RM scheduling policy.

A. Workflow

In this paper, checkpoints are designed using tasks which

are intended to be scheduled using a scheduling policy. If pe-

riodicity is required for some tasks while changing modes, the

offset will be calculated according to the periodic activations.

After that schedulability analysis is performed to check the

validity of the schedule, and consistency is ensured through

using synchronization protocols while running the schedule in

an application. The workflow of the approach involves:

(a) specification of checkpoints and tasks. A periodic

task can abstract the timing requirements of checkpoints. This

timing requirement can be specified at the design time and

validated using schedulability analysis. The overhead of a

checkpoint involves storing data at checkpoints. Transition

to a checkpoint while changing modes and retrieving data

are associated with tasks using rollbacks. While executing

any of a set of tasks, we assume that the system uses the

recent checkpoint that stored the completed tasks from the

periodically placed checkpoints. Although transitions from

different tasks to a checkpoint upon an MCR can occur, the

switching overhead can be bounded by the maximum of all

transition overheads because only one transition can be active

when changing modes.

(b) choosing a scheduling policy. Scheduling policy de-

termines how the tasks are prioritized for them to execute.

Scheduling policies can either consider independent tasks or

dependent tasks in the system. Independent tasks can execute

in any processors and any order depending on the priority.

However, dependent tasks must execute one after another to

preserve the precedence relations.

(c) schedulability analysis. Schedulability analysis guar-

antees whether a particular task set meets the timing require-

ments. Therefore, if a checkpoint is modelled as a periodic

task, the validity and feasibility of using the checkpoint can

be checked using utilization, or supply and demand bound

functions [18] under a scheduling algorithm. This analysis

ensures that the system always meets the deadline.

(d) consistency. In a synchronous protocol, consistency

problems will not occur because the new mode tasks are acti-

vated after the old mode tasks. In an asynchronous protocol, a

task should avoid accessing data that is not updated fully due

to preemption. Shared resources must be used in a consistent

way to avoid data corruption. Synchronization protocols can

be used to ensure the consistency of shared data or to avoid

data corruption during the steady state and the transition.

B. Checkpoint-based Minimum Single Offset Protocols

Existing synchronous protocols for both uniprocessor and

multiprocessor can be modified to incorporate the capability

of using checkpoints. The synchronous minimum single offset

protocol can use checkpoints to avoid re-execution of common

tasks. When an MCR occurs, the synchronous minimum single

offset protocol finishes the execution of the running tasks and

disables the tasks that are not running in the old mode before

enabling the new mode tasks.

As like synchronous protocols, checkpoints and the associ-

ated rollbacks can also be applied to asynchronous protocols

for uniprocessor and multiprocessor. The asynchronous min-

imum single offset protocol schedules the running tasks of

the current mode and the tasks in the new mode together. The

asynchronous minimum single offset protocol enables the new

mode tasks as soon as possible upon an MCR. The priorities

of the running tasks of the old mode are assigned according

to the scheduling policy, but higher than the new mode tasks

during the transition.

C. Mode-change Delay Analysis

A mode-change delay (φ) is the time lag that the system

experiences during the transition from an old mode to the new

mode. Specifically, it is the time between the MCR and the

completion of the last task of the old mode. Depending on

the mode-change protocol the system uses, it experiences the

mode-change delay. Many mode-change protocols exist, but

we consider minimum single offset protocol as an example

in the system model. Any mode-change protocols and any

scheduling algorithm can use the idea of using checkpoints

presented in the paper.

This section explains the principles to calculate the mode-

change delay for synchronous and asynchronous minimum

single offset mode-change protocols and the differences in the

mode-change delay calculation between existing approach and

our approach. The mode-change delay analysis applies to not

only single processor systems but also multiprocessor systems

under the assumption of partitioned scheduling in the system

model.

In a synchronous mode-change protocol, when an MCR

occurs, any task of the old mode that is active must be

completed before executing any new mode tasks. Old mode

tasks must be completed to preserve data consistency. On a

single processor platform, in the worst case, the mode-change

delay for the synchronous minimum single offset protocol [16]

(Equation 1) is (such that φ′
n = φ′

n−1) the summation of the

worst-case execution time of tasks of the old mode that are

active (τi ∈ To) and the successive releases of the common

tasks (τj ∈ Tu). All tasks of the new mode must wait until

the tasks of the old mode get executed. In an asynchronous

mode-change protocol, the new mode tasks can be scheduled

together with the old mode task after a mode-change. The

old mode tasks that are ready to run may need to schedule

before the new mode tasks in the worst-case because of

higher priorities. Therefore, the mode-change delay for the

asynchronous minimum single offset protocol remains the

same as in Equation 1 in the worst-case.

φ′
n =

∑

τi∈To

ei +
∑

τj∈Tu

⌈

φ′
n−1

pj

⌉

ej (1)

In a checkpoint-based protocol, the common tasks can be

avoided for re-execution. Therefore, the worst-case mode-



change delay φ for a checkpoint-based minimum single offset

protocol is (such that φn = φn−1),

φn =
∑

τi∈{To−Tr}

ei +
∑

τj∈Tu

⌈

φn−1

pj

⌉

ej (2)

If the system has no tasks to rollback, an MCR will cause

the new mode to start from the beginning without reusing

any previous execution. This results in the same mode-change

delay for systems with or without checkpoints. If the system

has tasks to rollback, then less number of tasks will need to

run in the new mode, which eventually will make processing

faster for the new mode.

Adding a set of checkpoints as instances of a periodic task

to the protocol can avoid executing a set of common tasks

between the old and new mode. However, overheads are asso-

ciated with using checkpoints. A checkpointing overhead (ec)

is associated with storing information on completed common

tasks. The checkpointing overhead depends on the number of

parameters of the tasks, which is represented as a function of

task (S(τi)). The summation of all the parameters represents

the overhead of all parameters of all common tasks that are

completed before a mode change. This yields,

ec =







∑

τi∈Tw
r

S(τi) if ∃τi for MCR(x, y)

0 otherwise
(3)

A transition overhead (et) is incurred if the system uses a

checkpoint for mode changes. The transition overhead depends

on the number of successfully completed tasks stored at check-

points. If an MCR(x, y) occurs from mode x to mode y, and a

checkpoint τc is used to retrieve all the successfully executed

common tasks between x and y. The overhead depends on the

number of stored parameters of the tasks, which is represented

as a function of task (U(τi)). The overhead represents the time

required to retrieve all stored parameters of common tasks that

can be reused when the mode change occurs. This yields,

et =







∑

τi∈Tw
r

U(τi) if ∃τi for MCR(x, y)

0 otherwise
(4)

Therefore, the transition overhead et can either be zero

or the time required to retrieve the maximum number of

completed tasks executions at checkpoint τwc (Equation 4). A

checkpoint-based mode-change is efficient because the check-

pointing overhead and the transition overhead are negligible

because of avoiding re-execution of common tasks. If the

system has no common tasks, the overheads are also tolerable

due to not using the checkpoints.

Continuing Example 1. On a single processor platform

without using checkpoints, the worst-case mode-change delay

for synchronous or asynchronous protocols using RM is φ′
n =

φ′
n−1 = 10. However, on a single processor platform, using the

checkpoint τc associated to τ1 and τ2, the worst-case mode-

change delay is reduced to φ′
n = φ′

n−1 ≤ 10, if 0 ≤ et ≤ 7.

Since the example only has few tasks and variables, it is quite

likely that et < 7 will hold. Our detailed analysis on practical

overhead in LITMUSRT supports this intuition.

D. Checkpoints Bound Analysis

Schedulibility analysis validates the specifications of tasks

and checkpoints. If the schedulability analysis fails, the system

designers can adjust the specification for placing checkpoints.

The system can operate only in one mode at any time. There-

fore, the utilization of the workload under the RM scheduling

is:

max
Mk∈W

(
∑

τi∈Mk

ei

pi
) ≤ n(2n − 1) (5)

The bound on the number of checkpoints varies on the

length of time interval. Therefore, given that a system has

periodic tasks and places checkpoints periodically with an

execution time ec, Equation 6 determines the checkpointing

period pc such that pc > 0. Equation 6 determines a bound on

the number of checkpoints for a maximum of δ mode changes

with a worst-case mode-change delay φ for a maximum of

n number of tasks where H = LCM(p1, . . . , pn, pc) is the

hyperperiod.

max
Mk∈W

(
∑

τi∈Mk

ei

pi
) +

δφ

H
+

ec

pc
≤ n(2n − 1)

∴ pc ≥
1

n(2n − 1)
−

1

maxMk∈W (
∑

τi∈Mk

ei
pi
)
−

H

δφ
(6)

V. EXPERIMENTAL ANALYSIS

The experimental analysis section of the paper discusses the

overhead to use checkpoints in a real-time operating system

such as LITMUSRT under RM scheduling policy. Using an

example in-vehicle multi-mode system (IVM) case-study, it

is shown that the overhead for using checkpoints is low

compared to the advantages in multi-mode systems. Using the

experiments performed in LITMUSRT, an approximation of

checkpoint execution time is made, and this is used to cal-

culate checkpointing period for a different number of MCRs.

Finally, simulations on the example case-study and randomly

generated tasks [1] for different input parameters demonstrate

that using checkpoints reduces the mode-change delay and the

total execution time of the new mode when common tasks exist

in the system.

An in-vehicle infotainment system is used in automobiles,

or other forms of transportation, to provide audio and visual

entertainment as well as navigation. The architecture of an

in-vehicle infotainment system has repeatedly been designed

over the last few years because of the demand for eco-friendly

cars that have all the latest facilities. Therefore, we envision an

IVM architecture (Fig. 1) that combines multiple subsystems

such as climate control and navigation. These subsystems

correspond to different modes with some common tasks (e.g.,

initialization). The envisioned IVM architecture contains dif-

ferent independent tasks and a mechanism to schedule them

deterministically and correctly to deliver the right output at

the right time. Since the proposed scheme of using rollback

is application independent and works solely based on task
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Fig. 1. A reference architecture for an in-vehicle infotainment system

models as defined in Section III, an engineer may change the

system-of-interest from the envisioned IVM.

To demonstrate that the overhead of using the proposed

scheme is low, we have implemented the proposed approach

in LITMUSRT [7], a real-time extension of the Linux kernel,

in a dual-core x86 machine with 6GB DDR3 memory. The

experimental results on LITMUSRT provides analysis on the

overhead of placing checkpoints and using them.

To generate and run implementation according to the high-

level requirements, the specifications are converted into tasks

that belong to multiple modes. Since several research works

exist [3] on how to specify timing requirements for real-time

systems, this work avoids discussion on how to get specifica-

tions of tasks. Therefore, in this work, we consider that the

IVM has some independent tasks classified into modes. An

example workload consisting of six tasks in both modes exists

as shown in Fig. 1. Table I shows the specifications of tasks

that are characterized by the timing specification (i.e., period,

deadline, and execution time) and the modes that they belong.

Modes have four common tasks: A, B, G, and H.

The tasks of multi-mode systems considered in the exper-

imentation are scheduled using partitioned RM. For mode

changes, MCR occurs randomly. We do not allow new tasks to

be admitted into the system. The goal of the experimentation

is to assess the proposed system quantitatively using the

following metrics:

• Checkpoint overhead (ec): This metric measures the time

required to store state variables when saving a checkpoint.

• Transition overhead (et): This metric measures the time

TABLE I
TASKS SPECIFICATIONS(IN MICROSECONDS)

Tasks Mode

A(10,10,1) 1,2

B(15,15,2) 1,2

C(20,20,1) 1

D(25,25,2) 1

E(20,20,2) 2

F(25,25,1) 2

G(30,30,2) 1,2

H(35,35,2) 1,2
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Fig. 2. Analysis on overhead due to storing variables

required to execute a checkpoint upon a mode change.

• Checkpoint period (pc): This metric measures how fre-

quently the system uses checkpoints.

• Mode-change delay (φ): This metric measures the delay

during changing modes.

Checkpoint overhead. Checkpoint overhead is proportional

to the number of variables (each of 2 bytes) stored or written

in the memory. With an increasing number of variables written

in the memory, Fig.2 shows that the checkpoint overhead is

low with the 95% confidence level, devised from the standard

deviation and margin of error.

Transition overhead. Transition overhead is the sum of

the delay to move to a checkpoint upon an MCR and the

overhead to retrieve state variables. We define the delay to

move to a checkpoint upon an MCR as transition latency. To

measure the transition latency, some trials prompt the system

to execute checkpoints at different points in time, and record

the delay for each of them for ten variables, each of 2 bytes.

Table II shows the transition latency with an interval of 95%

confidence. The worst-case transition latency is the maximum

of transition latency of all tasks. The overhead to retrieve

variables is low akin the checkpoint overhead (Fig. 3).

Mode-change delay. Mode-change delay analysis explains

the time required to switch to a new mode when an MCR oc-



TABLE II
TRANSITION LATENCY ANALYSIS(IN MICROSECONDS)

Tasks Latency StdDev CI(95%)

A 1.4945 0.7177 [1.4262-1.5636]

B 1.6682 0.4719 [1.6198-1.7106]

C 1.4450 0.8639 [1.3622-1.5278]

D 1.5855 0.6945 [1.5162-1.6548]

E 1.5490 1.6845 [1.4028-1.6952]

F 1.2687 0.4438 [1.2245-1.3129]

G 1.4849 0.5378 [1.436-1.5338]

H 1.2466 0.4573 [1.2038-1.2894]
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Fig. 3. Analysis on overhead due to retrieving variables

curs. Mode-change delay differs among existing and proposed

methods for the case-study because it has some common tasks.

Considering the MCR for the worst-case, we get φ′ = 10µs
and φ = 5µs if the transition overhead et = 3µs. The

reduction in mode-change delay will be higher for using

rollback if the execution time of common tasks is greater than

that specified in the case-study.

To analyze further on the mode-change delay, we use Bini’s

random task generator [1] to generate tasks with a 25%

probability of having common tasks in different modes. In

the simulations, we vary the probability from 10% to 50% of

these tasks as common tasks. However, no common task may

present in the system when the number of tasks in the system is

low. Simulation results show the differences in mode-change

delays for the existing minimum single-offset protocol, and

the proposed enhancement. For simplicity, overhead, which

is demonstrated already as low, is not considered in these

simulations. We analyze worst-case mode-change delay, (1) for

a variable number of modes but a constant number of mode

changes and tasks in each mode (Fig. 4), (2) for a variable

number of tasks but a constant number of mode changes and

modes (Fig. 5), and (3) for a variable number of repeated mode

changes but a constant number of modes and tasks (Fig. 6).
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Fig. 4. Analysis on variable number of modes for 10 tasks and uniform MCRs
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Fig. 5. Analysis on variable number of tasks for 5 modes and uniform MCRs

Simulation study uses generated random tasks to demon-

strate that the proposed enhancement to use rollback to reduce

mode-change delays will be significant if common tasks exist

in the system. Fig. 4 shows that while varying a number

of modes, the mode-change delay is reduced for increasing

number of common tasks. Since the tasks are generated ran-

domly, the percentage improvement of the proposed scheme

over existing approach is not exact, because mode-change

delay for both schemes is the same in the absence of common

tasks. Fig. 5 shows that while varying a number of tasks in

each mode, the mode-change delay is reduced for increasing

number of common tasks. Fig. 6 shows while varying repeated

number of MCRs, the mode-change delay is reduced for

increasing number of common tasks.

Throughput analysis. Throughput analysis explains the ef-
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ficiency of the system regarding utilizing system resources. To

demonstrate the advantages of using checkpoints, throughput

L for two modes (i.e., old and new mode) is calculated as the

following:

L =
∑

τi∈To

ei

pi
+

∑

τj∈{Tw−Tu}

ej

pj
+

ec

pc

Throughput increases between two modes because of using

checkpoints to avoid re-executing common tasks. A repeated

MCR indicates a similar mode change request as previous

between two modes. A checkpoint-based multi-mode system

can avoid more re-executions of common tasks if the number

of repeated MCR increases. This also increases the throughput

of the system.

VI. CONCLUSION

Checkpoints have been extensively used in the area of fault-

tolerance in different application domains including real-time

systems. However, checkpoints are also useful in multi-mode

systems, in addition to providing fault-tolerance. This work

has demonstrated the inclusion of checkpoints in a multi-

mode system to utilize the output of prior successful completed

executions of common tasks when changing to a new mode.

This increases the overall throughput of a system because of

reducing the number of task executions. This is demonstrated

by running examples on LITMUSRT. Therefore, the inclusion

of checkpoints in a multi-mode system is useful for safety-

critical systems where reliability and efficiency matter.
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