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Abstract—Most real-world datasets, and particularly those
collected from physical systems, are full of noise, packet loss, and
other imperfections. However, most specification mining, anomaly
detection and other such algorithms assume, or even require,
perfect data quality to function properly. Such algorithms may
work in lab conditions when given clean, controlled data, but
will fail in the field when given imperfect data. We propose
a method for accurately reconstructing discrete temporal or
sequential system traces affected by data loss, using Long Short-
Term Memory Networks (LSTMs). The model works by learning
to predict the next event in a sequence of events, and uses its
own output as an input to continue predicting future events.
As a result, this method can be used for data restoration even
with streamed data. Such a method can reconstruct even long
sequence of missing events, and can also help validate and
improve data quality for noisy data. The output of the model
will be a close reconstruction of the true data, and can be
fed to algorithms that rely on clean data. We demonstrate our
method by reconstructing automotive CAN traces consisting of
long sequences of discrete events. We show that given even small
parts of a CAN trace, our LSTM model can predict future events
with an accuracy of almost 90%, and can successfully reconstruct
large portions of the original trace, greatly outperforming a
Markov Model benchmark. We separately feed the original, lossy,
and reconstructed traces into a specification mining framework
to perform downstream analysis of the effect of our method on
state-of-the-art models that use these traces for understanding
the behavior of complex systems.

I. INTRODUCTION

It is often the case that software and algorithms work very
differently in lab conditions than they do out in the field. This is
particularly a problem for safety-critical systems ranging from
planes to pacemakers, where any malfunction in the field can
mean serious - even life-threatening - consequences for users.
It is thus important that algorithms designed for such systems
work as intended both in the lab and out on the field. The
problem is that many such algorithms are developed in the
lab using clean, processed, and perfect data. Real data, on the
other hand, can contain noise and loss that may radically alter
the behaviour of the algorithms processing it. This results in
these algorithms working in theory, but failing once put into
practice due to their dependence on perfect data quality.

While ’imperfect’ real data may appear to be irreparable
or different from clean data, the reality is that much of the
original structure can still be reconstructed from it, especially
when there is sufficient information about similar data that can
be used for reconstruction. Supervised learning techniques can
be used to learn the general structure of similar datasets, and
then reconstruct the lossy dataset of interest.

Many real-world systems produce discrete datasets such as

text or event logs during their operation. Automotive Controller
Area Network (CAN) traces, for example, consist of a long
sequence of discrete events. A CAN bus is a communication
system that allows various types of devices like microcon-
trollers to communicate with each other in real time without
needing a host. It is a message-based protocol, designed
originally for multiplex electrical wiring within automobiles
to save on copper, but is also used in many other contexts.
The messages in a CAN trace can be considered as ’words’
produced by the CAN bus. Therefore, various supervised
learning techniques from natural language processing (NLP)
are likely to be effective in analyzing the patterns in sequences
- or ”sentences”- of these events.

Recurrent Neural Networks (RNNs), are neural networks
that have an internal memory. Long Short-Term Networks
(LSTMs) are a type of RNN that have a superior ability
to learn long-term dependencies in data. LSTMs have been
used extensively for work with NLP and event based data [1],
they have been used for data compression [2], and they have
recently even been used - with varying degrees of success
- directly for anomaly detection [3]. The use of LSTMs for
restoration of lossy system traces has not been explored. We
propose a method for using LSTMs to accurately reconstruct
discrete temporal traces from the CAN bus affected by data
loss. The reconstructed traces can then be used by algorithms
that rely on ’perfect’ data. As a case study we will test
the performance of a specification mining framework that
uses timed regular expressions and deterministic finite state
automata for extracting system behavior.

The model works by learning to predict the next event in
a sequence of events from a large database of CAN traces,
and uses its own output to continue prediction for multiple
points ahead in time, allowing for even large chunks of
lost data to potentially be restored. We separately feed the
original, lossy, and reconstructed traces into a Timed-Regular
Expression Mining (TREM) framework [4], [5], [6] to gauge
the effectiveness of our LSTM-based reconstruction approach.
We show that given even small parts of a CAN trace, the LSTM
model can accurately reconstruct large portions of the original
trace thereby permitting the use of algorithms like TREM, that
are reliant on ’perfect’ data, with ’imperfect’ data that would
otherwise cause them to perform poorly.

The rest of this paper is divided as follows: Section II will
discuss related work in data reconstruction. Section III will
describe the architecture of the LSTM model and discuss the
CAN data used for our experiments. Section IV will present a
case study with Timed Regular Expression (TRE) mining from
system traces, and Section V presents results and conclusion.



II. RELATED WORKS

A. Deep Learning for Sequence Prediction

The application of deep learning techniques has led to
dramatic success and development of state-of-the-art solutions
to numerous real-world problems in computer vision [7],
machine translation [8], robotics [9], etc. In context of se-
quence prediction, a broad range of techniques have been
developed to address the problem found in Natural Language
Processing (NLP) [10], genetic sequencing [11], stock market
prediction [12], music generation [13], and a whole range of
other domains. In particular, RNNs and its subclass, LSTM
networks have shown to be very effective for sequence pre-
diction in temporal or sequential data. For example, Gers and
Schmidhuber (2001), demonstrated the large improvement in
performance by using LSTMs on major language benchmarks
used for RNNs [14].

Many advances have been made in the closely related
problem of using deep learning techniques for generating end-
to-end sequences of outputs from a sequence of inputs, begin-
ning with Sutskever et al. (2014), describing a groundbreaking
method for using an LSTM-based encoder-decoder system to
learn sequences while minimizing the number of assumptions
about the structure of the sequence [1]. Hong et al. (2017),
showed that a modified convolutional sequence-to-sequence
autoencoder could be trained to predict visually un-observable
weather patterns when given preceding satellite images as
input [15]; and Marchi et al. (2015) devised a method based on
LSTM recurrent denoising autoencoders to predict the features
of a consecutive audio frame based on the previous ones [16].

B. Deep Learning for Lossy Data Recovery

While numerous studies discuss the use of deep learning
for directly solving problems like anomaly detection [17],
[18], [19], [3] and intrusion detection [20], [21], [22], only
very few explicitly focus on the critical intermediate problem
of restoring lossy or noisy data that is critical for correct
behavior of aforementioned algorithms. Often, missing data
are considered unusable and is removed completely in pre-
processing to avoid having to address it. When missing data are
addressed, missing values are typically replaced with global or
class means [23], [24] or neighboring values [25], [26]. These
approaches are much too coarse and do not take into account
the event sequence or order of occurrence.

Zhou and Huang (2017) discuss this problem and propose
a novel LSTM-based approach they call an ”Iterative Imputing
Network” for restoring missing sensor data in time-series [27].
While their work is on restoring continuous, multivariate data,
we draw inspiration from it and propose a method using
LSTMs to restore discrete, sequential, univariate data.

Some other applications of deep learning to data recovery
in a variety of domains include: Hsieh and Pratt (2001) show
that artificial neural networks could be used to recover lossy
field data with high reliability [28]; Tilk and Alumäe (2015)
show that LSTMs are effective at restoring punctuation in
unpunctuated streams of text [29]; and Haque, Yousuf, and
Rana (2018) show that a combination of CNNs and LSTMs
could be used to successfully de-noise and restore image
data [30].

III. LSTM

A. RNNs and LSTMs

One of the major limitations of non-recurrent neural net-
works is that they operate on fixed-size vectors, performing
a limited number of transformations to derive another fixed-
size vector. This limits the effectiveness of non-recurrent
networks in identifying features dispersed over sequences or
over time. Recurrent neural networks (RNNs) are a type of
neural network that use a feedback mechanism to allow the
network to operate on a sequence of inputs as well as outputs
by selectively keeping information about previous states. In
this manner, the ith output vector yi of an RNN layer is a
function of the ith input xi to the layer as well as the previous
output yi−1 of the layer. As with regular layers, the function
is generally a non-linear transformation over a weighted sum
of the terms involved.

yi = f(yi, xi, yi−1) = f(V ∗ yi−1 +W ∗ xi + c)

Of course in such a recursive function, every previous
output and input must be considered when adjusting weights
during training, as during backpropagation they would all have
an impact on the error gradient. These incredibly long chains
of derivatives pose two problems: computational intensity and
vanishing or exploding gradients.

Fig. 1. Single RNN Unit: A recurrent neural network uses a feedback
mechanism to access information about previous states.

One solution to these problems is known as unrolling the
RNN. This requires considering that if an RNN is essentially
a loop with signal flowing through, it can also be equally
represented by ‘unfolding’ the loop as a long series of the same
transformations applied to the signal. The structures in Figure 1
and Figure 2 are thus equivalent ways of representing an
RNN. Unrolling is the process of using the second, ‘unfolded’
representation of an RNN and having the option to consider
only a fixed number of previous states when predicting the
current output. If we use the analogy of short-term memory to
describe the feedback mechanism of an RNN, then unrolling
would be displaying this memory as a sequence of events
and having the option to cut off the sequence at some event,
ignoring any events that came before it.

A second solution to the problem of vanishing or exploding
gradients in recurrent networks was the creation of two gates:
input and forget. The input gate controls which information
from the current state’s input will be used, while the forget
gate controls which information will be used from the recurrent
outputs of previous states. In such a way, the input and forget
gates allow the network to selectively remember or forget
information about previous and current states. Hochreiter and



Fig. 2. Unrolled RNN Unit: The feedback loop in a recurrent neural network
can be unfolded for an alternative, sequential representation of the repeated
transformations it performs.

Schmidhuber (1997) proposed a new type of RNN that makes
use of these two gates in their recurrent units to solve the
vanishing gradient problem and gave it the name Long Short-
Term Memory network (LSTM) [31].

B. Architecture

We built our LSTM model in Tensorflow. After experi-
menting with a few different architectures, we found that a
smaller model with five layers in the hidden portion as seen
in Figure 3 was sufficient. Additional hidden layers did not
improve performance.

The input layer has one node for each entry in the trace
dictionary, and one additional “other” node to account for rare
events that were not seen in the training data that was used to
compile the dictionary. Input dropout was set to 0.2.

It is followed by two densely-connected hidden layers with
double the number of nodes as in the input layer. Each of these
hidden layers uses a hyperbolic tangent activation function, and
has a dropout of 0.4.

The hidden layers are followed by 2 LSTM layers, us-
ing Tensorflows LayerNormBasicLSTMCell. These cells per-
form layer normalization based on Ba, Kiros, and Hinton
(2016) [32]. Each one is unrolled for 40 steps; increasing
unrolling further did not seem to increase performance on this
dataset, but may be useful for others such as those with higher
dimensionality. Both LSTM layers also use the hyperbolic tan
activation function, and recurrent dropout of 0.4 based on
Semeniuta, Severyn, and Barth (2016) [33]. Each has four
times as many nodes as each of the hidden layers, or eight
times as many as the input layer.

Finally, the last hidden layer is another densely connected
layer with a sigmoid activation function and our final con-
figuration has the same number of nodes as the input layer.
However, in an earlier configuration explained below, this layer
had n times the number of nodes as the input layer, where n is
the number of future events the user wishes to simultaneously
predict. The output of this layer is the output of the model.

To increase training speed, LayerNormBasicLSTMCell
layers could be replaced with either the peephole [34] or
the non-peephole [31] implementation of CoupledInputFor-
getGateLSTM layers that couple the input and forget gate
as described by Greff et al. (2015) [35] resulting in less
computational operations but higher variance in performance.
For our CAN trace experiment, the vocabulary size was 43,
our input layer had 44 nodes, our hidden layers had 88 nodes
each, our LSTM layers had 352 nodes each, and the last hidden
layer had 44 nodes whose output was considered the output
of the model.

Fig. 3. LSTM Model Architecture: The LSTM model consists of two
hidden layers followed by two recurrent LSTM layers and one additional
hidden layer. Input is a sequence of events, output is a prediction of next
event in the sequence. Loss is calculated as a logloss function comparing the
true next event to the predicted one.

C. Data

Before combining the LSTM approach with the Timed
Regular Expression Mining (TREM), it was necessary to test
whether the LSTM approach works at all. To do so, a simple



dataset was needed that was guaranteed to have temporal
patterns but is not trivial. Many messages in automotive CAN
data occur in a periodic way so temporal patterns are present;
however, other messages in CAN data are event-triggered and
thus predicting upcoming messages is a non-trivial problem.
To keep the dataset simple, we do not attempt to predict each
bit of the CAN message payload but only each message ID.

Our CAN data comes from a Lexus RX450h hybrid SUV.
The data are split into a number of maneuvers that were
repeated multiple times. To reduce some of the variance and
reduce training time while testing our LSTM approach, we
used traces from a single maneuver, the vehicle driving at 20
km/h and decelerating down to 0 km/h. 20 clean traces of this
maneuver were available.

Of the 20 traces, 15 were used for training and validation,
while 5 were held out for testing. The traces used for training
were examined to compose a dictionary of possible message
IDs. A total of 43 different message IDs were found in the
training set. We added a 44th element to the dictionary to
designate any other message IDs that may not have been
present in the training set. We then one-hot encoded all traces
using this dictionary, replacing the one-dimensional message
ID with a 44-dimensional vector of indicator variables where
43 elements have the value 0 and 1 element the value 1.

D. Training

The LSTM was trained using the following procedure:

1) Select 2 random traces from set (1 for training, 1 for
validation)

2) Train the model on these 2 traces for 10 epochs with
a learning rate of 0.2 and a logloss loss function

3) Train the model on these 2 traces for an additional
20 epochs with learning rate decay of 1/1.1 and a
logloss loss function

4) Reset learning rate, preserve weights, repeat from
step 1 selecting 2 new random traces

Dropout for regularization and randomized input order prevent
overfitting, so this procedure should be repeated until accuracy
reaches a plateau since early termination due to detection of
overfitting is unlikely to occur. Alternatively, the procedure can
be repeated a fixed number of times if so desired.

E. Benchmark

In order to understand what the results mean, it is important
to have a benchmark. We create a benchmark using a fast
Markov Model that could be described as a history search,
or as a conditional probability method. It has been shown
that in situations where data or computational power are
limited, Hidden Markov Models can match the performance
of LSTMs [36]. As a result, the Markov Model will act as a
benchmark that the LSTM can be compared against.

The basic premise of this method is that the next message
is highly correlated with what the preceding messages were in
a sequence. However, this correlation is likely to degrade as
we look further into the past. As a result, we can say that the
system is a Markov process of order n, where the previous n
messages form a state that influences the next one. Sequences

of n consecutive messages are often called “n-grams”, and
their analysis is common in sequence modelling domains like
Natural Language Processing (NLP) [37], [38], [39]. The most
straightforward method of using this property is to perform a
history search where every time we want to make a prediction,
we look at the previous n messages, and then search our entire
training dataset to find the most commonly occurring message
after this n-gram. This of course, can involve performing a
large number of repeated searches since we do not store the
results between searches.

Instead we can build a model of the system by selecting an
n, and creating a separate state for each possible combination
of the d unique messages. Of course, initializing all possible
states at once means that our model will contain nd states even
if some of these are never seen in the data, which may quickly
become too memory-intensive for large n or d. To mitigate
this issue, we iteratively fill a dictionary D by traversing the
training data using the following algorithm:

Result: Dictionary D containing all states and
transition frequencies found in the training data

i = 0;
while i+ n < length(train data) do

K = train data[i : i+ n];
if K /∈ D.keys() then

Let SK be a new dictionary;
for each mi in the set of the d unique messages
do

SK [mi] := 0;
end
D[K] := SK ;

end
m∗ = train data[i+ n];
SK [m∗] = SK [m∗] + 1;
i = i+ 1;

end
Algorithm 1: Iteratively learn transition frequencies

During inference, each time we would like to impute a
value, we take the n preceding values to create a state and
look it up in the dictionary to find the highest probability
transition. If there are multiple missing values within n steps
of each other, then we impute them chronologically and use
our previously imputed values when imputing the consecutive
ones. One issue that arises for larger n and d or smaller training
datasets, is that there may be states in the testing data that are
not found in the training data. To address this, we updated D
to include sub-sequences of length less than n as states; D
now contains k-grams where k ≤ n. When we want to impute
a missing value, we find the maximal length state in D that
matches the preceding values.

After experimenting with different values for the hyper-
parameter n, we found that accuracy reached its peak and
stayed constant above n ≥ 30; for consistency with the LSTM
experiments we used n = 40. The maximal next-message
prediction accuracy achieved with this Markov model was
76.55%, but when predicting multiple messages consecutively,
the accuracy rapidly dropped off, falling to just 37.01% when
predicting 20 events into the future. Tables in the Results



section detailing accuracy of the LSTM method also include
benchmark results.

F. Results

Accurately predicting multiple steps forward is a challeng-
ing but important problem in lossy data restoration, as multiple
consecutive events may have been lost. Two ways of predicting
multiple events forward were considered.

The first method was to increase the size of the output
layer by a factor of n to directly predict n events forward. In
other words, the output layer was modified to have n*44 nodes
where n was number of events to simultaneously predict. The
output at each step was reshaped into n vectors of 44 nodes
each, and each vector predicted 1 future event. Within each
vector, the element with the highest value was considered as
the prediction. The true positive rate was used as a measure of
accuracy. A set of predictions at step i was considered to be
a true positive if all n of n predictions made at that step were
made correctly. If ci denotes the number of steps in epoch
i where all n predictions were correct, and wi denotes the
number of steps in epoch i where at least 1 of the n predictions
was incorrect, then the accuracy for that epoch is denoted by:

acci =
ci

ci + wi

One of the issues with this setup is that each time n is
changed, a new network needs to be initialized and trained. As
such, we retrained the model several times with increasingly
large values of n. Table I documents the average performance
of the model for different values of n as well as the range
95% of the measured accuracy levels were within. The average
accuracy with this method decayed rapidly as n was increased,
while the ranges increased quickly. This suggests that the
random initialization of the network plays an increasingly large
role in the quality of predictions as n increases.

TABLE I. N-FORWARD PREDICTION ACCURACY USING THE DIRECT
METHOD

n Avg. accuracy 95% range Benchmark
1 0.895 0.88-0.91 0.766

10 0.58 0.52-0.65 0.454
20 0.48 0.4-0.54 0.370

A second method was developed to address the shortfalls
of the first. The second method predicts only one output at
a time; however, the code was altered to allow the model
to use its predictions as inputs to itself. In such a way, the
model uses its own outputs, one at a time, to make long
sequences of predictions. Using the numbers from Table I,
the expected accuracy for this method when predicting n steps
forward would be the accuracy for 1 step prediction, to the
power of n, under the assumption that the model’s predictions
derail after it makes even a single mistake. Table II details the
expected accuracy levels for this second method based on this
calculation.

While the expected accuracy values for this method were
very low, the convergence in logloss in the model suggested
that this accuracy estimate may be underestimating model
performance. In fact, when the model was run on the test
traces using this step-by-step method, the true results were

TABLE II. EXPECTED N-FORWARD PREDICTION ACCURACY USING
THE STEP-BY-STEP METHOD ASSUMING MODEL CANNOT RECOVER AFTER

A MISTAKE

n Expected accuracy Benchmark
1 0.895 0.766
10 0.330 0.454
20 0.109 0.370

TABLE III. TRUE N-FORWARD PREDICTION ACCURACY USING THE
STEP-BY-STEP METHOD

n Accuracy Benchmark
1 0.895 0.766
10 0.892 0.454
20 0.889 0.370

drastically different as shown in Table III. This suggests that
even if the model makes a mistake in its predictions, it is
robust enough to continue predicting correctly contrary to the
assumption above. However, it is clear that the assumption
does hold for the benchmark model and as a result it is not
nearly as robust to its own mistakes as the LSTM is.

As mentioned above, the LSTM uses 40 steps of unrolling
for the recurrent portion meaning the model requires 40 inputs
to fill its internal feedback sequence. Impressively, when given
just the first 40 events of the shortest CAN trace held out
for testing, the model was able to step-by-step predict the
remaining 3500 events of this trace with only several omissions
of rarely occurring events as in Table V and some localized
mistakes in the order of predicted events as in Table VI.

TABLE IV. EXAMPLE OF PROPER ALIGNMENT:

All events in this segment were predicted correctly and match their true counterparts.

Predicted Event True Event
1 2C6 2C6
2 5D7 5D7
3 B0 B0
4 224 224
5 B2 B2
6 20 20
7 B4 B4
8 25 25
9 22 22

10 23 23

TABLE V. EXAMPLE OF OMITTED RARE EVENT:

Rarely occurring event ’340’ was incorrectly omitted by the model, causing all predicted
events beginning from the fourth one to be shifted one up from their true counterparts.

Predicted Event True Event
1 B4 B4
2 25 25
3 22 22
4 23 23
5 B0 340
6 320 B0
7 B2 320
8 2D0 B2
9 2C4 2D0

10 2C4

Figures 4 & 5 are visualizations of a sequence of true
one-hot embedded events and a sequence of predicted one-hot
embedded events, respectively, pulled from the same portion
of a test trace. It is noticeable that mismatches between the
two Figures get increasingly worse as the index increases.



TABLE VI. EXAMPLE OF LOCAL ORDERING MISTAKE:

’2c4’ was incorrectly predicted as the 8th event instead of 4th, causing all of the other
events from 4th to 8th to also appear misclassified. In reality, true events 5-8 were shifted
up by one and predicted as events 4-7.

Predicted Event True Event
1 25 25
2 22 22
3 23 23
4 2C6 2C4
5 B0 2C6
6 320 B0
7 B2 320
8 2C4 B2
9 20 20
10 223 223

Fig. 4. One-hot Encoded True Events: Visualization of a sequence of just
over 100 true events pulled from a testing trace. White pixels correspond to
the one active element in that column.

This is due to the omission problem: each time an event is
omitted in the predictions, the entire sequence of predicted
events is shifted to the left, causing increasingly large mis-
matches. When gauging model performance, each omission
was recorded, and then the predicted sequence re-aligned at
that point in order to once again match the true sequence.
Similarly, each ordering mistake was recorded, and the one
point detected to be in the wrong position moved to its correct
location, to identify whether other mistakes were made in the
same area.

On average, the model omitted 5.058% of points and
had one local ordering mistake every 11.1 events. Curiously,
both these mismatches and ordering mistakes occur at only a
slowly increasing rate throughout all of the 3500 predictions,
suggesting once again that our model’s flexibility makes it at
least partially resistant to mistakes in the input, as prediction
quality did not decrease even if some local mistakes in output
prediction were made and then fed in as input. The LSTM-
based approach is thus sufficiently robust to work with and
restore not only lossy, but also noisy, data.

IV. CASE STUDY: TIMED REGULAR EXPRESSION MINING

Time of occurrence of events or tasks in real-time systems
is critical to the correct operation of these systems [40], [41].
Software for these systems have become quite complex and
it is challenging for engineers to understand the underlying
behavior of the systems for various tasks such as debugging,
root-cause analysis, etc. Mining software specifications from
the system traces for these systems plays a key role in under-
standing the underlying interactions in these systems [42]. It

Fig. 5. One-hot Encoded Predicted Events: Visualization of a sequence of
just over 100 predicted events pulled from the predictions on a testing trace.
White pixels correspond to the one active element in that column.

becomes more important due to unavailability of clear software
specifications. These are temporal specifications in the context
of real-time systems and are used in various tasks such as
software testing [43], verification [44], etc.

In real-time systems, the temporal specifications are re-
quired to address not only the qualitative notion of time (i.e.
ordering of events), but also the quantitative notion of time
(i.e. time of occurrence of event). Processes in safety-critical
systems are required to adhere to strict timing constraints and
deadlines, violating them can lead to catastrophic outcomes.
Most temporal specification mining frameworks are based on
the idea of state machines. These temporal specifications can
be used for numerous tasks such as anomaly detection, run-
time monitoring, etc.

We present a use-case based on the temporal specifica-
tion mining framework by Narayan et. al. (2018) [5]. The
framework takes a TRE template and a system trace as input
and computes the dominant set of properties (a set of most
commonly occurring rules) in the form of TRE instances. The
framework builds upon the method proposed by Asarin et. al.
(2002) [45] for synthesizing of a timed automaton.

The following two TRE templates are used for the
evaluation of traces from a real car as explained in
Section III-C. The time interval was standardized between 0
to 1,000. We executed the TRE mining algorithm on all three
types of traces for the purpose of evaluation: Normal, Lossy,
and Recovered. We used two rules (alternating and response
pattern [41]) that represent common behavior of real-time
systems. The templates of the rules are in the form of TRE
as shown below, where P and S represent unique events in
system traces, and *, |, + and . are operators:

T-1(response): (̂(P )∗.(〈P.̂ (S)∗.S〉[0, 1000]).̂ (P )∗)+

T-2(alternating): (̂(P |S)∗.(〈P.̂ (P |S)∗.S.̂ (P |S)∗〉[0, 1000]))+

The mining framework extracts all rules from the system
traces that take the form of the above two templates. A
ranking module reduces the mined set of rules to a set of
most commonly occurring TRE-instances in the system trace.
We compared the presence and absence of the mined TRE



instances from normal, lossy, and restored traces for evaluation
of our restoring algorithm.

We run TREM on original traces to get the true number
of mined instances. Then we run TREM on lossy and restored
traces that have a controlled fraction of messages lost. The
results of specification mining are presented in Table VII where
we show the percent of original TRE instances that are not
found when mining lossy and restored traces at varying levels
of loss in the trace. A higher quality restoration results in more
of the original TRE instances being mined from the restored
trace (ie. a perfect restoration would result in a decrease of
0% from original to restored).

TABLE VII. PERCENT DECREASE IN NUMBER OF MINED TRE
INSTANCES AT EACH LEVEL OF LOSS COMPARED TO THE NUMBER MINED

IN ORIGINAL TRACES

Message Loss 5% 10% 15% 20% 25%
Lossy Traces 6.2% 17.8% 21.6% 33.37% 53.99%

Restored Traces 5.9% 8.2% 9.8% 12.6% 10.8%
Improvement 0.3% 9.6% 11.8% 20.77% 43.91%

Clearly, performing the LSTM restoration improves the
mining performance greatly. When the traces are lossy, the
number of TRE instances found are reduced. When the traces
are restored using our LSTM model, the number of TRE
instances found is still reduced but much less so, particularly
when the percentage of loss is large. For example, when 25%
of the messages are lost, performing the LSTM restoration
leads to a loss of only 10.8% of the TRE-instances as compared
to 53.99% of the instances without restoration.

V. CONCLUSION

Clean data are a crucial component of training and running
numerous machine learning algorithms. Unfortunately, data in
the field are often contaminated with noise, loss, and other
imperfections. We have developed an LSTM-based approach
for restoring lost or noisy data in discrete settings such as
CAN traces. This approach can be used to restore or predict
arbitrarily large sequences of missing data, using its output as
input to predict further into the future. A major advantage of
this approach is that few assumptions need to be made about
the structure of the data, and so it can be applied in any setting
where there is discrete data with some form of temporal or
sequential dependence.

While the performance of this method was high in the
settings we tested it in, there are certainly changes that can
be made to further improve it. For example, more work needs
to be done to ensure accuracy is just as high when the model
is not trained on just a single maneuver but rather on normal
driving traces where maneuvers may not be known at time of
prediction.

A potential method for increasing the accuracy of lossy
data restoration would be using context not only from events
preceding the lossy portion, but also from events after it. A
bidirectional RNN could be trained to restore lossy sections
of data when given some number of events from both before
and after those sections. The aforementioned IIN method
developed by Zhou and Huang (2017) does just that, using a
forward and backward LSTM to learn the structure of a time
series [27]. However, the advantage of using a one-directional

LSTM as in our implementation is that once the model is
trained, lossy data can be recovered effectively in real-time
while a bidirectional recurrent method would require some
latency to allow new events to come in.

A second method for increasing accuracy and decreasing
dependence on separation by maneuver, would be improved
regularization within the network. In particular, zoneout, which
stochastically preserves hidden activations instead of dropping
them entirely, has recently been shown to be a more effective
method for recurrent regularization than recurrent dropout [46].

Our solution of using one-hot encoding and having an
”other” node in the dictionary of events works well for data
where a majority of event types are known in advance and are
consistent between training and test data. Another direction
worthy of exploration would be finding a method to avoid
having to pre-compile a dictionary of events. This is especially
crucial in systems where new events are synthesized, or there
are a large number of rare events. One solution could be to use
a different embedding for the input data, that can be applied
to new events on the fly.

A method that may be able to solve both the issues of
performing well on multiple maneuvers and of embedding
the input, could be to make use of an encoder network that
would take data as input, perform transformations to embed
the data in a different space, and send its output to the LSTM
network. This would be more consistent with the sequence-to-
sequence networks described by Sutskever et al. (2014) [1]
and we must compare our method with these approaches
to determine whether the change in performance merits the
additional complexity.

Finally, for training, it is likely that using AdamOptimizer
as described in Kingma and Ba (2014) will lead to faster
convergence [47] than using GradientDescentOptimizer with
decaying learning rate as we did with our LSTM. A few limited
runs with a smaller model appear to confirm this, but more
testing is needed to determine whether the effect is significant.

Our LSTM-based method is nonetheless an effective stan-
dalone solution for recovering lost discrete data in the field. It
can be used to pre-process data intended to be used with any
other algorithm in order to improve end-to-end performance.
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Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using RNN encoder-decoder for statistical machine
translation. CoRR, abs/1406.1078, 2014.

[11] Joseph M. Paggi and Gill Bejerano. A sequence-based, deep learning
model accurately predicts rna splicing branchpoints. bioRxiv, 2017.

[12] M. R. Vargas, B. S. L. P. de Lima, and A. G. Evsukoff. Deep learning
for stock market prediction from financial news articles. In 2017 IEEE
International Conference on Computational Intelligence and Virtual
Environments for Measurement Systems and Applications (CIVEMSA),
pages 60–65, June 2017.

[13] MICHAEL C. MOZER. Neural network music composition by pre-
diction: Exploring the benefits of psychoacoustic constraints and multi-
scale processing. Connection Science, 6(2-3):247–280, 1994.

[14] F. A. Gers and E. Schmidhuber. LSTM recurrent networks learn simple
context-free and context-sensitive languages. IEEE Transactions on
Neural Networks, 12(6):1333–1340, Nov 2001.

[15] Seungkyun Hong, Seongchan Kim, Minsu Joh, and Sa-Kwang Song.
Psique: Next sequence prediction of satellite images using a convolu-
tional sequence-to-sequence network. CoRR, abs/1711.10644, 2017.

[16] E. Marchi, F. Vesperini, F. Weninger, F. Eyben, S. Squartini, and
B. Schuller. Non-linear prediction with LSTM recurrent neural networks
for acoustic novelty detection. In 2015 International Joint Conference
on Neural Networks (IJCNN), pages 1–7, July 2015.

[17] A. Taylor, S. Leblanc, and N. Japkowicz. Anomaly detection in au-
tomobile control network data with long short-term memory networks.
In 2016 IEEE International Conference on Data Science and Advanced
Analytics (DSAA), pages 130–139, Oct 2016.

[18] Loı̈c Bontemps, Van Loi Cao, James McDermott, and Nhien-An Le-
Khac. Collective anomaly detection based on long short term memory
recurrent neural network. CoRR, abs/1703.09752, 2017.

[19] T. Ergen, A. Hassan Mirza, and S. S. Kozat. Unsupervised and Semi-
supervised Anomaly Detection with LSTM Neural Networks. ArXiv
e-prints, October 2017.

[20] Ahmad Javaid, Quamar Niyaz, Weiqing Sun, and Mansoor Alam. A
deep learning approach for network intrusion detection system. In
Proceedings of the 9th EAI International Conference on Bio-inspired
Information and Communications Technologies (formerly BIONETICS),
pages 21–26. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2016.

[21] Tuan A Tang, Lotfi Mhamdi, Des McLernon, Syed Ali Raza Zaidi,
and Mounir Ghogho. Deep learning approach for network intrusion
detection in software defined networking. In Wireless Networks and
Mobile Communications (WINCOM), 2016 International Conference
on, pages 258–263. IEEE, 2016.

[22] Min-Joo Kang and Je-Won Kang. Intrusion detection system using
deep neural network for in-vehicle network security. PloS one,
11(6):e0155781, 2016.

[23] A Rogier T Donders, Geert JMG Van Der Heijden, Theo Stijnen, and
Karel GM Moons. A gentle introduction to imputation of missing
values. Journal of clinical epidemiology, 59(10):1087–1091, 2006.

[24] Tapio Schneider. Analysis of incomplete climate data: Estimation of
mean values and covariance matrices and imputation of missing values.
Journal of climate, 14(5):853–871, 2001.

[25] Graham Kalton. Compensating for missing survey data. 1983.

[26] Patrick Royston et al. Multiple imputation of missing values. Stata
journal, 4(3):227–41, 2004.

[27] Jingguang Zhou and Zili Huang. Recover missing sensor data with
iterative imputing network. CoRR, abs/1711.07878, 2017.

[28] Bernard Bor-Nian. Hsieh and Thad C. Pratt. Field data recovery in tidal
system using artificial neural networks (ANNs). U.S. Army Engineer
Research and Development Center, 2001.
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