Non-Intrusive Runtime Monitoring Through Power Consumption:
A Signals and System Analysis Approach to Reconstruct the Trace

(Appendices not included in the conference proceedings)

Appendix A Instrumentation of the Source Code — See §3.4

Below are examples of the two instrumented versions of the source code for the case of the ADPCM coder.

Print-instrumented version:

void adpcm_coder(short indatal],
char outdatal[], int len,
struct adpcm_state * state)

short *inp;

/* Input buffer pointer */
signed char *outp;

/* output buffer pointer */
/* ... other declarations */

printf ("Node0x20ccb50\n");
outp = (signed char *)outdata;
inp = indata;
valpred = state->valprev;
index = state->index;
step = stepsizeTable[index];
bufferstep = 1;

for (; len > 0 ; len—-)
{
printf ("NodeOx20cceal\n");

val = *inp++;
diff = val - valpred;
/* .. %/

}

VA B V)

Flip-port-bit-instrumented version:

extern char volatile port_bit;
#define FLIP_PORT_BIT \
{PORTG = (port_bit = !port_bit);}

void adpcm_coder(short indatal],
char outdatal], int len,
struct adpcm_state * state)

short *inp;

/* Input buffer pointer */
signed char *outp;

/* output buffer pointer */
/* ... other declarations */

FLIP_PORT_BIT;
outp = (signed char x*)outdata;
inp = indata;
valpred = state->valprev;
index = state->index;
step = stepsizeTable[index];
bufferstep = 1;

for (; len > 0 ; len—-)
{
FLIP_PORT_BIT;

val = *inp++;
diff = val - valpred;
/* ... %/

}

VA B V4

Appendix B Randomized Sequences of Functions — See §4.1

Below is an example of a randomized sequence of functions. The program running on Workstation 1 randomly
chooses the 64-bit seed for the rnd64 PRNG, as well as the choice of functions at each step (for example,
encrypt and crc32buf were randomly chosen for the first step, sha_update and adpcm_coder for the second step,
and so on).

The function randomize data uses rnd64 to generate pseudorandom input data for the functions. Every
eight steps (eight if statements) we re-randomize and assign a new random value into rnd, since each step
consumes one of its eight random bits.

srnd64 (UINT64_C(8973546545337244988)) ;
uint8_t rnd;

randomize_data();
rnd = ((rnd64() >> 24) & OxFF);
if (rnd & 0x1)
encrypt (plaintext, ciphertext, &ctx);
else
rc = crc32buf (crcdata, CRCSIZE);
rnd >>= 1;

if (rnd & 0Ox1)
sha_update (&sha_info, sha_data, SHASIZE);
else
adpcm_coder (pcmdata, adpcmdata, PCMSIZE,
&coder_1_state);
rnd >>= 1;

if (rnd & Ox1)
fft_float (FFTSIZE, O, real_in, imag_in,
real_out, imag_out);
else
sha_update (&sha_info, sha_data, SHASIZE);
rnd >>= 1;

