
Non-Intrusive Runtime Monitoring Through Power Consumption:
A Signals and System Analysis Approach to Reconstruct the Trace

(Appendices not included in the conference proceedings)

Appendix A Instrumentation of the Source Code – See §3.4
Below are examples of the two instrumented versions of the source code for the case of the ADPCM coder.

Print-instrumented version: Flip-port-bit-instrumented version:

extern char volatile port_bit;

#define FLIP_PORT_BIT \

{PORTG = (port_bit = !port_bit);}

void adpcm_coder(short indata[], void adpcm_coder(short indata[],

char outdata[], int len, char outdata[], int len,

struct adpcm_state * state) struct adpcm_state * state)

{ {

short *inp; short *inp;

/* Input buffer pointer */ /* Input buffer pointer */

signed char *outp; signed char *outp;

/* output buffer pointer */ /* output buffer pointer */

/* ... other declarations */ /* ... other declarations */

printf ("Node0x20ccb50\n"); FLIP_PORT_BIT;

outp = (signed char *)outdata; outp = (signed char *)outdata;

inp = indata; inp = indata;

valpred = state->valprev; valpred = state->valprev;

index = state->index; index = state->index;

step = stepsizeTable[index]; step = stepsizeTable[index];

bufferstep = 1; bufferstep = 1;

for (; len > 0 ; len--) for (; len > 0 ; len--)

{ {

printf ("Node0x20ccea0\n"); FLIP_PORT_BIT;

val = *inp++; val = *inp++;

diff = val - valpred; diff = val - valpred;

/* ... */ /* ... */

} }

/* ... */ /* ... */

} }

Appendix B Randomized Sequences of Functions – See §4.1
Below is an example of a randomized sequence of functions. The program running on Workstation 1 randomly
chooses the 64-bit seed for the rnd64 PRNG, as well as the choice of functions at each step (for example,
encrypt and crc32buf were randomly chosen for the first step, sha update and adpcm coder for the second step,
and so on).

The function randomize data uses rnd64 to generate pseudorandom input data for the functions. Every
eight steps (eight if statements) we re-randomize and assign a new random value into rnd, since each step
consumes one of its eight random bits.

srnd64(UINT64_C(8973546545337244988));

uint8_t rnd;

randomize_data();

rnd = ((rnd64() >> 24) & 0xFF);

if (rnd & 0x1)

encrypt (plaintext, ciphertext, &ctx);

else

rc = crc32buf (crcdata, CRCSIZE);

rnd >>= 1;

if (rnd & 0x1)

sha_update (&sha_info, sha_data, SHASIZE);

else

adpcm_coder (pcmdata, adpcmdata, PCMSIZE,

&coder_1_state);

rnd >>= 1;

if (rnd & 0x1)

fft_float (FFTSIZE, 0, real_in, imag_in,

real_out, imag_out);

else

sha_update (&sha_info, sha_data, SHASIZE);

rnd >>= 1;

...

