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Abstract. The increasing complexity and connectivity of modern em-
bedded systems highlight the importance of runtime monitoring to en-
sure correctness and security. This poses a significant challenge, since
monitoring tools can break extra-functional requirements such as timing
constraints. Non-intrusive program tracing through side-channel analy-
sis techniques have recently appeared in the literature and constitute
a promising approach. Existing techniques, however, exhibit important
limitations.

In this paper, we present a novel technique for non-intrusive program
tracing from power consumption, based on a signals and system analy-
sis approach: we view the power consumption signal as the output of a
system with the power consumption of training samples as input. Using
spectral analysis, we compute the impulse response to identify the sys-
tem; the intuition is that for the correct training sample, the system will
appear close to a system that outputs a shifted copy of the input signal,
for which the impulse response is an impulse at the position correspond-
ing to the shift. We also use the Control Flow Graph (CFG) from the
source code to constrain the classifier to valid sequences only, leading to
substantial performance improvements over previous works.

Experimental results confirm the effectiveness of our technique and show
its applicability to runtime monitoring. The experiments include tracing
programs that execute randomly generated sequences of functions as well
as tracing a real application developed with SCADE. The experimental
evaluation also includes a case-study as evidence of the usability of our
technique to detect anomalous execution through runtime monitoring.
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1 Introduction

Modern embedded devices are rapidly increasing in complexity and connectivity,
making it ever more important to incorporate runtime monitoring systems for
the purpose of ensuring correctness and security. This introduces an important
challenge, as instrumentation added to the system can break extra-functional re-
quirements such as real-time constraints in the operation. Non-intrusive program
tracing through side-channel analysis techniques have recently appeared in the
literature and constitute a promising approach, as we argue in [20]. These tech-
niques use an external device to measure power consumption and reconstruct
the program trace. From the perspective of runtime monitoring, there are sev-
eral benefits: (i) we obtain the program trace without any instrumentation that
could affect the device’s functionality; (ii) once the program trace is obtained,
additional monitoring (processing/analysis) tools can be introduced without the
risk of interfering with the device’s functionality or breaking any extra-functional
requirements; and (iii) the runtime monitor is tamper-proof in the sense that it
is not affected by system “crashes” or even deliberate cyber-attacks.

Moreno et al. presented a novel technique for non-intrusive program tracing
and debugging through side-channel analysis [21]. In that work, they used power
consumption measurements— power traces—to determine blocks of source code
being executed. An additional novel aspect of that work was the use of a com-
mercial off-the-shelf (COTS) sound card on a PC to capture the power traces.
That work was an important step in showing the technical feasibility of these pro-
gram tracing techniques. However, it exhibits important limitations with respect
to both methodology and performance. In particular, it requires a user-assisted
training phase where fragments of source code have to be isolated and indi-
vidually executed. Moreover, the technique in [21] operated at the granularity
level of whole functions, which may be too coarse to be practical. Indeed, [21]
does not present any case-studies to support the idea of this non-intrusive trac-
ing technique being useful in practice. The work in [22] proposes a technique
that can be combined with the approach in [21], and indeed can be combined
with our proposed technique, potentially increasing its performance through a
compiler-assisted transformation of the generated binary code.

Eisenbarth et al. [9] presented a different approach, introducing the idea of
a side-channel disassembler. Without using information about source code, they
attempted to obtain the sequence of CPU instructions from power consumption.
They obtained statistical models for the power consumption of individual CPU
instructions and used that information to match the measurements during exe-
cution. However, their results showed a performance far too low to be applicable
in practice. Msgna et al. [23] presented a follow-up to Eisenbarth’s work, as
they use a similar technique. However, their technique is also impractical, as
they use a high-end oscilloscope as capture device, sampling the power signal at
rates of 5GB/s. Furthermore, [23] averages multiple traces to reduce the effect of
the noise; both aspects make their proposed technique unsuitable for a practical
application in runtime monitoring. Liu et al. [16] presented another follow-up to
Eisenbarth’s work, also impractical for runtime monitoring, as they still use an



oscilloscope with a high sampling rate of 1.25GB/s. Clark et al. [6] used side-
channel analysis to identify execution traces in medical devices for the purpose
of tamper-detection. That work is limited in the sense that it only works at the
granularity level of the entire execution trace, and relies on the assumption that
the device’s task is simple and highly repetitive.

Using online trace information, our approach can work within the concep-
tual scheme of traditional runtime monitoring and verification systems [25], but
it exhibits important advantages with respect to their implementation. The main
benefits derive from the fact that in our system, the external monitor is a physi-
cally isolated subsystem, yet suitable for low-cost microcontrollers that have little
or no hardware support for debugging, tracing, or in general runtime monitoring.
Both event-triggered [4, 12–14, 28] and time-triggered frameworks [24] typically
rely on components or instrumentation that run together with the monitored
system, making them vulnerable to security threats and failures involving mem-
ory corruption (“system crashes”).

1.1 Our Contributions

In this work, we propose and implement a novel technique for non-intrusive
program tracing through side-channel analysis, and show its application to on-
line runtime monitoring through anomaly detection. We introduce conceptual
changes that improve the effectiveness and efficiency of power-based program
tracing, thus addressing most of the limitations in [21], [6], and [9]. Our pro-
posed technique has several aspects that account for these improvements over
previous work:

• Novel use of signal processing for classification in power-based pro-
gram tracing. Instead of standard statistical pattern recognition tech-
niques, we propose a novel approach based on signal processing; specifically,
a form of system identification. We use a computationally efficient pro-
cedure that determines the best match for a trace segment and also the
position of the match (without requiring any extra, separate computation).
This addresses one of the important limitations in [21]: the system is given a
single power trace and has to split it into segments to be classified, maintain-
ing alignment with the correct segments boundaries (of which the system is
given no information as input). Our signals and system analysis approach
proved to not only work well in terms of the performance of the system, but
also contributed to a substantial improvement in processing speed, with a
measured speedup of more than 4× attributable to this aspect.

• Use of code analysis to improve performance. Using the Control Flow
Graph (CFG) obtained from the source code, we assist the classification sys-
tem by constraining the blocks to those that are part of valid sequences.
The intuition is that the probability of misclassification is lower if the clas-
sifier counts on additional information that reduces the set of candidates.
This is illustrated by Figure 1, where sub-figure (a) represents classification
when considering all possible blocks, and sub-figure (b) represents classifica-
tion where a reduced set of candidates is considered. Our technique builds



Fig. 1. Reducing the set of candidates for classification

upon this intuition: by expanding the CFG using a dynamic programming
approach, we validate sequences of blocks; this can be seen as a mechanism
where we obtain fine granularity, but with the equivalent of the classifier
working at a coarser granularity so that it reduces the probability of mis-
classification by working with larger segments.

• Improved methodology and nearly fully automated work flow. We
instrumented the source code using the CFG, allowing us to achieve nearly
full automation of both the training phase and the performance evaluation
phases of the system.

In addition to the experimental evaluation where we measure the performance
of our system, we include two case-studies presented as evidence of the usability
of this technique. The case-studies apply in the context of runtime monitoring
as well as in the context of computer security, where our technique may be used
as an Intrusion Detection System (IDS) [17] for embedded devices.

1.2 Extension/Revisions With Respect to Our Previous Work

This paper is an extended version of our work presented at the 2016 Runtime
Verification conference [19]. Below are the new contributions that extend the
scope of that work:

• Added higher-speed capture device. A custom-made interface and cap-
ture device was introduced to the setup. The purpose is twofold: (1) we
wanted to address two potential limitations with the sound card capture;
and (2) though the use of a sound card demonstrates the possibility of im-
plementing this technique at low-cost, a custom compact capture device is
still necessary for an actual practical implementation of our technique.

• Additional case-study. A second case-study, an IDS for embedded devices,
demonstrates the possibility of our technique operating in real-time (i.e.,
processing the power trace data at the rate they are produced and detecting
anomalous conditions on-the-fly).

• Evaluated a resynchronization feature. We propose a mechanism for
the system to resynchronize with the power trace and the CFG for the cases
where the classifier goes out of sync. The mechanism is also useful for the



initial synchronization when the monitoring system starts operation (at an
unknown point of the power trace and unknown point in the execution).

• Expanded description of the system, analysis, and future work.
We expanded several sections in the description of our proposed system and
experimental setup. This includes added textual descriptions, figures, and
algorithms. Moreover, some additional aspects suggested as future work are
discussed.

1.3 Organization of the Paper

The remaining of this paper proceeds as follows: Section 2 presents a brief review
of signals and system analysis tools. Section 3 describes our proposed approach.
Our experimental setup is described in Section 4, followed by the results in
Section 5, including the case-study. Finally, a discussion and concluding remarks
are presented (sections 6 and7).

2 Background – Frequency Domain Analysis of Signals
and Systems

A discrete-time linear time-invariant (LTI) system can be fully described by its
impulse response, h(n). This impulse response is the output of the system when
the input is the impulse signal δ(n), where δ(0) ≜ 1 and δ(k) ≜ 0 ∀ k ̸= 0. For
an arbitrary input signal x(n), the system’s output y(n) is obtained through the
convolution relationship [27]:

y(n) =
∞∑

k=−∞

h(k)x(n− k) (1)

A frequency domain representation of a discrete-time signal x(n) can be
obtained through the (Discrete-Time) Fourier Transform F , defined as [27]:

F{x} = X (ω) =
∞∑

k=−∞

x(k) e−jωk (2)

where ω is the angular frequency (−π < ω < π), and j denotes the imaginary
unit (i.e., j2 = −1).1

Given the Fourier Transform X (ω), the signal x(n) can be obtained through
the inverse Fourier Transform F−1, defined as [27]:

F−1{X} = x(n) =

π∫
−π

X (ω)e jωndω (3)

The properties of the Fourier Transform for discrete-time signals regarding
convolution in the time domain are the same as those of the Fourier Transform
1 We adopt the electrical engineering convention of using j to denote the imaginary
unit, to avoid ambiguity with the symbol for electrical current or intensity, i.



for continuous-time signals. In particular, if x(n), y(n), and h(n) follow the
relationship described in Equation (1), then it holds that:

Y(ω) = X (ω)H(ω) (4)

where X (ω), Y(ω), H(ω) are the Fourier Transforms of x(n), y(n), h(n), respec-
tively. Thus, given an input signal x(n) and its corresponding output signal
y(n), the impulse response h(n) of the system can be obtained as:

h(n) = F−1

{
Y(ω)

X (ω)

}
= F−1

{
F{y}
F{x}

}
(5)

To apply frequency domain analysis to a segment or a window of a signal of
length N (viewed as a signal x(n) with 0 ⩽ n < N), we use the discrete Fourier
Transform (DFT), defined as [27]:

DFT (x) = X (k) =
N−1∑
n=0

x(n)e−j 2πknN (6)

with 0 ⩽ k < N . Its inverse operation is given by:

DFT −1(X) = x(n) =
1

N

N−1∑
k=0

X (k)e j 2πknN (7)

The DFT can be efficiently computed through the Fast Fourier Transform
(FFT) algorithm [27]. In our case, we used the FFTW library [10], which effi-
ciently computes both FFT and inverse FFT. The DFT represents the Fourier
Transform of a periodic signal with period N where x(n) comprises one pe-
riod of the signal. The properties shown above hold, with the system’s out-
put being given by the circular convolution of the input signal and the impulse
response—convolution computed with time indexes treated in a modulo N fash-
ion. This allows us to obtain the impulse response of a system when looking at
N -samples windows of the related signals:

h(n) = DFT −1

{
H =

Y
X

}
(8)

where the quotient H is computed through sample-wise division. That is, for

each k ∈ [0, N), H(k) = Y(k)
X (k) .

3 Proposed Technique

This section describes the main aspects and novelty of our proposed technique.

3.1 Frequency Analysis: Classifying and Determining the Shift in
the Power Trace Segments

The main idea and novel aspect behind our proposed approach for classification
is to view the power trace segments as the output of a system whose input is



the power trace of the training samples. For each of the training samples (corre-
sponding to fragments of code) we perform a system identification; in particular,
we obtain the impulse response as described in Section 2. The intuition is that
for the correct fragment, the input and output are similar, with the possibility
of a shift from the position where we evaluate to the position where the signals
match. Thus, for the correct fragment, the identified system will appear close
to a system that outputs a copy of the input signal shifted by a certain amount
of samples. For this time-shift system, we know that the impulse response is a
single pulse at the position corresponding to the shift [27].

A key detail is that as the system advances through the trace, the exact
positions where the trace segments begin (i.e., the position at which the corre-
sponding fragment of code started execution) are not given. One advantage of
this system identification approach is that once we determine the best match
among the training samples, the shift in the impulse response reveals the posi-
tion where the match occurs. In terms of execution speed, this represents an
important advantage with respect to the technique in [21], where the system
needs to attempt classification over a somewhat large range of possible starting
positions around the nominal starting point given by the outcome of the previous
classification (see [18] for details).

We have to be careful, however, with the “circular” nature of the DFT:
consider a system that shifts the signal by n0 samples. If we look at an N -
samples window of a periodic signal with period N , the shift occurs circularly
within the window—samples being shifted and disappearing into one edge of
the window will be identical to those appearing from the other edge, due to the
signal’s periodicity. However, for the case of a non-periodic signal (as it is our
case), shifting the signal and comparing input and output in the same N -samples
window corresponds to truncating the signal on one end and introducing an alien
fragment on the other end. Thus, the impulse response obtained through DFT
analysis within an N -samples window will not be a single pulse.

The key observation is that for small values of n0 compared to N , the impulse
response will be close to a single pulse, since the output corresponds to the linear
superposition of a large fraction of the signal shifted and two signals that are
nonzero only in a small fraction of the interval. Figure 2 illustrates this intuition,
with sub-figure (a) showing the computed impulse response for a shift by a small
amount (5 positions in a 128 samples window) and sub-figure (b) showing the
response for a larger shift (40 positions). The impulse response for the small
shift shows a very prominent pulse at index 5, whereas the response for the
larger shift exhibits a higher “noise level” outside the main pulse near index 40,
thus making the pulse less prominent. It should be obvious that the response
for two unrelated signals should not have any prominent pulses, so we omit any
examples.

3.2 Statistical Pattern Recognition

Though the use of pattern recognition as the main classification technique was
largely replaced by the signal processing approach, some elements from this field
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Fig. 2. Examples of impulse responses

are present. In particular, we use a distance metric to quantify how close the
impulse response is from a single pulse, and this distance is evaluated for the
elements of a database of training samples; we determine the k closest matches
from the database and evaluate the average distance—a logic similar to that
behind the k nearest neighbors (k-NN) rule [30].

For the distance metric, we used the following heuristics: we quantify how
close a given impulse response is from a single pulse based on the following
parameters (computed in the same order as listed):

• Highest value of the signal (the “height” of the main pulse; denoted Hp) and
position where it occurs (denoted n0).

• Median of the absolute values of the signal; denoted h̃.

• Width of the main pulse (obtained from the interval around n
0
for which

the absolute value of the signal is above h̃; denoted Wp).

• Highest absolute value of the signal outside the interval corresponding to the
main pulse (the “noise” level; denoted Ln).

With these parameters, the distance, d (a metric corresponding to the natural
notion that the smaller the distance, the closer the match), is given by:

d = Wp × Ln

Hp
(9)

The first term accounts for the effect that the narrower the main pulse, the closer
it is to a single pulse. The second term accounts for the effect that the smaller
the values outside the main pulse (relative to the height of the main pulse), the
closer it is to being a single pulse.

Figure 3 shows an example to illustrate the technique, where training database
samples A and B are considered for classification at position t = 65. Sample A
matches the trace at position t = 60; we see that the resulting impulse response
has the largest peak at position 146. Sample A is 151 samples long, hence posi-
tion 146 is equivalent to position −5, which is where the sample matches, relative
to the position where we apply the classification procedure. Sample B does not
match; thus, the impulse response is clearly dissimilar to a single impulse.
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Fig. 3. Example of classification at position t = 65

3.3 Static Analysis: Using the Control Flow Graph

The second important aspect introduced in this work is the addition of static
analysis tools to assist the classifier by restricting the classification choices to
blocks that constitute allowed sequences. In particular, use of the CFG allows
us to constrain the choice of best match to those that are part of valid sequences.
To this end, we used a dynamic programming approach [7]: at each point in the
classification, we expand the CFG to determine the set of possible paths up to a
given depth (given as a configuration parameter). For each of the nodes in this
expanded/unrolled CFG, we evaluate the distance (as described in Section 3.2).
We choose the path P with lowest sum of distances, and the classifier’s decision
corresponds to the first node in P.

This can be seen as a mechanism where we obtain fine granularity in the ex-
ecution trace, but with the equivalent of using a coarse granularity for the clas-
sification, reducing the probability of misclassification by working with longer
traces. The dynamic programming implementation improves computational effi-
ciency: we advance through the tree, discarding the subtrees of the sibling nodes
to the selected one, but keeping the subtree of the selected node so that we avoid
redundant calculations when expanding the CFG at the new node. Algorithm 1
shows the details of this procedure. In the algorithm, the expression Suc(·) de-
notes the set of successors of the argument ·, and Gn denotes the CFG G with
a state indicating that it is currently at node n.

Notice that this “recursion forward” is possible because we have the complete
trace for analysis; in an actual implementation where the system has to operate
online (i.e., classify traces on-the-fly), this simply means that we have to allow
for a small delay in the classification process, so that at block n of the trace, the



Algorithm 1: Classification Procedure.

Input: G (CFG), PT (Power Trace), D (Depth)

Output: T (Program Trace) Expressed as sequence of blocks

begin
R ← RootNode;
repeat D times;

for each leaf node n ∈ R do
n.child nodes ← Suc(Gn);
Compute distance and start pos. (shift) for added nodes

end
while R leaf nodes not at end of PT do
P ← Path to leaf with lowest sum of distances;
T ← T ∥ P(1);
R ← Subtree with root P(1);
for each leaf node n ∈ R do

n.child nodes ← Suc(Gn);
Compute distance and shift for added nodes

end

end

end

classifier is making the decision for block n − D, where D is the depth of the
expanded CFG.

We also highlight the aspect that this dynamic programming approach of
expanding the CFG can be combined with other classification techniques, since
it relies on a distance metric that quantifies how close given samples are from
training samples. Though our signals and system analysis approach proved
effective, other techniques may be suitable under different conditions, and could
exhibit better results in terms of classifier’s performance. Being able to combine
any such techniques with the CFG expansion approach ensures that one can
improve the classifier’s performance while targeting a fine granularity regardless
of the classification technique being used.

3.4 Resynchronizing

A mechanism for synchronizing (including synchronizing with the CFG) with
the trace at an unknown point of execution is necessary for a practical system,
since it addresses the start of operation of the tracing system, when the classifier
has no information about where in the trace or in the CFG the execution is.

This mechanism also has potential use to address out-of-sync conditions that
the system is unable to fix—we simply disregard recent past classifications that
show evidence of difficulties on the classifier, and proceed as though we were
just starting to capture the trace. Though this condition never occurred during



our experiments, it is definitely a situation that can occur in practice, even if it
happens with extremely low probability.

Algorithm 2 shows a sketch of this mechanism; the idea is that classifications
done without the help of the CFG are filtered based on consistency with allowed
sequences as per the CFG. When detecting one block, execution could be at
many places in the CFG (we recall that blocks are part of functions, and the
same function can be invoked from different places in the code). As we continue
to detect additional blocks in sequence, the CFG will disallow the sequence for
some of those places, reducing the number of possibilities. When there is just
one remaining feasible sequence, the procedure completes. If all sequences are
discarded, the procedure failed, and we just start over. Clearly, when no feasible

Algorithm 2: (Re)synchronization with the Trace and the CFG.

Input: CFGG (CFG of a function)
Input Power Trace

Comments: FP denotes the set of Feasible Paths
Classifier does not use CFG

begin
while FP = ∅ do

C ← Classifier’s output;
FP ← {Nodes + CFG Pos} that contain C;
while | FP | > 1 do

C ← Classifier’s output;
for each path p ∈ FP do

if Can not advance through p to node C then
Remove p from FP ;

end
else Advance;

end

end
if | FP | = 1 then exit (success);

end

end

sequences are left, our only choice is to start over; yet, the procedure should,
under reasonable assumptions, successfully synchronize with the trace and the
CFG. A simple probabilities argument may be used to support this intuition:
if we have a probability of correct classification P > 0, independent for different
classifications (a reasonable approximation when not using the CFG), the prob-
ability of L consecutive classifications is PL. This means that the probability
that resynchronization has not succeeded after N attempts at sequences of L

classifications is Pr{Fail} = (1− PL)
N
, which approaches 0 as N grows.



3.5 Segmentation of Traces and Fragments of Source Code

One important limitation in the approach proposed in [21] relates to the diffi-
culty in training the system. For the training phase, fragments of code (whole
functions, in that work) had to be run in isolation and surrounded by markers.
In our proposed approach, during the training phase we run the fragments of
code in the natural sequence as they occur in the source code. An instrumented
version of the source code allows us to segment the trace into the sections that
correspond to the fragments in the source code by flipping a port bit at the
boundaries between fragments.

As we will discuss in Section 4.1, we use a PC sound card to capture power
traces, similarly to the approach proposed in [21]. However, one important aspect
that allowed us to improve the methodology with respect to [21] is the fact that
we sample two signals, taking advantage of the stereo input of the sound card; we
use one of the channels to capture power consumption and the other channel to
capture the markers given by this port bit signal. Through visual observation, we
verified that the instrumentation needed to flip the port bit causes a negligible
effect on the traces (between one and two audio samples). We remark that this
is possible in a more general setup that uses a two-channel digital oscilloscope
or any sampling device with at least two input channels.

For the training phase, where we require a priori knowledge of the fragment
of code being executed, an additional instrumented version is created with print
statements at the boundaries between segments. This instrumented instance is
run outside the target, in “offline” mode; both instrumented versions produce
the same execution trace, since the source code is the same for both cases and the
input data is the same (it is chosen at random, but once chosen it is “hard coded”
into the programs—Section 4.1 includes a more detailed description). Thus, the
system can automatically determine the fragment of code corresponding to each
segment of the trace, as marked by the edges in the port bit signal. Appendix A
shows an example of the two instrumented versions for the adpcm coder function.

During the training phase, the system loops generating random sequences of
code with random input data. For each instance of generated code, the system
flashes the target device and captures and processes the traces without user
intervention (other than getting the process started).

3.6 Instrumenting the Source Code

We used LLVM [5] to extract a CFG from the source code. However, for our
setup—with an AVR Atmega2560 [2] operating at 1MHz—basic blocks produce
trace segments that are too short for the classifier to operate successfully. We
devised a procedure to merge CFG nodes into nodes representing larger blocks
of source code, yet maintaining a valid CFG structure 2 where the beginning of
execution of each block can be marked in the source code.

2 Technically, the resulting graph is not a CFG, since the blocks can contain condi-
tionals; however, it maintains the aspect that is relevant to our application: edges
indicate the possible sequences during execution.



Since we require markers between segment boundaries, and segments cor-
respond directly with blocks of code associated to CFG nodes, the important
aspect to maintain is preserving the beginning of the block by merging nodes
corresponding to short blocks into their predecessor nodes. As an example, con-
sider the subgraph of a CFG shown at the left in Figure 4, where block B is too
short. If we duplicate node B to merge it into nodes D and E, then marking the

Fig. 4. Example of merging CFG nodes

beginning of the new resulting blocks would become difficult, unless we actually
duplicate the actual source code corresponding to B; but this would introduce
important difficulties. Instead, we merge node B into its predecessor, node A to
create node A′. The result is consistent with the initial CFG: the meaning of this
new CFG subgraph is that if we enter node A′, then the possible successors are
node C (if block B does not get executed) or nodes D or E (if B does execute).
The beginning of block A′ (the line in the source code) remains the same as the
beginning of block A, and there is no ambiguity. Block B no longer needs its
beginning marked, since block B is no longer being considered, and instead, it is
part of block A′. When executing, marks are correctly applied at the beginning
of each block. Blocks with multiple possible internal paths are not a problem;
we enter block A′ and its starting point is marked. The next mark will occur
at the beginning of one of its successors, and execution of any instance of block
A′ will be enclosed between the mark at its beginning and the next mark that
appears.

Algorithm 3 shows the procedure used to manipulate the CFG to eliminate
blocks that are shorter than a specified threshold (expressed as number of lines
of source code), with Suc(·) denoting the set of successors of the argument ·,
and Pred(·) the set of predecessors of the argument ·.

This process of creating the two instrumented versions of the program was,
for the most part, automated. However, we had to manually handle some corner
cases and some quirks in the CFG extraction software. We still claim that our
proposed technique can be fully automated in that for all of these corner cases in
which we fixed the situation manually, it was possible to automatically handle it
without user intervention; it was just a matter that we chose to fix it manually
given that it represented less work and creating an automated solution seemed
overkill for our purpose. As an example, we noticed the issue that the starting



Algorithm 3: Merge CFG Nodes for Short Blocks.

Input: G (CFG), T (Threshold –minimum block size)

On exit: G is modified to represent the same source code with larger/merged
blocks.

begin
while G ∋ block b : |b| < T do

for each node N ∈ G do
if N .size < T then

S ← Suc(N);
P ← Pred(N);
for each node p ∈ P do

Suc(p) ← Suc(p) ∪ S;
p.size ← p.size + N.size;

end
G ← G \ N ;

end

end

end

end

line of the initial BB in the extracted CFG of a function is always marked as
beginning at the line where the function name and parameter is given. For
example, in the code below:

Line 1: void polling_loop (int sleep_time)

Line 2: {

Line 3: sleeping = 0;

...

The beginning of the entry block in the extracted CFG is line 1, instead of
line 3. Though it is certainly feasible to automatically fix these cases, it was
simpler for the purpose of our research project to manually edit the instrumented
code.

Another aspect where we adjusted manually is related to actual lengths of
the segments of the captured traces corresponding to CFG blocks. Here, we not
only tried to avoid short traces (for which we merged with successor nodes as
needed), but also wide variations in trace lengths. Our experiments showed that
the classifier’s performance is negatively affected by having to classify a trace
when candidates have wide variations in length.

However, the really long blocks only need to be split into one starting block
of reasonable size, followed by the remaining of the block. This second block
is long, but this is not a problem, since after detection of the first block (non-
problematic, as it is of reasonable length), then the only candidate successor
will be the long block. The important detail is that the classification of the



initial segment is done with candidate blocks that are all within the same range
of lengths, and the longer block is never mixed with other candidate blocks for
classification. This was notably the case for the SHA function (more specifically,
the sha transform section), which takes almost 10 times longer to execute than
any of the other functions considered, and the implementation is fully unrolled,
so the CFG consists of a single block. The close to 9000 samples segment was split
into an initial one of approx. 800 samples, and the remaining 8000+ samples.

4 Experimental Evaluation

The experimental evaluation includes three parts:

• Random sequence of functions. We evaluate our system against a target
executing randomly generated sequences of MiBench [11] functions, with a
random choice of two functions to execute next at each step in the sequence.
The experiment is run multiple times, and we randomly generate a differ-
ent sequence for each execution. The rationale for this choice is twofold:
(i) it allows us to compare the performance against previous works, espe-
cially against the results reported in [21]; and (ii), a sequence of code with
a “random CFG” constitutes a highly demanding task for our classifier, and
this has two important consequences: the results obtained are not “helped”
by any particular structure of specific software that one may choose for this
purpose; and also, the results are more statistically meaningful.

• Cruise Control application. The target device executes a SCADE 6 [8]
Cruise Control application. This application follows the periodic, real-time
tick based scheme where execution alternates between an interval of compu-
tations and idle. The rationale for using a concrete, real-world application
is also clear: as much as the execution of random sequences of functions has
important advantages, we still want to demonstrate the effectiveness of our
technique on real applications. Not surprisingly, the performance of our sys-
tem was substantially better for this case, given the simpler structure of the
software and the more systematic patterns in the execution.

• Case-Studies. We implemented two case-studies, both in the context of
enforcing security properties. The case-studies demonstrate the applicabil-
ity in practice of our technique. The first case-study shows the efficacy of
our approach to detect out-of-sync conditions resulting from buffer overflow
conditions (in principle malicious, but applicable to crashes caused by de-
fects/bugs in the software). The second case-study is an intrusion detection
system that operates on the fly, detecting anomalous conditions as they hap-
pen, with low latency and capacity to process power traces at the throughput
that they are produced.

Many aspects in the experimental setup are common for both parts. The
following section describes the setup.



4.1 Workflow

Figure 5 shows the hardware setup, specifically the workflow using two worksta-
tions to automate the experimentation. The workflow itself does not require two

Fig. 5. Experimental Setup for Automated Experimentation.

workstations; but the connections for the signals capture forced us to electrically
isolate the flashing from the capture (see below, text related to Figure 6).

The workstations communicate via TCP/IP to synchronize the required ac-
tions: Workstation 2 is the “master” in that it instructs Workstation 1 to gener-
ate an instance of the software and flash the target device; for the experiments
with random sequences of functions, this involves generating a random sequence
and generating random input data; for the cruise control application, it involves
generating random input data. Workstation 2 then captures the trace, and sig-
nals Workstation 1 that it is done with the capture, so that the loop repeats. The
software running on Workstation 2 captures and processes the traces. It detects
the bit flips (markers at the boundaries between trace segments) by looking for
inflection points between neighboring minima and maxima. We used the stan-
dard numeric approximations for the derivatives [26], with interpolation to find
the position of the inflection point with sub-sample resolution.

As briefly mentioned in Section 3.5, we use both channels of the stereo input
of the sound card. This allows us to capture the power trace and additionally
a signal with markers at the boundaries between segments of executed code.
Figure 6 shows a simplified diagram of this setup. Notice that the (−) terminals
in the sound card are connected to the workstation’s GND reference, which
means that we must connect +V to it, since +V is the terminal that is common in
both differential measurements. This in turn required the use of two workstations
with isolated grounds, to be able to isolate the USB ground from the sound card
ground.

The 10 kΩ resistor provides a voltage divider with RM for the port bit signal,
and its reasonably high value keeps the current low.



Fig. 6. Power Trace Capture System – Sound Card.

The audio capture does not require any user intervention, as it is performed
by the processing program through command-line utilities. Moreover, the section
of interest of the trace is surrounded by distinctive “sync” patterns (a sequence
of pulses of 1ms, 2ms, and 3ms repeated ten times) to allow the program to
automatically isolate the relevant fragments. Figure 7 shows an example of the
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beginning of one of these traces, showing the power trace and the markers trace,
which includes the sync pattern and the edges marking the boundaries between
segments.

We also evaluated the technique with a custom-made capture device, includ-
ing an input instrumentation (differential) amplifier and the analog-to-digital
(A/D) converter. In addition to taking steps towards an actual practical imple-
mentation of the technique, we wanted to address two potential limitations of
the capture with a standard PC sound card:

• Sound cards block DC (in our case, we observed a first-order high-pass filter
with 5Hz cutoff frequency), and lack of short-term DC information may have
a negative impact on the classifier’s performance.

• Sampling at higher frequency may capture important spectral information
that could improve the classifier’s performance.



Figure 8 shows a diagram of this higher-precision capture setup. We designed
a custom board with these components—as opposed to using a digital oscillo-
scope and other bench top components— since our short-term objective is an
actual practical implementation of our technique. For simplicity, a single block is

Fig. 8. Power Trace Capture System – Higher-Precision A/D Converter.

shown as differential amplifier. However, this includes an input instrumentation
amplifier, anti-alias filter, and a single-ended-to-differential amplifier to drive
the ADC. The chain as a whole provides the required amplification to bring the
signal from a few millivolts across RP up to the range of the ADC. The port bit
from the MCU is connected to one of the inputs of the logic analyzer, and the
positions of the markers are used in a similar manner with respect to the sound
card setup, with the exception of the sync patterns: since the logic analyzer has
configurable triggers, the use of these sync patterns was not necessary with this
setup.

We used a custom-made pseudorandom number generator (PRNG) to ran-
domize the input data and the choice of functions to execute. This ensures that
execution on the target and on the print-instrumented version produce the same
trace. This is not guaranteed if we use the Standard Library PRNG, since it can
potentially vary between compilers. We used a linear congruential generator
with 64-bit internal state, as described in [15]. The PRNG is seeded by the code
generator software running on Workstation 1, using /dev/urandom. Appendix B
shows an example of the starting fragment of these random sequences.

We emphasize the aspect that the training phase and the operation phase
in our experiments always use different input data, to ensure that the results
are meaningful. This is the case since every execution of a function (for either
training or operation purposes) operates on randomly selected input data.

Figures 9 and 10 show the experimental procedures for the training phase
and the performance evaluation phase, respectively.

The implementations are in fact coded as infinite loops, simply relying on
the user to interrupt the program when they estimate that a sufficient amount
of data has been collected.



Fig. 9. Procedure for the training phase

Fig. 10. Operation phase and performance evaluation

5 Experimental Results

In this section we present and briefly discuss the results from our experimental
evaluation.

5.1 Classifier’s Performance

The metric used to evaluate the performance is the standard notion of precision.
In our case, this corresponds to the fraction of the time during which the classifier
output corresponds to the correct segment or block (a true positive):

P ≜
∑

|ITP |∑
|ITP

|+
∑

|IFP
|

(10)

where P denotes the precision, ITP are the intervals for which the output of
the classifier is a true positive, IFP are the intervals where the output is a false
positive (a misclassification), and | · | denotes the length of the argument · (the
length of the interval). The notion of recall is not applicable, since at all times
the classifier outputs something—either a true positive or a false positive.

Table 1 shows the measured precision for the various experiments, including
95% confidence intervals. The “Raw” measurement is the precision obtained
while the system is in sync with the CFG—roughly speaking, it corresponds
to the probability of correct classification when the candidates are restricted
to the actual possible options. It was measured by counting misclassifications



but correcting them so that the next classification is done with the correct set
of candidates. The purpose of this metric is to isolate the effect of using the
CFG to narrow down the set of candidates for the classifier from the issue of
having to maintain sync with the CFG. This allows for a more direct comparison
against the results in [21], as they report the precision when classifying functions
executed in isolation as well as the overall system precision including the task of
maintaining sync after misclassifications. The high-precision sampling was only
done for the cruise control application, since the random sequences produced
traces too long to be processed automatically when using the higher sampling
rate.3 With the use of the dynamic programming / CFG expansion approach,

Table 1. Classifier Precision.

Random Sequence Cruise Control
Application

Raw 97.1% ± 0.3% – –

With CFG Expansion 86.25% ± 3.4% 95.68% ±0.01%
High-precision Sampling – – 96.06% ±0.08%

the experiment with random sequence of functions used a depth of 8 for the tree,
and with the cruise control application, a depth of 5.

The results show a reasonably good precision, given the granularity at which
our system operates—800 functions correspond to approx. 3000 nodes, giving a
granularity close to four times finer than that reported in [21]. Working at this
substantially finer granularity, the precisions that we obtain are similar to those
in [21]: 97.1% precision for classification of individual blocks; close to the 98%
reported in [21] when classifying individual functions in isolation. And 86.25%
overall precision, with the classifier never going out of sync; in the same order as
the 88% reported in [21]. For the Cruise Control application, the performance was
substantially higher, even when working with a lower recursion depth (which also
improves execution speed), and the classifier never went out of sync. As expected,
the higher-speed sampling lead to a higher precision in the classification, even
if the difference was not substantial. We suggest further research to investigate
in detail the effect of sampling rate and bandwidth (in principle, relative to the
MCU’s clock speed), as well as the effect of the DC information on the classifier’s
performance.

Observation of the classifier’s output additionally gave us several interesting
insights that will be discussed in Section 6.

3 Notice that this was an issue for the experimental evaluation, since we used long
random sequences that made the matching and alignment too costly.



5.2 Resynchronization with the Trace and the CFG

We implemented, with partial success, the mechanism for resynchronization de-
scribed in Section 3.4. We tested it only on one of the traces, and it reported
successful resynchronization on four occasions. However, the resynchronizations
were slow—on one of the instances, it looped four times, failing three times in a
row to resynchronize, which would negatively affect the precision if included in
a real system. We did not attempt to measure precision or any detailed metrics
related to this mechanism, as we are convinced that this is subject for future
work.

There are several factors and parameters involved in the operation of the
resynchronization mechanism, and some of them are in conflict with the criteria
required to make the normal operation (assisted by the CFG) achieve good
performance; for that reason, we believe that further research is necessary to
determine the best way to implement it. Most notably, the mechanism is based
on classification without assistance from the CFG, for which we would expect
that we would need to work at a coarser granularity level, and it might require
tuning of the database, making it incompatible with the CFG-assisted classifier.

We believe that additional research is necessary before attempting to com-
bine this mechanism with our current classification approach. However, we are
convinced that the mechanism is bound to work correctly, and it is a matter of
finding the correct parameters and the right way to combine it with the system
in its current form.

5.3 Case-Study: Buffer Overflows

As a case-study to assess the usability of our runtime monitoring technique
in practice, we repeated the experiments with a deliberately introduced defect
that allows buffer overflows. We performed this modified experiment in two
distinct ways: overwriting the return address with a random value (a “bug” in
the conventional sense); and overwriting the return address with a crafted value
to cause execution to return to a different address (a buffer-overflow / code reuse
attack [1, 29]). As expected, for both scenarios the system irrecoverably went out
of sync with the CFG and misclassified essentially every segment after the buffer
overflow occurred.

The shifts in the trace segments (the deviation of the starting point with
respect to the “nominal” position, given by the outcome of the previous classifi-
cation) provide a good indicator of an out-of-sync condition. When the system
is operating normally, we expect the shifts to be small, to compensate for minor
deviations due to measurement noise. When operating on a trace that is not
consistent with the CFG, the matches are found at somewhat random positions,
resulting in large values of the shifts. Figure 11 shows the shift values for the case
where the buffer overflow occurs at the seventh block; as expected, we observe
a noticeable increase in the values after that position.

Though we did not incorporate any formal anomaly detection techniques [3]
to automate the reporting of these unrecognized segments, the results represent
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Fig. 11. Effect of a buffer overflow bug/attack on the classifier’s shifts

encouraging evidence to the usability of our technique in the context of either
monitoring to detect faulty behavior or as an IDS.

5.4 Case-Study: Intrusion Detection System for Vehicle Door Lock

Our second case-study demonstrates the ability of our technique to operate in
real-time. By “real-time” we refer to the ability to process power traces at the
throughput that they are produced, and detect anomalous conditions as they
occur, with low latency.

Figure 12 shows a block diagram of a vulnerable door lock control system
and the power-based monitor to detect anomalous behavior. The remote key can

Fig. 12. Vehicle Door Lock Control System and Power-based Monitor.

transmits dual commands, representing the possibility of a maliciously cloned
remote key that transmits crafted attack data. This malicious data could for ex-
ample exploit a buffer overflow vulnerability in the electronic control unit (ECU).
In particular, our system demonstrates a code-reuse buffer overflow attack. The
ECU implements the algorithm shown below as C-like pseudocode:



while (1)

{

check_incoming_data_available();

if (data_available)

{

char buffer[256+1]; // null-terminated 256-byte blocks

read_wireless_data (buffer);

if (authentication_ok (buffer, SECRET_KEY))

unlock_door();

}

sleep (10 milliseconds);

}

The maliciously transmitted command implements a buffer overflow that
injects the address of the unlock door function to unlock the vehicle while by-
passing the authentication.

The system was implemented on the same AVR microcontroller used for the
other experiments (as opposed to a real vehicle’s ECU). Furthermore we use a
donated Magna Closures door lock in our demo to showcase the technology and
our work on cybersecurity for embedded systems.

The monitoring system is implemented on a workstation with a quad-core
processor at 3.4GHz running Ubuntu 14.04 and using gcc/g++ to compile the
C++ programs that implement our technique. We split the workload into several
processes, in particular to be able to read audio and process it concurrently. To
be able to run in real-time, we did not implement the CFG expansion mecha-
nism. The system has four basic blocks: background, receive, authentication, and
unlock. The training database contains three background samples, two receive
samples, one authentication sample, and one unlock sample.

With this setup, the system operates on the fly, including transmission of
the data to a separate server for display/demo purposes. A trace segment of
3000 samples is transmitted every two seconds. Since the operation is manual,
we did not extract detailed statistics for the purpose of performance assessment.
However, the system has worked successfully as a demo, showing few false alarms,
and rarely missing any anomalous conditions.

We acknowledge the fact that the system operates in real time in part because
the system being monitored is an aggressively optimized implementation of a
simple functionality. Real-time monitoring of real-life systems is still beyond the
scope of our technique at the present time. Further research is required to achieve
the required processing speed with good performance, including CFG expansion,
and reasonable cost of the system. The use of specialized digital signal processing
architectures or custom digital hardware may play a favorable role in achieving
this objective.



6 Discussion and Future Work

One of the positive aspects to highlight relates to the potential for usability of
our system as a runtime monitoring tool in real-world systems; the experimental
results confirm this potential for cases where execution follows the CFG but
deviating from specifications (e.g., an infinite loop due to lack of validation of
input data) and also the cases where execution violates the CFG constraints (e.g.,
stack corruption, invalid pointer accesses, malware/tampering, etc.). Combining
our approach with the technique in [22] is a promising avenue to further improve
our system’s performance, and is one of the aspects suggested as future work.

The following are some of the interesting insights that we obtained from this
work, in particular from analysis of the classifier’s output from the experiments:

• Use of additional static analysis to improve the precision of the
classifier. We could observe that one of the main opportunities for misclas-
sifications arises from segments that are short in length and where the CFG
expansion allows a substitution without getting out of sync. Static analysis
could reduce the set of paths that can execute (with respect to using the
CFG alone). This would also improve speed, as it reduces the size of the
expanded CFG in our dynamic programming algorithm in the classifier.

• Using the shifts to avoid misclassifications. We could observe several
instances where the shifts (the deviation from the nominal starting point of a
segment) could help correct misclassifications; indeed, several errors occurred
for instances where the correct path was A → B → C and the classifier
output A → C, with a large positive shift for A and a large negative shift
for C, which suggests that the choice A → B → C was likely the correct one
(in any case, the system could confirm this if it verifies that the shifts for
the former case are small).

• Optimizing the choice of CFG blocks. The choice of CFG blocks could
be adjusted to improve the classifier’s performance; for example, this could
address the aspect mentioned above, where a short segment is incorrectly
selected without getting out of sync. By looking at the training samples and
estimating probabilities of correct classification, situations prone to errors
could be identified and avoided through a different choice of CFG blocks,
obtained by merging blocks in different combinations.

• Use of Digital Signal Processors. The use of specialized architectures
or even custom digital hardware (e.g., FPGA) could play an important role
in achieving real-time operation to monitor real-life systems. These could
assist with spectral analysis and distance computations, possibly with an
additional standard processor for the classification algorithms and CFG ex-
pansion.

• Pruning of the expanded CFG. An interesting, though possibly more
risky, option for improving speed could be the use of the technique known as
pruning [31] (§10.5.2); branches of the expanded CFG could be eliminated
earlier by recursing down to a smaller depth and discarding the branches



that already at that point exhibit a sum of distances far above the rest of
the sibling branches.

The following are some additional aspects that we believe warrant further
investigation:

• Training database size. This is an important aspect to consider for the
technique to be applicable in practice. In addition to the direct implication
of the database size, it also relates to the effort required to set up the system,
which affects the applicability of our technique in a real-life setup. Future
research to quantify this aspect would be valuable for the technique to be
used in practical applications.

• Sampling rate for the power traces. This is another aspect that af-
fects the applicability of our technique in practice. It would be interesting
to determine the required sampling rates for the technique to work reliably.
Intuitively, it seems reasonable to expect that the required sampling rate
is a function of the clock speed of the processor being monitored. Future
research could confirm this intuition, and even quantify the relationship be-
tween processor clock speed and required sampling rate for the power trace.

7 Conclusions

In this paper, we presented a non-intrusive program tracing technique and
showed its applicability to runtime monitoring. We used a novel signals and sys-
tem analysis approach, combined with static analysis to further improve both
performance and methodology. The proposed technique exhibits substantially
better performance compared to previous work on power-based program trac-
ing, as it has comparable precision while working at a granularity level close to
four times finer. Two case-studies confirm the potential of our technique either
as a runtime monitoring tool or as an IDS for embedded devices.
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Appendix A Instrumentation of the Source Code

Below are examples of the two instrumented versions of the source code for the
case of the ADPCM coder.

Print-instrumented version: Flip-port-bit-instrumented
version:

extern char volatile port_bit;

#define FLIP_PORT_BIT \

{PORTG = (port_bit = !port_bit);}

void adpcm_coder(short indata[], void adpcm_coder(short indata[],

char outdata[], char outdata[],

int len, int len,

struct adpcm_state * state) struct adpcm_state * state)

{ {

short *inp; short *inp;

/* Input buffer pointer */ /* Input buffer pointer */

signed char *outp; signed char *outp;

/* output buffer pointer */ /* output buffer pointer */

/* ... other declarations */ /* ... other declarations */

printf ("Node0x20ccb50\n"); FLIP_PORT_BIT;

outp = (signed char *)outdata; outp = (signed char *)outdata;

inp = indata; inp = indata;

valpred = state->valprev; valpred = state->valprev;

index = state->index; index = state->index;

step = stepsizeTable[index]; step = stepsizeTable[index];

bufferstep = 1; bufferstep = 1;

for ( ; len > 0 ; len-- ) for ( ; len > 0 ; len-- )

{ {

printf ("Node0x20ccea0\n"); FLIP_PORT_BIT;

val = *inp++; val = *inp++;

diff = val - valpred; diff = val - valpred;

/* ... */ /* ... */

} }

/* ... */ /* ... */

} }



Appendix B Randomized Sequences of Functions

Below is an example of a randomized sequence of functions. The program run-
ning on Workstation 1 randomly chooses the 64-bit seed for the rnd64 PRNG, as
well as the choice of functions at each step (for example, encrypt and crc32buf

were randomly chosen for the first step, sha update and adpcm coder for the sec-
ond step, and so on).

The function randomize data uses rnd64 to generate pseudorandom input data
for the functions. Every eight steps (eight if statements) we re-randomize and
assign a new random value into rnd, since each step consumes one of its eight
random bits.

srnd64(UINT64_C(8973546545337244988));

uint8_t rnd;

randomize_data();

rnd = ((rnd64() >> 24) & 0xFF);

if (rnd & 0x1)

encrypt (plaintext, ciphertext, &ctx);

else

rc = crc32buf (crcdata, CRCSIZE);

rnd >>= 1;

if (rnd & 0x1)

sha_update (&sha_info, sha_data, SHASIZE);

else

adpcm_coder (pcmdata, adpcmdata, PCMSIZE,

&coder_1_state);

rnd >>= 1;

if (rnd & 0x1)

fft_float (FFTSIZE, 0, real_in, imag_in,

real_out, imag_out);

else

sha_update (&sha_info, sha_data, SHASIZE);

rnd >>= 1;

...


