Non-Intrusive Runtime Monitoring Through
Power Consumption: A Signals and System
Analysis Approach to Reconstruct the Trace

Carlos Moreno and Sebastian Fischmeister

Electrical and Computer Engineering, University of Waterloo
{cmoreno,sfischme}@uwaterloo.ca

Abstract. The increasing complexity and connectivity of modern em-
bedded systems highlight the importance of runtime monitoring to en-
sure correctness and security. This poses a significant challenge, since
monitoring tools can break extra-functional requirements such as timing
constraints. Non-intrusive program tracing through side-channel analy-
sis techniques have recently appeared in the literature and constitute
a promising approach. Existing techniques, however, exhibit important
limitations.

In this paper, we present a novel technique for non-intrusive program
tracing from power consumption, based on a signals and system analy-
sis approach: we view the power consumption signal as the output of a
system with the power consumption of training samples as input. Using
spectral analysis, we compute the impulse response to identify the sys-
tem; the intuition is that for the correct training sample, the system will
appear close to a system that outputs a shifted copy of the input signal,
for which the impulse response is an impulse at the position correspond-
ing to the shift. We also use the Control Flow Graph (CFG) from the
source code to constrain the classifier to valid sequences only, leading to
substantial performance improvements over previous works.
Experimental results confirm the effectiveness of our technique and show
its applicability to runtime monitoring. The experiments include tracing
programs that execute randomly generated sequences of functions as well
as tracing a real application developed with SCADE. The experimental
evaluation also includes a case-study as evidence of the usability of our
technique to detect anomalous execution through runtime monitoring.

Keywords: Program tracing, runtime monitoring, embedded software security,
side-channel analysis, power-based program tracing, signal processing, signals
and systems analysis.

1 Introduction

Modern embedded devices are rapidly increasing in complexity and connectivity,
making it ever more important to incorporate runtime monitoring systems for
the purpose of ensuring correctness and security. This introduces an important
challenge, as instrumentation added to the system can break extra-functional

requirements such as real-time constraints in the operation. Non-intrusive pro-
gram tracing through side-channel analysis techniques have recently appeared
in the literature and constitute a promising approach. These techniques use an
external device to measure power consumption and reconstruct the program
trace. From the perspective of runtime monitoring, there are several benefits:
(i) we obtain the program trace without any instrumentation that could affect
the device’s functionality; (ii) once the program trace is obtained, additional
monitoring (processing/analysis) tools can be introduced without the risk of
interfering with the device’s functionality or breaking any extra-functional re-
quirements; and (iii) the runtime monitor is tamper-proof in the sense that it
is not affected by system “crashes” or even deliberate cyber-attacks.

Moreno et al. presented a novel technique for non-intrusive program tracing
and debugging through side-channel analysis [19]. In that work, they used power
consumption measurements — power traces — to determine blocks of source code
being executed. That work was an important step in showing the technical fea-
sibility of these program tracing techniques. However, it exhibits important lim-
itations with respect to both methodology and performance. In particular, it
requires a user-assisted training phase where fragments of source code have to
be isolated and individually executed. Moreover, the technique in [19] operated
at the granularity level of whole functions, which may be too coarse to be prac-
tical. Indeed, [19] does not present any case-studies to support the idea of this
non-intrusive tracing technique being useful in practice. The work in [20] pro-
poses a technique that can be combined with the approach in [19], and indeed
can be combined with our proposed technique, potentially increasing its perfor-
mance through a compiler-assisted transformation of the generated binary code.
Eisenbarth et al. [9] presented a different approach, introducing the idea of a
side-channel disassembler. Without using information about source code, they
attempted to obtain the sequence of CPU instructions from power consumption.
However, their results showed a performance far too low to be applicable in prac-
tice. Clark et al. [5] used side-channel analysis to identify execution traces in
medical devices for the purpose of tamper-detection. That work is limited in the
sense that it only works at the granularity level of the entire execution trace, and
relies on the assumption that the device’s task is simple and highly repetitive.

Using online trace information, our approach can work within the concep-
tual scheme of traditional runtime monitoring and verification systems [22], but
it exhibits important advantages with respect to their implementation. The main
benefits derive from the fact that in our system, the external monitor is a physi-
cally isolated subsystem, yet suitable for low-cost microcontrollers that have little
or no hardware support for debugging, tracing, or in general runtime monitoring.
Both event-triggered [4,12-14,25] and time-triggered frameworks [21] typically
rely on components or instrumentation that run together with the monitored
system, making them vulnerable to security threats and failures involving mem-
ory corruption (“system crashes”).

1.1 Our Contributions

In this work, we propose and implement a novel technique for non-intrusive
program tracing through side-channel analysis, and show its application to on-
line runtime monitoring through anomaly detection. We introduce conceptual
changes that improve the effectiveness and efficiency of power-based program
tracing, thus addressing most of the limitations in [19], [5], and [9]. Our pro-
posed technique has several aspects that account for these improvements over
previous work:

e Novel use of signal processing for classification in power-based pro-
gram tracing. Instead of standard statistical pattern recognition tech-
niques, we propose a novel approach based on signal processing; specifically,
a form of system identification. We use a computationally efficient pro-
cedure that determines the best match for a trace segment and also the
position of the match (without requiring any extra, separate computation).
This addresses one of the important limitations in [19]: the system is given a
single power trace and has to split it into segments to be classified, maintain-
ing alignment with the correct segments boundaries (of which the system is
given no information as input). Our signals and system analysis approach
proved to not only work well in terms of the performance of the system, but
also contributed to a substantial improvement in processing speed, with a
measured speedup of more than 4x attributable to this aspect.

e Use of code analysis to improve performance. Using the Control Flow
Graph (CFG) obtained from the source code, we assist the classification sys-
tem by constraining the blocks to those that are part of valid sequences.
The intuition is that the probability of misclassification is lower if the clas-
sifier counts on additional information that reduces the set of candidates.
This is illustrated by Figure 1, where sub-figure (a) represents classification
when considering all possible blocks, and sub-figure (b) represents classifica-
tion where a reduced set of candidates is considered. Our technique builds

offo

o &ao
&

%oo &£

(a) Classification of m considering all training (b) Classification of m considering only training
samples as candidates. samples from classes * and o

Fig. 1. Reducing the set of candidates for classification

upon this intuition: by expanding the CFG using a dynamic programming
approach, we validate sequences of blocks; this can be seen as a mechanism
where we obtain fine granularity, but with the equivalent of the classifier
working at a coarser granularity so that it reduces the probability of mis-
classification by working with larger segments.

e Improved methodology and nearly fully automated work flow. We
instrumented the source code using the CFG, allowing us to achieve nearly
full automation of both the training phase and the performance evaluation
phases of the system.

In addition to the experimental evaluation where we measure the performance
of our system, we include a case-study presented as evidence of the usability of
this technique. This case-study applies in the context of runtime monitoring as
well as in the context of computer security, where our technique may be used
as an Intrusion Detection System (IDS) [17] for embedded devices. The case-
study involves introducing a buffer-overflow bug/vulnerability, exploited in two
distinct ways: (i) overflowing the stack to make execution return to a random
address (a “bug” in the conventional sense); and (ii) through a buffer-overflow
attack [1,7], where the stack is overwritten in a controlled way to hijack the
device’s execution. Results from the case-study confirm our approach’s potential
and usability in these two contexts.

1.2 Organization of the Paper

The remaining of this paper proceeds as follows: Section 2 presents a brief review
of signals and system analysis tools. Section 3 describes our proposed approach.
Our experimental setup is described in Section 4, followed by the results in
Section 5, including the case-study. Finally, a discussion and concluding remarks
are presented (sections 6 and7).

2 Background — Frequency Domain Analysis of Signals
and Systems

A discrete-time linear time-invariant (LTT) system can be fully described by its

impulse response, h(n). This impulse response is the output of the system when

the input is the impulse signal §(n), where §(0) 2 1 and 6(k) 20V k # 0. For

an arbitrary input signal z(n), the system’s output y(n) is obtained through the

convolution relationship [24]:

y(n) = Y hk)z(n—k) (1)

k=—o0
A frequency domain representation of a discrete-time signal z(n) can be

obtained through the (Discrete-Time) Fourier Transform F, defined as [24]:

oo

Fla} = X(w) = Y a(k)e (2)

k=—o0

where w is the angular frequency (—m < w < 7), and j denotes the imaginary
unit (ie., j? = —1).!

1 We adopt the electrical engineering convention of using j to denote the imaginary
unit, to avoid ambiguity with the symbol for electrical current or intensity, .

Given the Fourier Transform X'(w), the signal z(n) can be obtained through
the inverse Fourier Transform F !, defined as [24]:

FUXY = a(n) = /X(o.;)ej“"dw (3)

The properties of the Fourier Transform for discrete-time signals regarding
convolution in the time domain are the same as those of the Fourier Transform
for continuous-time signals. In particular, if z(n), y(n), and h(n) follow the
relationship described in Equation (1), then it holds that:

V(W) = X(w)H(w) (4)

where X(w), Y(w), H(w) are the Fourier Transforms of x(n), y(n), h(n), respec-
tively. Thus, given an input signal x(n) and its corresponding output signal
y(n), the impulse response h(n) of the system can be obtained as:

w-r R} -)

To apply frequency domain analysis to a segment or a window of a signal of
length N (viewed as a signal z(n) with 0 < n < N), we use the discrete Fourier
Transform (DFT), defined as [24]:

N—-1
DFT(x) = X(k) = w(n)e =" (6)
n=0
with 0 < k < N. Its inverse operation is given by:
DFTUX) = a(n) = — Ni X (k)ed 25 (7)
N k=0

The DFT can be efficiently computed through the Fast Fourier Transform
(FFT) algorithm [24]. In our case, we used the FFTW library [10], which effi-
ciently computes both FFT and inverse FFT. The DFT represents the Fourier
Transform of a periodic signal with period N where x(n) comprises one pe-
riod of the signal. The properties shown above hold, with the system’s out-
put being given by the circular convolution of the input signal and the impulse
response — convolution computed with time indexes treated in a modulo N fash-
ion. This allows us to obtain the impulse response of a system when looking at
N-samples windows of the related signals:

h(n) = DFT* {7—[= %} (8)
where the quotient H is computed through sample-wise division. That is, for

each k € [0,N), H(k) = ;Jé((i)) :

3 Proposed Technique

This section describes the main aspects and novelty of our proposed technique.

3.1 Frequency Analysis: Classifying and Determining the Shift in
the Power Trace Segments

The main idea and novel aspect behind our proposed approach for classification
is to view the power trace segments as the output of a system whose input is
the power trace of the training samples. For each of the training samples (corre-
sponding to fragments of code) we perform a system identification; in particular,
we obtain the impulse response as described in Section 2. The intuition is that
for the correct fragment, the identified system will correspond to a system that
outputs a copy of the input signal shifted by a certain amount of samples. For
this time-shift system, we know that the impulse response is a single pulse at
the position corresponding to the shift [24].

A key detail is that as the system advances through the trace, the exact
positions where the trace segments begin (i.e., the position at which the corre-
sponding fragment of code started execution) are not given. One advantage of
this system identification approach is that once we determine the best match
among the training samples, the shift in the impulse response reveals the posi-
tion where the match occurs. In terms of execution speed, this represents an
important advantage with respect to the technique in [19], where the system
needs to attempt classification over a somewhat large range of possible starting
positions around the nominal starting point given by the outcome of the previous
classification (see [18] for details).

We have to be careful, however, with the “circular” nature of the DFT-based
analysis: consider a system that shifts the signal by n, samples, with impulse
response h(n) = d(n —n,). If we look at an N-samples window of a periodic
signal, the shift occurs circularly within the window. However, for the case
of a non-periodic signal (as it is our case), shifting the signal and comparing
input and output in the same N-samples window corresponds to truncating the
signal on one end and introducing an alien fragment on the other end. Thus, the
impulse response obtained through DFT analysis within an N-samples window
will not be a single pulse.

The key observation is that for small values of n, compared to N, the impulse
response will be close to a single pulse, since the output corresponds to the linear
superposition of a large fraction of the signal shifted and two signals that are
nonzero only in a small fraction of the interval. Figure 2 illustrates this intuition,
with sub-figure (a) showing the computed impulse response for a shift by a small
amount (5 positions in a 128 samples window) and sub-figure (b) showing the
response for a larger shift (40 positions). The impulse response for the small
shift shows a very prominent pulse at index 5, whereas the response for the
larger shift exhibits a higher “noise level” outside the main pulse near index 40,
thus making the pulse less prominent. It should be obvious that the response
for two unrelated signals should not have any prominent pulses, so we omit any
examples.

08 -
06 B
04 B

Value
Value

0.2 41

02 | I I I I L1
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time index Time index

(a) Shift = 5 (b) Shift = 40

Fig. 2. Examples of impulse responses

3.2 Statistical Pattern Recognition

Though the use of pattern recognition as the main classification technique was
largely replaced by the signal processing approach, some elements from this field
are present. In particular, we use a distance metric to quantify how close the
impulse response is from a single pulse, and this distance is evaluated for the
elements of a database of training samples; we determine the k closest matches
from the database and evaluate the average distance —a logic similar to that
behind the k nearest neighbors (k-NN) rule [26].

For the distance metric, we used the following heuristics: we quantify how
close a given impulse response is from a single pulse based on the following
parameters (computed in the same order as listed):

e Highest value of the signal (the “height” of the main pulse; denoted H,) and
position where it occurs (denoted n,).

e Median of the absolute values of the signal; denoted h.

e Width of the main pulse (obtained from the interval around n, for which
the absolute value of the signal is above h; denoted W),).

e Highest absolute value of the signal outside the interval corresponding to the
main pulse (the “noise” level; denoted Ly,).

With these parameters, the distance, d (a metric corresponding to the natural
notion that the smaller the distance, the closer the match), is given by:

Ly
d = W, x — 9
p Hp ()
The first term accounts for the effect that the narrower the main pulse, the closer
it is to a single pulse. The second term accounts for the effect that the smaller
the values outside the main pulse (relative to the height of the main pulse), the
closer it is to being a single pulse.

3.3 Static Analysis: Using the Control Flow Graph

The second important aspect introduced in this work is the addition of static
analysis tools to assist the classifier by restricting the classification choices to
blocks that constitute allowed sequences. In particular, use of the CFG allows

us to constrain the choice of best match to those that are part of valid sequences.
To this end, we used a dynamic programming approach [6]: at each point in the
classification, we expand the CFG to determine the set of possible paths up to a
given depth (given as a configuration parameter). For each of the nodes in this
expanded/unrolled CFG, we evaluate the distance (as described in Section 3.2).
We choose the path P with lowest sum of distances, and the classifier’s decision
corresponds to the first node in P.

This can be seen as a mechanism where we obtain fine granularity in the ex-
ecution trace, but with the equivalent of using a coarse granularity for the clas-
sification, reducing the probability of misclassification by working with longer
traces. The dynamic programming implementation improves computational effi-
ciency: we advance through the tree, discarding the subtrees of the sibling nodes
to the selected one, but keeping the subtree of the selected node so that we avoid
redundant calculations when expanding the CFG at the new node. Algorithm 1
shows the details of this procedure. In the algorithm, the expression {Suc(:)}
denotes the set of successors of the argument -, and G,, denotes the CFG G with
a state indicating that it is currently at node n.

Algorithm 1: Classification Procedure.

Input: G (CFG), P, (Power Trace), D (Depth)
Output: 7T (Program Trace) Expressed as sequence of blocks

begin
R < RootNode;
repeat D times;
for each leaf node n € R do
n.child_nodes <+ {Suc(Gn)};
Compute distance and start pos. (shift) for added nodes
end
while R leaf nodes not at end of P, do
P <+ Path to leaf with lowest sum of distances;
T« TP
R «+ Subtree with root P(1);
for each leaf node n € R do
n.child_nodes <+ {Suc(Gn)};
Compute distance and shift for added nodes
end

end
end

Notice that this “recursion forward” is possible because we have the complete
trace for analysis; in an actual implementation where the system has to operate
online (i.e., classify traces on-the-fly), this simply means that we have to allow
for a small delay in the classification process, so that at block n of the trace, the

classifier is making the decision for block n — D, where D is the depth of the
expanded CFG.

We also highlight the aspect that this dynamic programming approach of
expanding the CFG can be combined with other classification techniques, since
it relies on a distance metric that quantifies how close given samples are from
training samples. Though our signals and system analysis approach proved
effective, other techniques may be suitable under different conditions, and could
exhibit better results in terms of classifier’s performance. Being able to combine
any such techniques with the CFG expansion approach ensures that one can
improve the classifier’s performance while targeting a fine granularity regardless
of the classification technique being used.

3.4 Segmentation of Traces and Fragments of Source Code

One important limitation in the approach proposed in [19] relates to the diffi-
culty in training the system. For the training phase, fragments of code (whole
functions, in that work) had to be run in isolation and surrounded by markers.
In our proposed approach, during the training phase we run the fragments of
code in the natural sequence as they occur in the source code. An instrumented
version of the source code allows us to segment the trace into the sections that
correspond to the fragments in the source code by flipping a port bit at the
boundaries between fragments. This was done in a way such that the effect on
the power traces is negligible (Section 4.1 describes this setup in more detail).

For the training phase, where we require a priori knowledge of the fragment
of code being executed, an additional instrumented version is created with print
statements at the boundaries between segments. This instrumented instance is
run outside the target, in “offline” mode; both instrumented versions produce
the same execution trace, since the source code is the same for both cases and the
input data is the same (it is chosen at random, but once chosen it is “hard coded”
into the programs— Section 4.1 includes a more detailed description). Thus, the
system can automatically determine the fragment of code corresponding to each
segment of the trace, as marked by the edges in the port bit signal.

3.5 Instrumenting the Source Code

We used LLVM [16] to extract a CFG from the source code. However, for our
setup— with an AVR Atmega2560 [2] operating at 1MHz — basic blocks produce
trace segments that are too short for the classifier to operate successfully. We
devised a procedure to merge CFG nodes into nodes representing larger blocks
of source code, yet maintaining a valid CFG structure? where the beginning of
execution of each block can be marked in the source code.

Since we require markers between segment boundaries, and segments cor-
respond directly with blocks of code associated to CFG nodes, the important
aspect to maintain is preserving the beginning of the block by merging nodes

2 Technically, the resulting graph is not a CFG, since the blocks can contain condi-
tionals; however, it maintains the aspect that is relevant to our application: edges
indicate the possible sequences during execution.

corresponding to short blocks into their predecessor nodes. As an example, con-
sider the subgraph of a CFG shown at the left in Figure 3, where block B is too
short. We merge node B into node A to create node A’. The result is consistent

Fig. 3. Example of merging CFG nodes

with the initial CFG: the meaning of this new CFG subgraph is that if we enter
node A’, then the possible successors are node C (if block B does not get exe-
cuted) or nodes D or E (if B does execute). The beginning of block A’ (the line
in the source code) remains the same as the beginning of block A, and there is
no ambiguity. Block B no longer needs its beginning marked, since block B is
no longer being considered, and instead, it is part of block A’. When executing,
marks are correctly applied at the beginning of each block. Blocks with multiple
possible internal paths are not a problem; we enter block A’ and its starting
point is marked. The next mark will occur at the beginning of one of its suc-
cessors, and execution of any instance of block A’ will be enclosed between the
mark at its beginning and the next mark that appears.

4 Experimental Evaluation

The experimental evaluation includes two parts:

e Random sequence of functions. We evaluate our system against a target
executing randomly generated sequences of MiBench [11] functions, with a
random choice of two functions to execute next at each step in the sequence.
The experiment is run multiple times, and we randomly generate a differ-
ent sequence for each execution. The rationale for this choice is twofold:
(i) it allows us to compare the performance against previous works, espe-
cially against the results reported in [19]; and (ii), a sequence of code with
a “random CFG” constitutes a highly demanding task for our classifier, and
this has two important consequences: the results obtained are not “helped”
by any particular structure of specific software that one may choose for this
purpose; and also, the results are more statistically meaningful.

e Cruise Control application. The target device executes a SCADE 6 [8]
Cruise Control application. This application follows the periodic, real-time
tick based scheme where execution alternates between an interval of compu-
tations and idle. The rationale for using a concrete, real-world application
is also clear: as much as the execution of random sequences of functions has
important advantages, we still want to demonstrate the effectiveness of our

technique on real applications. Not surprisingly, the performance of our sys-
tem was substantially better for this case, given the simpler structure of the
software and the more systematic patterns in the execution.

Many aspects in the experimental setup are common for both parts. The

following section describes the setup.

4.1 Workflow

Figure 4 shows the hardware setup, including the use of two workstations to
automate the experimentation (Figure 4(a)) and the interface subsystem to cap-
ture the power trace and markers through the sound card (Figure 4(b)). The

Workstation 1 Workstation 2

TCP/P
«— — — >

Sound
Card

10k Line In (L)
+

Output PC Running
SEE:‘ ;:Ia"rd portbit the System

usB Target Device
Port (STK600 Board)

\H»

PWR and |SEEEEHE S—
Flashing

(a) Setup for automated experimentation (b) Power trace capture

Fig. 4. Experimental setup

workflow itself does not require two workstations; but the connections for the
signals capture forced us to electrically isolate the flashing from the capture.

The workstations communicate via TCP/IP to synchronize the required ac-
tions: Workstation 2 is the “master” in that it instructs Workstation 1 to gener-
ate an instance of the software and flash the target device. The software running
on Workstation 2 captures and processes the traces. It detects the bit flips (mark-
ers at the boundaries between trace segments) by looking for inflection points
between neighboring minima and maxima. We used the standard numeric ap-
proximations for the derivatives [23], with interpolation to find the position of
the inflection point with sub-sample resolution.

We used a custom-made pseudorandom number generator (PRNG) to ran-
domize the input data and the choice of functions to execute. This ensures that
execution on the target and on the print-instrumented version produce the same
trace. This is not guaranteed if we use the Standard Library PRNG, since it can
potentially vary between compilers. We used a linear congruential generator
with 64-bit internal state, as described in [15]. The PRNG is seeded by the code
generator software running on Workstation 1, using /dev/urandom.

We emphasize the aspect that the training phase and the operation phase
in our experiments always use different input data, to ensure that the results

are meaningful. This is the case since every execution of a function (for either
training or operation purposes) operates on randomly selected input data.

Figures 5 and 6 show the experimental procedures for the training phase and

the performance evaluation phase, respectively.

Training Phase
On Workstation 2: On Workstation 1:

Start audio capture (to temporary storage)

« Wait for Signal from Workstation 2
+ Generate random sequence of function calls

I

« Signal Workstation 1 to proceed
« Wait for Sync pattern detected in audio stream
« Start recording into permanent storage

« Compile printf instrumented versions of main.c and MiBench files
« Execute it, save output and transmit to Workstation 2

I

I

v

When closing Sync pattern is detected
+ Label and save trace (section enclosed by sync patterns)

* Flash the device

« Compile flip-bit instrumented versions of main.c and MiBench files

« Label and save CFG generated by Workstation 1

L]

On Workstation 2, after loop completion:

For each captured trace:
+ Detect edge positions and segment trace
« Label segments by correlating to actual trace file
« (Pre-)Compute FFTs of segments
+ Save to permanent storage according to training database structure

Fig. 5. Procedure for the training phase

The implementations are in fact coded as infinite loops, simply relying on
the user to interrupt the program when they estimate that a sufficient amount

of data has been collected.

Performance Evaluation Phase

On Workstation 2: On Workstation 1:

+ Load training database
« Start audio capture (to temporary storage)

- Wait for Signal from Workstation 2
- Generate random sequence of function calls

I

v

« Signal Workstation 1 to proceed
« Wait for Sync pattem detected in audio stream

)

Workstation 2

+ Compile printf instrumented versions of main.c and MiBench files
« Execute it, save output and transmit to Workstation 2
* Construct CFG (as .dot file) for the sequence and tramsmit to

I

¥

When closing Sync pattern is detected:
« Start recording into permanent storage and processing

I

* Flash the device

+ Compile non-instrumented versions of main.c and MiBench files

Fig. 6. Operation phase and performance evaluation

5 Experimental Results

In this section we present and briefly discuss the results from our experimental

evaluation.

5.1 Classifier’s Performance

The metric used to evaluate the performance is the standard notion of precision.
In our case, this corresponds to the fraction of the time during which the classifier

output corresponds to the correct segment or block (a true positive):

Iy Z |ITP|
S SIS (10)

where P denotes the precision, I7, are the intervals for which the output of
the classifier is a true positive, Iz, are the intervals where the output is a false
positive (a misclassification), and | - | denotes the length of the argument - (the
length of the interval). The notion of recall is not applicable, since at all times
the classifier outputs something —either a true positive or a false positive.

Table 1 shows the measured precision for the various experiments, includ-
ing 95% confidence intervals. The “Raw” measurement is the precision obtained
while the system is in sync with the CFG—roughly speaking, it corresponds
to the probability of correct classification when the candidates are restricted to
the actual possible options. It was measured by counting misclassifications but
correcting them so that the next classification is done with the correct set of
candidates. The purpose of this metric is to isolate the effect of using the CFG
to narrow down the set of candidates for the classifier from the issue of hav-
ing to maintain sync with the CFG. This allows for a more direct comparison
against the results in [19], as they report the precision when classifying functions
executed in isolation as well as the overall system precision including the task
of maintaining sync after misclassifications. With the use of the dynamic pro-
gramming / CFG expansion approach, the experiment with random sequence of
functions used a depth of 8 for the tree, and with the cruise control application,
a depth of 5.

Cruise Control
Random Sequence Application
Raw 97.1% =+ 0.3% ——
With CFG Expansion 86.25% =+ 3.4% 95.68% =+ 0.01%

Table 1. Classifier Precision.

The results show a reasonably good precision, given the granularity at which
our system operates— 800 functions correspond to approx. 3000 nodes, giving a
granularity close to four times finer than that reported in [19]. Working at this
substantially finer granularity, the precisions that we obtain are similar to those
in [19]: 97.1% precision for classification of individual blocks; close to the 98%
reported in [19] when classifying individual functions in isolation. And 86.25%
overall precision, with the classifier never going out of sync; in the same order
as the 88% reported in [19]. For the SCADE application, the performance was
substantially higher, even when working with a lower recursion depth (which
also improves execution speed), and the classifier never went out of sync.

Observation of the classifier’s output additionally gave us several interesting
insights that will be discussed in Section 6.

5.2 A Case-Study: Buffer Overflows

As a case-study to assess the usability of our runtime monitoring technique
in practice, we repeated the experiments with a deliberately introduced defect
that allows buffer overflows. We performed this modified experiment in two
distinct ways: overwriting the return address with a random value (a “bug” in
the conventional sense); and overwriting the return address with a crafted value
to cause execution to return to a different address (a buffer-overflow / code
reuse attack). As expected, for both scenarios the system irrecoverably went out
of sync with the CFG and misclassified essentially every segment after the buffer
overflow occurred.

The shifts in the trace segments (the deviation of the starting point with
respect to the “nominal” position, given by the outcome of the previous classifi-
cation) provide a good indicator of an out-of-sync condition. When the system
is operating normally, we expect the shifts to be small, to compensate for minor
deviations due to measurement noise. When operating on a trace that is not
consistent with the CFG, the matches are found at somewhat random positions,
resulting in large values of the shifts. Figure 7 shows the shift values for the case
where the buffer overflow occurs at the seventh block; as expected, we observe
a noticeable increase in the values after that position.

Shift of Segment Position

o . N B A VAN Y
0 5 10 15 20 25 30
Block #

Fig. 7. Effect of a buffer overflow bug/attack on the classifier’s shifts

Though we did not incorporate any formal anomaly detection techniques [3]
to automate the reporting of these unrecognized segments, the results represent
encouraging evidence to the usability of our technique in the context of either
monitoring to detect faulty behavior or as an IDS.

6 Discussion and Future Work

One of the positive aspects to highlight relates to the potential for usability of
our system as a runtime monitoring tool in real-world systems; the experimental
results confirm this potential for cases where execution follows the CFG but
deviating from specifications (e.g., an infinite loop due to lack of validation of
input data) and also the cases where execution violates the CFG constraints (e.g.,

stack corruption, invalid pointer accesses, malware/tampering, etc.). Combining
our approach with the technique in [20] is a promising avenue to further improve
our system’s performance, and is one of the aspects suggested as future work.
The following are some of the interesting insights that we obtained from this
work, in particular from analysis of the classifier’s output from the experiments:

e Use of additional static analysis to improve the precision of the
classifier. We could observe that one of the main opportunities for misclas-
sifications arises from segments that are short in length and where the CFG
expansion allows a substitution without getting out of sync. Static analysis
could reduce the set of paths that can execute (with respect to using the
CFG alone). This would also improve speed, as it reduces the size of the
expanded CFG in our dynamic programming algorithm in the classifier.

e Using the shifts to avoid misclassifications. We could observe several
instances where the shifts (the deviation from the nominal starting point of a
segment) could help correct misclassifications; indeed, several errors occurred
for instances where the correct path was A — B — C and the classifier
output A — C, with a large positive shift for A and a large negative shift
for C', which suggests that the choice A — B — C was likely the correct one
(in any case, the system could confirm this if it verifies that the shifts for
the former case are small).

e Optimizing the choice of CFG blocks. The choice of CFG blocks could
be adjusted to improve the classifier’s performance; for example, this could
address the aspect mentioned above, where a short segment is incorrectly
selected without getting out of sync. By looking at the training samples and
estimating probabilities of correct classification, situations prone to errors
could be identified and avoided through a different choice of CFG blocks,
obtained by merging blocks in different combinations.

7 Conclusions

In this paper, we presented a non-intrusive program tracing technique and
showed its applicability to runtime monitoring. We used a novel signals and sys-
tem analysis approach, combined with static analysis to further improve both
performance and methodology. The proposed technique exhibits substantially
better performance compared to previous work on power-based program trac-
ing, as it has comparable precision while working at a granularity level close to
four times finer. A case-study confirmed the potential of our technique either
as a runtime monitoring tool or as an IDS for embedded devices.

Acknowledgments

The authors would like to thank Pansy Arafa, Hany Kashif, and Samaneh Nav-
abpour for their valuable assistance with the CFG and instrumentation infras-
tructure as well as related discussions.

This research was supported in part by the Natural Sciences and Engineering
Research Council of Canada and the Ontario Research Fund.

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

. Aleph One: Smashing the stack for fun and profit. Phrack magazine (1996)
. Atmel Corporation: AVR 8-bit and 32-bit Microcontrollers (2012),

http://www.atmel.com/products/microcontrollers/avr

Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. ACM Com-
puting Surveys (CSUR) (2009)

Chen, F., Rosu, G.: Java-MOP: A Monitoring Oriented Programming Environ-
ment for Java. In: 11th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (2005)

Clark, S.S., Ransford, B., Rahmati, A., Guineau, S., Sorber, J., Fu, K., Xu, W.:
WattsUpDoc: Power Side Channels to Nonintrusively Discover Untargeted Mal-
ware on Embedded Medical Devices. In: USENIX Workshop on Health Information
Technologies. USENIX (2013)

. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.

The MIT Press, Third edn. (2009)

Designer, S.: “return-to-libc” Attack. Bugtraq (Aug 1997)

Dormoy, F.X.: SCADE 6: A Model Based Solution for Safety Critical Software
Development. In: Proceedings of the 4th European Congress on Embedded Real
Time Software (ERTS’08) (2008)

Eisenbarth, T., Paar, C., Weghenkel, B.: Building a Side Channel Based Disas-
sembler. In: Transactions on Computational Science X, pp. 78-99. Springer Berlin
Heidelberg (2010)

Frigo, M., Johnson, S.G.: The Design and Implementation of FFTW3. Proceedings
of the IEEE (2005), special issue on “Program Generation, Optimization, and
Platform Adaptation”

Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown,
R.B.: MiBench: A free, commercially representative embedded benchmark suite.
In: Proceedings of the Workload Characterization. IEEE Computer Society (2001)
Havelund, K.: Runtime Verification of C Programs. In: International Conference
on Testing of Software and Communicating Systems (2008)

Havelund, K., Rosu, G.: Monitoring Java Programs with Java PathExplorer. Elec-
tronic Notes in Theoretical Computer Science 55(2), 200 — 217 (2001), RV’2001,
Runtime Verification

Kim, M., Viswanathan, M., Kannan, S., Lee, 1., Sokolsky, O.: Java-MaC: A Run-
Time Assurance Approach for Java Programs. Formal Methods in System Design
24(2), 129-155 (2004)

Knuth, D.E.: The Art of Computer Programming. Volume 2: Seminumerical Al-
gorithms. Addison-Wesley, Third edn. (1998)

Lattner, C., the LLVM Developer Group: The LLVM Compiler Infrastructure —
online documentation, http://1lvm.org

Matt Bishop: Computer Security: Art and Science. Addison-Wesley (2003)
Moreno, C.: Side-Channel Analysis: Countermeasures and Application to Embed-
ded Systems Debugging (2013), PhD Thesis (University of Waterloo)

Moreno, C., Fischmeister, S., Hasan, M.A.: Non-intrusive Program Tracing and De-
bugging of Deployed Embedded Systems Through Side-Channel Analysis. Confer-
ence on Languages, Compilers and Tools for Embedded Systems pp. 77-88 (2013)
Moreno, C., Kauffman, S., Fischmeister, S.: Efficient Program Tracing and Mon-
itoring Through Power Consumption — With A Little Help From The Compiler.
In: Design, Automation, and Test (DATE) (2016)

21.

22.

23.

24.

25.

26.

Navabpour, S.; Joshi, Y., Wu, W., Berkovich, S., Medhat, R., Bonakdarpour, B.,
Fischmeister, S.: RiITHM: A Tool for Enabling Time-triggered Runtime Verification
for C Programs. In: Foundations of Software Engineering. pp. 603-606. ACM (2013)
Pnueli, A., Zacks, A.: PSL Model Checking and Run-Time Verification via Testers.
14th International Symposium on Formal Methods (2006)

Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C.
Cambridge University Press, Second edn. (1992)

Proakis, J.G., Manolakis, D.G.: Digital Signal Processing: Principles, Algorithms,
and Applications. Prentice Hall, Fourth edn. (2006)

Seyster, J., Dixit, K., Huang, X., Grosu, R., Havelund, K., Smolka, S.A., Stoller,
S.D., Zadok, E.: Aspect-Oriented Instrumentation with GCC, pp. 405-420 (2010)
Webb, A.R., Copsey, K.D.: Statistical Pattern Recognition, 3rd ed. Wiley (2011)

