Using Link-level Latency Analysis for Path Selection for Real-time Communication
on NoCs

Hany Kashif, Hiren D. Patel and Sebastian Fischmeister

Electrical and Computer Engineering
University of Waterloo, Waterloo, Canada
e-mail: {hkashif, hdpatel, sfischme} @uwaterloo.ca

Abstract— We present a path selection algorithm that is
used when deploying hard real-time traffic flows onto a chip-
multiprocessor system. This chip-multiprocessor system uses a
priority-based real-time network-on-chip interconnect between
the multiple processors. The problem we address is the following:
given a mapping of the tasks onto a chip-multiprocessor system,
we need to determine the paths that the traffic flows take such that
the flows meet there deadlines. Furthermore, we must ensure that
the deadline is met even in the presence of direct and indirect in-
terference from other flows sharing network links on the path. To
achieve this, our algorithm utilizes a link-level analysis to deter-
mine the impact of a link being used by a flow, and its affect on
other flows sharing the link. Our experimental results show that
we can improve schedulability by about 8% and 15% over Mini-
mum Interference Routing and Widest Shortest Path algorithms,
respectively.

I. INTRODUCTION

To deploy hard real-time embedded applications, it is im-
portant to accurately predict its worst-case execution times
(WCETs). The tasks of the application are schedulable if the
WCETs are less than or equal to the temporal deadlines of
the application tasks. A WCET analysis typically uses static
program analysis techniques, and combines it with a platform
model with details of its pipeline micro-architecture, cache or-
ganization, and exception mechanisms to produce an upper-
bound on the execution time of the task. However, with
chip-multiprocessing architectures becoming common nowa-
days, we must include the execution delays experienced by the
communication between multiple processing elements in the
WCET analysis. This is known as on-chip real-time communi-
cation.

The common on-chip interconnects for real-time either use
resource reservation or run-time arbitration. An example of re-
source reservation is time-division multiplexing (TDM) as pro-
posed by AEthereal NoCs [1]. TDM NoCs allocate resources
statically prior to the execution of the application, and man-
dates a static schedule identifying when packets are transferred
on specific channels. It ensures that there is no contention for a
resource between any two packets. Runtime arbitration NoCs,
on the other hand, use priority-aware routers (PAR) to arbitrate
channels at runtime. This introduces contention, but expects
the analysis to accommodate it. An example is proposed by
Shi et al. [2,3]]. The advantage of PAR NoCs over TDM NoCs
is that resources are better shared and reused. In addition, low

latency flows in TDM are tightly coupled with the bandwidth
resulting in the over-allocation of bandwidth. Therefore, we
focus on CMPs with a PAR on-chip interconnection network.

There are two approaches to the WCET analysis of PAR
NoCs: Shi etal. [2,13] provide a flow-based analysis (FLA), and
the other approach is a link-level analysis (LLA) for WCET es-
timates. At the expense of a detailed analysis, LLA results in
significantly tighter bounds than FLA. These analyses model
communication as periodic flows on the PAR NoC, and they
assume that the mapping of flows, and the paths the flows take
are given. The set of flows of an application are schedulable if
the WCET of every flow is less than or equal to its deadline.
However, we notice that for an application with the same set of
flows and deadlines, the choice of paths can greatly influence
the schedulability result of the entire application. Assuming a
given mapping of the flows onto the NoC, we contend that by
judiciously selecting the paths the flows take, we can increase
the number of schedulable flows; in turn, allowing more tasks
to be schedulable.

This brings us to the main contribution of our work: a path
selection algorithm (PSA) assisted by the LLA that aims to im-
prove the number of schedulable flows by selecting appropriate
paths in the NoC. We use LLA because it considers the pipelin-
ing effect of worm-hole switched NoCs, and it provides tight
WCET bounds. This is unlike FLA, which treats the flow as
an indivisible unit across multiple network links. In particular,
we propose a PSA that utilizes observations from LLA to ef-
ficiently select paths in the PAR NoC. To avoid the high com-
plexity of an optimal algorithm, PSA uses heuristics to find
least interference paths and to consider lower priority flows
while selecting paths for the higher priority ones. Based on
our experimentation results, we can improve schedulability by
about 8% and 15% over Minimum Interference Routing and
Widest Shortest Path algorithms, respectively.

II. RELATED WORK

Worst-case latency computation on inter-process communi-
cation in real-time systems is well-established for connection-
based packet networks [4}15]. However, these methods are inef-
ficient due to the overhead of the establishment and tear down
of channels between source and destination pairs which con-
tributes to the communication latency, as well as under utiliza-
tion of the system’s resources. Storing of packets at interme-
diate nodes requires expensive buffer capacity for storing early
arriving packets and queueing packets in order of arrival [4]].

An alternative option is worm-hole switching, which in-
creases throughput, and decreases the required buffer capac-
ity in the network. The authors in [2 3] present an efficient
method for WCET analysis of flows (recall FLA) with worm-
hole switching in a PAR NoC. They view a flow and its path
as one indivisible entity. This flow-level view of the communi-
cation in the PAR NoC leads to two issues: (1) Overestimation
of the worst-case latencies when compared to what could be
achieved using LLA, and (2) High cost of using FLA for path
selection because the smallest unit at which we view a flow is
its whole path. Thus, requiring a path selection algorithm using
FLA to enumerate all paths.

Several algorithms exist for path selection in a network.
Among these are Shortest Path, Widest Shortest Path, and
Shortest Widest Path, which are greedy approaches. Another
class of algorithms consider other flows while selecting a path,
but are more computationally expensive. Examples are Min-
imum Interference Routing [6], Light Minimum Interference
Routing [[7]], and Profile-based Routing [8]]. Distributed routing
algorithms also exist [9], which are online algorithms that ei-
ther require a global state which leads to high communication
overhead and performance degradation or do not share a global
state and compensate with large number of control messages
and subsequently do not scale.

There is also research on path selection for worm-hole
switched networks [10, (11} [12 [13]]. Some of these meth-
ods attempt to find contention free paths or minimize total
cost, sometimes leading to higher ratios of unschedulability
of flows [13]. Others attempt to minimize the maximum
contention value, which is similar to the techniques used in
MIRA [6l [7]. However, all of these approaches consider the
path of a flow as an indivisible unit, thus cannot use actual
latency costs that would require a computationally extensive
enumeration of paths. Contrary to that, we construct a path by
using link latencies as costs to find the most suitable path for a
flow.

III. BACKGROUND: NETWORK MODEL

For an application with parallel tasks, we assume a given
mapping of these tasks on the PAR NoC. We only consider
PAR NoCs with mesh topologies. These tasks are marked as
source and destination pairs based on the communication flow
between them. All nodes of the PAR NoC contain both a pro-
cessing element that executes tasks, and a router. Recall that in
the PAR NoC, the routers are priority-aware arbiters that im-
plement worm-hole switching with flit-level preemption, and
flow control. The router architecture we employ was originally
proposed in [2} 3]], but for clarity we briefly describe its archi-
tecture. The router has a VC for every distinct communication
flow with a unique priority that passes through the router. Con-
sequently, there exists a VC for each priority level. The VCs are
designed as FIFO buffers at the input ports of the router. These
FIFOs store the flits to be routed. The router selects the output
port for a flit in the VCs based on its desired destination. When
there are multiple flits waiting to be routed, the router selects
and forwards the flit to the output port with the highest priority
amongst all the waiting flits. Flow control guarantees that the
router only sends data to the neighbouring router if the neigh-
bour has enough buffer space to store the data. If the highest

priority flit is blocked in the network, the next highest prior-
ity flit can access the output link. Nodes are connected using
bidirectional links with uniform bandwidth.

Since there is a VC for every distinct communication flow,
this guarantees that deadlocks due to cyclic dependencies never
occur. The reason is that each flow has its own buffers and thus
never blocks another flow for buffer space. If we, however,
extend our model to allow sharing of VCs by multiple flows,
we must guarantee that our deterministic path selection algo-
rithm is still deadlock-free. We can achieve this by ensuring
that as the algorithm proceeds, we have an acyclic channel de-
pendency graph [[14].

We model the network as a graph G = (V, E), and a set
of periodic real-time communication flows I' = {7q,...,7%}.
A flow 7; is a tuple (vs,va, L;, P;, T;, D;, J{*) where v, and
vq are the source and destination nodes, L; is the basic link
latency, P; is the priority, 7; is the period, D; is the deadline,
and JI? is the release jitter. The basic link latency L; equals
w, which is the total packet size (number of

bandwidth
flits multiplied by the flit size) divided by the link bandwidth.

IV. LINK-LEVEL ANALYSIS

LLA computes the worst-case latencies by including the di-
rect, and indirect interferences caused by flows sharing links
on a path. We present an overview of this link-level analysis in
this section.

Assume that the latency of a flow 7; suffering interference
from a higher priority flow 7; on a particular link e in the
NoC is given by M; . The interval during which 7; pre-
empts 7; is M;, + Jf* 4 J| where J] is the interference jit-
ter of 7; which represents any interference 7; suffers from
higher priority flows. Hence, the number of times that 7; pre-
Mi R4 -

7 1. The total contribution of flow
R I
7; in the latency of 7; is then given by f%] * Lj.
Therefore, the worst-case latency of 7; is equal to M, =
i M; +JF+J]
T;
R I
M;, = quesf’ [%] * Lj + L; where SP is the

set of higher priofity flows directly interfering with 7; on e.

empts 7; equals [

| * L; + L;. This form can be generalized to

72

>
>

Vi V2 V3 V4

— 70 > T

Fig. 1: [llustrative example

LLA provides tighter bounds than FLA as presented by Shi
and Burns [2, 3]]. We use the example from Figureﬂ]to describe
the difference between both types of analyses, and further ex-
plain the details of LLA. Consider the data given in Table [l
for flows 7y, 71 and 7o that are ordered in decreasing prior-
ities. The FLA in [2} [3] views the path of 75 as one entity
suffering simultaneous interference from both 79 and ;. Basi-
cally, FLA computes the number of times higher priority flows
interrupt a packet of a particular flow. It then multiplies the
number of interrupts by the latency of the higher priority pack-

ets to get the total interference latency, and adds the interfer-
ence latency to the basic flow latency to get the worst-case la-
tency. The total worst-case latency for 7 in this case is given
by My = [M2] %2+ [227 %2+ 5 (for illustration purposes of
the FLA, we neglect the routing delay in this particular compu-
tation). Notice, that this equation has no solution which follows
directly from the fact that each of the flows 7y and 7 utilizes
2 time units with a period of 4 units thus needing 50% of the
capacity and deeming 7, unschedulable.

TABLE I: Illustrative example data

Flow |[L| T |D|J
o | 2] 440
no| 2041410
™ | 5(30]30]0

LLA, on the other hand, analyzes each link separately. The
latency on link (vy,v2) equals My = (% x2] +5=11.
suffers no interference on link (v, v3) and, hence, in the worst-
case, the packet from the previous link (v;, v9) continues with
the same latency of 11 time units. The interference that occurs
on (v1,v2) is the intermission of 7 flits by flits of 7y result-
ing in a sequence of flits from both flows. This interference
discontinues on the next link but still leaves gaps between the
flits of 75 and, hence, leading to the conclusion that the latency
stays the same in the worst-case. On link (vs,v4), 71 interferes
with 75, but in this case the time interval between the first and
last flits of the 5 packet is different from the first case on link
(v1, v2) (due to the gaps caused by 7g). Therefore, to calculate
the latency on link (v3, v4), instead of using Lo in the latency
equation, we use the latency from the previous link. The la-
tency then becomes M, = [#2 % 2] 4+ 11 = 23. The total
latency using LLA is My = 23 4 3 = 26 (assuming a one time
unit routing delay per hop).

A conclusion that can directly be drawn from the compari-
son of LLA and FLA is that LLA provides tighter worst-case
latency upper bounds. It can also easily be shown that in the
worst-case of interferences (all interfering flows share all links
with the flow of interest) the LLA provides an equivalent re-
sult to that of the FLA. Tighter latency upper bounds improve
the schedulability of time-constrained flows in a NoC as it has
been shown in the previous example.

V. PATH SELECTION

For a hard real-time system, the path selection problem is the
following: find the possible paths that flows can take given their
source and destination (S, D) pairs, and flow requirements
such that the flows meet their respective deadlines. That is,
given a graph G = (V, E), and asetof flows ' = {1y, ..., 7%},
is it possible to select a path §; for each flow 7; such that its
worst-case latency is less than or equal to its deadline D;?

A. Optimal Path Selection Algorithm

Objective. Satisfy the deadline requirements of the flows by
searching all possible paths from source to the destination of
each flow.

Assuming that a path visits a node only once, each flow will
have 4 % 3V~ ! possible paths (assuming a NoC with v nodes) in
a mesh topology because from each node descends three pos-
sible nodes to traverse (four for the source node). An optimal
algorithm selects a path for the first flow, then selects one for
the second and so on. If at any point the deadline constraints
are not met, the algorithm backtracks one step and selects an
alternative path. Hence, the decision tree has k levels corre-
sponding to the number of flows, and from each node descends
43V~ choices that correspond to all possible paths. The total
complexity of the algorithm, therefore, becomes O((3?)%).

B. Heuristic-based Path Selection Algorithm

The optimal path selection algorithm has a high exponen-
tial complexity which makes it impractical. Therefore, we
present a heuristic-based path selection algorithm (PSA) that
uses the link-level analysis (LLA) to guide the path selection.
We pointed out in Section [I'V|that the worst-case latency of a
flow on a link depends on its latency and the interfering flows
on the preceding link. Since we are concerned with path se-
lection, we require a heuristic so that the algorithm does not
have to backtrack, and in the worst-case enumerate all paths.
We also need a heuristic that while the algorithm routes higher
priority flows, considers lower priority ones.

Objectives

Our overall goal with path selection is to select paths for
flows that improve the schedulability of the flows while incor-
porating the following:

Objective 1. Account for lower priority flows.

While selecting paths for higher priority flows, expected
paths for lower priority ones are taken into account to maxi-
mize schedulability. Otherwise, the PSA might overload some
links making lower priority flows unschedulable. By account-
ing for lower priority flows, we prevent the lower priority flows
from being starved.

Objective 2. Consider the availability of shortest paths.

The criticality of links for lower priority flows depends on
their utilization as part of all available shortest paths. The intu-
ition behind the criticality is that the more the number of avail-
able shortest paths, the more likely it is for a lower priority flow
to be schedulable. Similarly, the lower the number of available
shortest paths, the less likely it is for the lower priority flow to
be schedulable. This concept is similar to that of critical links
in [6, [7]].

Objective 3. Minimize the heterogeneity of interfering flows.

We promote sharing of links between flows that share prior
links. Consider a flow 75 that has a path with 3 links. Using the
data in Table [I| if 75 has interference with 7 on the 1°¢ link,
with 71 on the 2%, and none on the 37%, the latency on the
1°! link equals R5 = [£5] 2 4+ 9 = 13, on the 2"¢ equals
Rs = [%] %2+ 13 = 19, and on the 3" equals 19. The total
worst-case latency is 22. However, if 75 has interference with
To on all 3 links, then the latency on each link equals 13, and
the total worst-case latency is 16. Hence, we identify from LLA

that a flow 7; sharing multiple links with a flow 7; results in a
lower worst-case latency than sharing fewer links with different
flows. Therefore, PSA favours sharing links with the same flow
over a variety of flows.

Algorithm

We use the interference that a flow suffers on a link as the
cost of that link. We construct the network graph G to cap-
ture the topology, and as the algorithm proceeds, it adds edges
that represent sharing more than one successive link with the
same flow, but do not actually exist as links in the NoC. These
edges hold the cost of interference over multiple links, and the
intermediate nodes that represent actual NoC nodes. So for ex-
ample, if the algorithm selects the path [vy, va, v3] for flow 71,
then when selecting the path for 75, the algorithm will set the
interference for links (v1,v2) and (ve,v3) and creates a new
edge (vy,v3) that has a cost of interference with 7; on both
links and saves v9 as an intermediate node. Although, this is
not an optimal solution for representing all possible cases of
multiple link interferences, this heuristic allows us to achieve
objective 3 efficiently and maximize schedulability.

Since we do not enumerate all possible paths, the order of
selecting paths to flows affects the latencies and the overall sys-
tem schedulability. Accommodating multiple flows in the net-
work is known as the multi-commodity flows problem, which
is an NP-Complete problem [15} [8]. Once again, this makes
the path selection algorithm intractable. We perform the path
selection process according to the priority of the flows: higher
priorities first. However, we still accommodate lower priority
flows while selecting a path for a higher priority flow using
three different heuristics.

H 1. Identify critical links as ones with least residual capacity.
Residual capacity is the difference between the capacity of a
link and the flow being transmitted over it.

H 2. Identify critical links as the links constituting the paths of
lower priority flows with only a single shortest path.

H 3. Assign costs to all links in all shortest paths of each lower
priority flow. This cost depends on the number of available
shortest paths to a flow, and how critical the links are depend-
ing on how many shortest paths use the same link.

The input to the Algorithm [T]is a PAR NoC with a mesh
topology of size n x n represented as a graph G = (V| E),
and I" with k flows ordered according to their priorities with
1 being the highest. The output is a set of paths for each of
the flows in I'. When selecting a path for a flow, the algorithm
updates the cost of that path in the graph G. The cost on each
edge accounts for both higher and lower priority flows (using
one of the three heuristics).

To account for lower priority flows using H3| the algorithm
finds the number of shortest paths available, and the number
of times each edge is used amongst all the shortest paths for
every lower priority flow. The simplest method to obtain this
information finds all the shortest paths for a flow, which for a
mesh topology has a complexity of 22*("—1) je. 2. However,
notice that that the information we require depends only on the
relative = and y positions of the source and destination nodes:

Algorithm 1 PATH-SELECTION

Input: G(V,E),I' = {7, : Vi € [1,k]}

Output: {4, : Vi e [1,k]}
Let SPC[1,n — 1][1,n — 1] be an empty array
Let SPE[1,n — 1][1,n — 1] be an empty array

SPCli,j] + MAXY (i,j) € M
LOWER-PRIORITY (SPC, SPE,n — 1,n — 1)
for all 7; € I" do
LetG'(V/,E'Yst. V' =V and E' = F
fOI‘Tj S [TZ‘+1,. .. ,Tk} do
Az + |(vs, mod n) — (vg, modn)|
Ay — |vsk/n - 'Udk/nl
for alle € SPE[Axz, Ay] do
o
w(Ge) + w(G' e) +w
updateIntermediate(G', e)
end for
end for
8; < Dijkstra(G',vs,,va;)
8; + expandIntermediate(G’, &;)
INTERFERENCE-COSTS(G, §;)
end for
return {§; : Vi € [1,k]}

Az and Ay. Hence, we use memoization, which is a form of
dynamic programming that reduces the complexity to n. The
algorithm makes a single call to Function [3]that calculates the
number of shortest paths, and the count of each edge on these
paths for all possible combinations of Az and Ay. Array SPC
stores the number of shortest paths available for a given Ay and
Az, and array S PF stores, for every Ay and Az, the number
of times each edge appears on these shortest paths. SPC' has
n? entries while S PE has n?*2nx*(n—1) entries. The function
recursively uses the information from nodes with lower values
of Ay and Az.

Each selected path will add
graph according to Function [The function call
edgelInter ference(G,e) calculates the interference on
edge e, and function nodeInter ference(G, [v;, ..., v;]) com-
putes interference on a sequence of adjacent nodes [v;, . . ., v;]
forming a path. When the algorithm selects a path for a flow,
it adds edges between each node on the path and all of its
successive nodes. intermediate holds the intermediate nodes
in newly created edges. If the edge is an actual link, then the
algorithm will add the interference on that link to the weight
of the edge. However, if it is not a link, then the algorithm
will set the weight of the edge to the interference on the path
formed by the intermediate nodes of that edge in one of three
cases: (1) the edge does not exist, or (2) the edge exists and
has the same intermediate nodes as the one the algorithm is
adding, or (3) the interference on the edge being added is less
than the existing one.

interferences to the

Algorithm |1 adds costs to the edges based on a speculation
of the paths that will be selected for lower priority flows as de-
scribed above. The function count(SPE]i, j], e) retrieves the
count of an edge e for a specific Ay and Ax. The function
expandIntermediate(G, J) replaces edges in a path that do
not belong to the actual topology with the equivalent interme-

diate nodes. The function updateIntermediate(G, e) updates
the costs of all edges that do not belong to the topology if they
have the edge e as an intermediate edge. The algorithm calcu-
lates Ay and Az for each lower priority flow and adds a cost to
the links involved. A weight is used to represent the criticality
of the edge which is equal to the edge count in S PFE divided by
the number of shortest paths. This weight is multiplied by Ly
the basic latency of the lower priority flow over the slack that
it has to its deadline on the speculated path where Dj is the
deadline and C}, is the best case latency. Dijkstra’s algorithm
is used to find the least cost path for the flow being routed.

Function 2 INTERFERENCE-COSTS
Input: G, 6 = [vs,...,v4]
for all v; € 6 do
for v; € [vi, ...
e <+ (vs,v5)
if j — ¢ =1 then
w(G, e) « edgelnter ference(G, e)
elseif w(G, e) = 0VnodelInter ference(G, [vs, . ..
w(@G, e) V intermediate(G, e) = [vi, ..., v;] then
w(G,) < nodelnter ference(G, [vi, . . ., v;])
intermediate(G, e) = [vi, ..., v;]
end if
end for
end for

s vd] do

,vi]) <

Function 3 LOWER-PRIORITY
Input: SPC, SPE, i, j

if SPCJi, j] < MAX then
return SPC(i, j]

end if

ifi = 0 & j = 0 then
SPCli,j] + 1
SPE[i,j] + []

else if i = 0 then
SPCli,j] + LOWER-PRIORITY(SPC,SPE,i,j — 1)
SPE][i,j] < SPE[i,j — 1] + edge(i, j,i,5 — 1)

else if j = 0 then
SPCli, j] < LOWER-PRIORITY (SPC, SPE,i—1,j)
SPE[i,j] < SPE[i — 1, 7] + edge(i, j,i — 1,7)

else
SPCli,j] +LOWER-PRIORITY (SPC, SPE,i,j — 1)+
LOWER-PRIORITY (SPC,SPE,i—1,j)
SPEli,j] < SPE[i,j— 1]+ SPE[i—1, j] +edge(i, 3,1, —
1) + edge(i, j,i — 1,7)

end if

Complexity Analysis

Recall that we have k flows in a graph with v vertices. Func-
tion [3 has a complexity v and is called only once. At worst,
each flow will have a path with v nodes. The number of edges
that the algorithm will create is given by: k*((v—2)+(v—3)+

D) =kx Zf:_;(v —4). Thus, in the worst case, the algo-
rithm will create k * v? edges. The functions Dijkstra and
expandIntermediate have linear complexity v. The func-
tion updateIntermediate uses a structure that saves, for each
edge, newly created edges which it is a part of as an intermedi-
ate edge. The maximum number of edges that can be involved

in all shortest paths between 2 nodes is 2(v — 1/v). The overall
complexity is therefore given by: k2 x2(v — \/v) * k *v? which
is O(k3 xv3). Although, this is a high complexity compared to
minimum interference algorithms for example, PSA never elic-
its that upper bound computation time which assumes that each
edge is part of all newly created edges. It would be beneficial
to compute the expected case complexity, but due to space con-
straints we only present the experimental computation times of
the algorithm.

VI. EXPERIMENTATION

We quantitatively compare PSA with the three different
heuristics against the widest shortest path (WSP), and the min-
imum interference routing algorithm (MIRA) [6, [7]. We vary
several parameters during experimentation to assess its effect
on the schedulability of flows, and the execution time of the
different algorithms. Our experiments uses 4 x 4, and 8 X 8
mesh topologies for the NoC. The basic link latency of a flow
is randomly chosen from a uniform distribution in the range
[16,1024]. The link utilization of a flow 7; is its basic link la-
tency divided by its period: U; = L;/T;. We vary the link
utilization between [0.4,0.85] in step increments of 0.05. The
deadline D; takes values between [0.7,1.0] in increments of
0.1 as aratio of period 7;. The number of flows in the network
range between [10,100] in steps of 10. With these parame-
ters, we have 800 different configurations. For each configu-
ration, we generate 1000 test cases with a random mapping of
the source and destination nodes of the flows for each test. All
tests were run on an AMD Opteron 6174 2.2 GHz processor
with 8.0 GB of memory.

Figure [2a] shows the ratio of the number of unschedulable
flows for MIRA and the three proposed heuristics to WSP
against the number of flows for an §x8 mesh with U = 0.4.
For a given number of flows, each box in the figure represents
1000 random test cases. The boxes represent the lower quartile,
median and upper quartile of the data, and the whiskers show
the minimum and maximum observations. It is clear that H2I
and H3|always perform better than WSP and MIRA except for
the maximum observations. HI|has a comparable performance
to MIRA for 10 flows and performs better as the number of
flows increase. H]|starts performing better than H2| and H3|as
the number of flows increases beyond 40 flows. For lower num-
ber of flows, using shortest paths heuristics (H2] can help
leave these paths open for lower priority flows thus increasing
schedulaiblity over Howeyver, as number of flows increase,
these paths are occupied and avoiding links with low residual
capacity (HTI)) becomes more important and improves schedu-
lability. The graph also shows that for a small number of cases,
WSP has less unschedulable flows compared to the other algo-
rithms. The reason is that, in these cases, increasing the cost of
critical links leads to selecting non-shortest paths. This leads
in some cases to unschedulable flows due to high interference
on the chosen paths.

Figure shows the average execution times of the algo-
rithms against the number of flows. Each point represents an
average of 80, 000 test cases with 1000 for each of the 80 dif-
ferent configurations. WSP takes the least amount of execution
time, and HZ|closely follows MIRA. H]and H3] however, have
higher execution times. The reason is that H2| only adds costs

o Ratio of MIRA to WSP foo

Ratio of H1 to WSP T
= Ratio of H2 to WSP [
= Ratio of H3 to WSP L -

60
|

50
|

Number of Flows
30 40
|

20
|

10

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Ratio of Unschedulablé Flows

(a) Ratio of unschedulable flows compared to WSP against the num-
ber of flows for an 8 X 8 mesh with U = 0.4 and D = 1.0

800

600

200

Computation Time [mSec]
400

—%— WSP
-+- MIRA

10 20 30 40 50 60 70 80 90
Number of Flows

100

(b) Average computation times for the different algorithms against
the number of flows

Fig. 2: Experimental results

to lower priority flows with one shortest path, thus doing less
computations than HT]and H3] H3|has the highest computation
time because it updates the cost of all edges in all shortest paths
of lower priority flows.

In summary, for all 800, 000 tests, we observe an average im-
provement in schedulability of 12.3%, 14.5% and 15.1% over
WSP for HI| H2] and H3] respectively. The average improve-
ment over MIRA is 3.5%, 7.2% and 8.0% for HI} H2] and
H3] respectively. The computation times of the proposed al-
gorithms are acceptable and close to that of MIRA.

VII. CONCLUSION

This paper presents a new path selection algorithm for rout-
ing real-time flows in a priority-based interconnect based on a
link-level analysis view of the NoC. Our algorithm introduces
an edge creation heuristic that accommodates the dependency
of latencies on traversed links, enables PSA to minimize the
variation of interfering flows, and consequently reduces the
worst-case latency. We use three heuristics to account for ex-
pected paths of low priority flows. HI] performs worse than
MIRA at lower number of flows and has an overall improve-
ment in schedulability of 3.5%. HZ|improves over MIRA in
schedulability by 7.2%. H3|improves in schedulability over
MIRA by 8.0%. The three heuristics have a schedulability
improvement over WSP by 12.3%, 14.5% and 15.1%, respec-
tively. The computation times of the three heuristics are com-
parable to MIRA’s and much less than that of the optimal al-
gorithm. Our plan is to investigate additional gains in path se-
lection by introducing a joint mapping and path selection tech-
nique.

ACKNOWLEDGEMENT

This research was supported in part by NSERC DG 357121-
2008, NSERC DG 386714-2010, ORF RE03-045, ORE RE04-
036, ORF-RE04-039, ISOP 1S09-06-037, APCPJ 386797-09,
and CFI 20314 with CMC.

(1]

[2

—

[3]

(4]

[3]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

K. Goossens, J. Dielissen, and A. Radulescu, “Athereal Network on
Chip: Concepts, Architectures, and Implementations,” /[EEE Design and
Test, vol. 22(5), 2005.

Z. Shi and A. Burns, “Real-Time Communication Analysis for On-Chip
Networks with Wormhole Switching,” in Proceedings of the Second
ACM/IEEE International Symposium on Networks-on-Chip, Washington,
USA, 2008.

Z. Shi, “Real-Time Communication Services for Networks on Chip,”
Ph.D. dissertation, The University of York, UK, 2009.

D. D. Kandlur, K. G. Shin, and D. Ferrari, “Real-Time Communication
in Multihop Networks,” IEEE Trans. Parallel Distrib. Syst., 1994.

A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing Ap-
proach to Flow Control in Integrated Services Networks: The Multiple
Node Case,” IEEE/ACM Trans. Netw., 1994.

K. Kar, M. Kodialam, and T. V. Lakshman, “Minimum Interference Rout-
ing of Bandwidth Guaranteed Tunnels with MPLS Traffic Engineering
Application,” IEEE Journal on Selected Areas in Communications, 2000.

G. B. Figueiredo, N. L. S. da Fonseca, and J. A. S. Monteiro, “A
Minimum Interference Routing Algorithm with Reduced Computational
Complexity,” Comput. Netw., vol. 50, 2006.

S. Suri, M. Waldvogel, and P. R. Warkhede, “Profile-Based Routing: A
New Framework for MPLS Traffic Engineering,” in Proceedings of In-
ternational Workshop on Quality of Future Internet Services. London,
UK: Springer-Verlag, 2001.

K. G. Shin, C.-C. Chou, and S.-K. Kweon, “Distributed Route Selec-
tion for Establishing Real-Time Channels,” IEEE Trans. Parallel Distrib.
Syst., vol. 11, 2000.

S. Lee and J. Kim, “Path Selection for Message Passing in a Circuit-
Switched Multicomputer,” J. Parallel Distrib. Comput., vol. 35, 1996.

S. B. Shukla and D. P. Agrawal, “Scheduling Pipelined Communication
in Distributed Memory Multiprocessors for Real-Time Applications,”
SIGARCH Comput. Archit. News, vol. 19, 1991.

D. D. Kandlur and K. G. Shin, “Traffic Routing for Multicomputer
Networks with Virtual Cut-Through Capability,” IEEE Trans. Comput.,
vol. 41, 1992.

K. Nam, S. Lee, and J. Kim, “Path Selection for Real-Time Commu-
nication in Wormhole Networks,” International Journal of High Speed
Computing, 1999.

W. J. Dally and C. L. Seitz, “Deadlock-Free Message Routing in Mul-
tiprocessor Interconnection Networks,” IEEE Trans. Comput., vol. 36,
1987.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. 'The MIT Press, 2009.

	Introduction
	Related Work
	Background: Network Model
	Link-Level Analysis
	Path Selection
	Optimal Path Selection Algorithm
	Heuristic-based Path Selection Algorithm

	Experimentation
	Conclusion

