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Abstract—Program assertions typically operate on available
program state such as global and local variables. To support
sophisticated assert statements such as invariants on control flow
or inter-process communication patterns, developers must design
and maintain supporting infrastructure. It is non-obvious how
to realize this infrastructure: how to maintain the data, how to
access it, how to use it in assertions, how to keep the overhead
low enough for embedded systems, and how to manage assertions
across a distributed system.

This work demonstrates the utility of assertions on interac-
tion history among distributed system components and solves
the challenges of efficiently maintaining interaction data while
providing an expressive interface for assertions. Our toolchain
enables developers to program assertions on interaction history
written in regular expressions that incorporate inter-process
and inter-thread behavior amongst multiple components in a
distributed system. We demonstrate that the interaction tracking
and property verification systems incur negligible overhead,
measured with several benchmarks. This work discusses our
toolchain with a real-world safety-critical embedded system.

Index Terms—Assertions, Regular Expressions.

I. INTRODUCTION

Assertions are a widely used method for increasing program
reliability and enhancing debugging as they permit checking
program state against a specified statement at run time. De-
velopers use assertions to check whether their assumptions
about the state of a program are true by the time an assertion
is executed. This concept is useful for achieving a variety
of goals [1] including testing software correctness, detecting
software defects, and isolating faults. Assertions operate on
program state information, which is commonly encoded in
global and local variables. For example, the assertion below
would check that an input buffer is large enough to hold the
data required by an application.

assert (sizeof (input_buffer) >= MIN_BUFFER_SIZE)

An important type of information that traditional assertions
do not handle well is the history of interactions between
threads or processes. Interaction properties that a developer
might want to assert include, e.g., that Process A communi-
cates with Process B before opening a file, or that a pair of
redundant sensors are both read before their values are used
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in any calculations. In contrast to assertions on program state,
assertions on interaction history require supporting infrastruc-
ture. Often, it is the developer who creates and manages this
infrastructure, and develops specific state-based checking rules
for properties. This additional development effort incurs extra
costs and introduces another potential source of defects.

Adaptations of traditional assertions to operate on inter-
action histories are already been used in modern software.
The Canadian Darlington nuclear plant uses interaction history
to verify whether a particular set of actions has occurred
in the correct sequence [2]. The GNU C Compiler (GCC)
and the Linux kernel use assertions on specific program in-
teractions with manually coded supporting infrastructure. For
example, GCC 4.4 has 41 assert statements (that the authors
are aware of) which check whether a particular action was
completed before continuing execution. Finally, the Apache
Portable Runtime uses assertions to prevent threads in thread-
pools from interacting with task abstractions already taken
by other threads. In fact, any standard concurrency problem
such as producer-consumer, or reader-writer could benefit from
assertions on interaction history.

We propose that, instead of requiring each developer to
implement its own infrastructure, the operating system (OS)
should provide support for recording and verifying assertions
on interactions. This aligns with the original intention of
assert statements, which is to increase reliability and provide
debugging support. However, it is unclear what the semantics
should be and how the OS should maintain the interaction
history, how access and control over the information should
be provided to developers, how the information should be used
in assertions, and how to minimize runtime overhead.

This paper introduces Intersert, an infrastructure for pro-
gramming assertions on interaction history of threads in a
distributed system. Intersert assertions contain regular expres-
sions or regex [3] placed on interaction history. This work
shows that interaction history can be provided with negligible
overhead and that this information is particularly useful in
combination with assertions. The contributions of this work
are the demonstration of: (1) the utility of exposing interaction
history to assertions, (2) the means of exposing the interaction



Fig. 1. Interaction diagram of the example application.

history of threads residing on physically distributed nodes, (3)
the applicability of regex for checking properties on interaction
histories at programming level, and (4) the feasibility of
providing this functionality with negligible runtime overhead
in a fully working toolchain on a commercial platform used
for safety-critical applications.

II. ASSERTIONS ON INTERACTION HISTORY

To illustrate the use of assertions on interaction history, let
us consider the example application of Fig. 1, which represents
threads as circles with their interactions as arrows. The appli-
cation periodically takes sensor readings in Thread A. Each
reading is processed by a pipeline of threads until, eventually,
Thread E returns the final validated result. Thread B routes the
readings through either Thread C or C’ based on the reading
quality. Thread D can return the reading to Thread B for
further processing, or forward it to Thread E for finalization.

To verify the proper operation of the system in Fig. 1, the
developer can use regex assertions on a string that represents
interaction history. As data passes through threads, the inter-
action history is tracked by appending the receiving thread
names to a string (e.g., [A, B, C]). For instance, the following
assertions could be verified on the system:

e Check that Thread A initiates all interactions. This
assertion could be checked in any thread. In Thread E, the
assertion statement can state the property in POSIX regex
as “A.*”_If Thread A is not in the interaction history, or
if any other thread initiates it, the assertion will fail.

o Check that a reading that reaches Thread C’ has not
yet gone through Thread C. This assertion ensures that
a validated reading is not returned to Thread B. This
is checked in Thread C’ with “["C]*”, with the caret
(") being the negation symbol. This assertion will fail
if Thread C is in the history when Thread C’ receives the
reading, signaling an unintended sequence of events.

o Check that only Thread D initiates interactions with
Threads B or E. This assertion is checked in Thread E by
verifying that the regex “.*D["BE].*” does not produce
a match. This regex states that the only thread that may
follow D in the interaction history is either B or E.

All the assertions described above would pass when applied
to interaction histories [A, B, C, D, E] or [A, B, C/, D, B, C,
D, E]. However, the history, [A, B, C, D, B, C’], will fail
the second assertion in Thread C’ as it contains Thread C.
This simple example shows the utility of placing assertions
on interaction history. The challenge is how to realize this

functionality in a user-friendly manner with low overhead,
hiding as much complexity as possible from the developer
and with support of distributed applications. Our framework,
called Intersert, demonstrates how these goals can be achieved.

III. INTERSERT

This section provides details on the Intersert framework.

A. Description

Intersert provides a variation on standard assert functions.
Developers can use intersert() statements to verify properties in
the form of a regex on the history of interactions among threads
and processes on a single or distributed system. Intersert uses
regex, because it is an intuitive and familiar way to verify
properties on sequences of characters, which represent events
in our case. More, regex are expressive, which allows users to
easily define interaction behaviors. Also, there is wide variety
of tools available to match regex properties given a trace.

An interaction simply indicates an inter-thread message
passing. An interaction history is an ordered list of threads
that communicate in a continuous interaction. An interaction
history is similar to a list of participating threads in a UML
sequence diagram [4]. Intersert serializes these lists into strings
that a finite state machine scanner can consume. Characters in
interaction strings mark the presence of a thread in the history.

The framework uses POSIX compliant regex syntax in inter-
sert() statements. There are three parameters to an intersert()
call: the regex property the user wants to verify, a session
name that uniquely specifies the session on which to apply
the assertion, and an expected value that defines what the
regex matcher should return for the assertion to pass. For
instance, intersert(“AB”, “my_session”, true) will pass only if
the interaction session named my_session consists exactly
of [A,B]. By default, the violation of a property aborts the
program, but user-defined actions may overwrite this behavior.

Since intersert() statements check for properties at a given
point in time and not properties that are valid at all times,
i.e., invariants, liveness properties (e.g., eventually, A will
always happen) are not supported. Model checking [5] is
more appropriate for the verification of invariants. Developers
construct a full model of the system and use it to exhaustively
check properties. This is a significantly more computationally
intensive operation and is not the focus of this work.

B. Developer’s Perspective

The use of intersert() statements is similar to that of regular
assert() statements. As an assert() indicates developer’s as-
sumptions about a program state, each intersert() statement
captures assumptions about the interaction history prior to
the execution of the statement. However, there are three
differences between intersert() and assert() statements: (1)
threads must uniquely register themselves in a lookup directory
to appear in the interaction history, (2) intersert() statements
use regex, and (3) operate on a finite interaction session.

The lookup directory enables developers to refer to threads
as characters in intersert() statements and is broadcast to all



1void & () {
£i11_id("A"); //called once at
3  start_session("my_session");
data = read_sensor();
5 msg_send(B, data);

thread start

7void B () {

£i11_id("B"); //called once at thread start
9
msg_receive(&data);
11 if (is_valid(data))
msg_send(C, data);

13 else

15 }
void Cprime () {
17 fill _id("Cprime");
msg_receive(&data);

msg_send(Cprime, data);

/lcalled at thread start

19 intersert("["C]*", "my_session", true);
21  msg_send(D, data)
s void E () {
fill_id("E"); //called once at thread start
25 msg_receive(&data);
intersert("A.x", "my_session", true);

27 intersert(".*D["BE].*", "my_session", false);
29 end_session("my_session");

}

Listing 1. Example usage of the intersert() statement.

nodes of the network. Intersert transparently supports any
communication between threads residing on different nodes,
with no additional effort from users. Thus, to uniquely identify
the threads of Fig. 1, one would use the fill_id() function. When
fill_id(“A”) is called at thread start, the calling thread is attached
to symbol “A”. Thus, whenever this thread participates in
an interaction, Intersert records an “A” in the history string.
Intersert enforces thread label uniqueness across all nodes.
Listing 1 shows sections of code for the example of Fig. 1,
with the exception of Threads C and D. Line 26 shows the first
assertion, intersert(“A.*”, my_session, true), which evaluates
to true only if Thread A initiates the history. The assertion,
intersert(“["C]*”, my_session, true), at Line 19, holds only if
Thread C is absent from the history prior to calling Thread C'.

C. Interaction Sessions

Interaction sessions are periods of execution during which
interaction histories are recorded. Thus, a session also im-
plicitly represents the interaction history recorded during its
lifetime. When a session is started with start_session(), a new
baton with a unique identifier is created to symbolize the new
session. A baton can be seen as a special synchronization
protocol which grants update rights on the underlying inter-
action history to its holder. Each call to start_session() takes
the session name as parameter. Any intersert() call targeting a
session references its name. This naming mechanism allows
to verify different properties on different sessions that share
some (or all, or none of the same) threads. A thread does
not have to hold the baton to make an intersert() statement on
its session. This creates a more flexible environment for asser-
tions. Batons are passed along with every interactions between
threads. Upon receiving the baton, a thread automatically adds

itself to the interaction history. Calling end_session() destroys
the named baton and its associated interaction history. This
mechanism removes the need for branching in interaction
history, guaranteeing linearity in the sequence of participating
threads. This also simplifies the expression of properties, while
still allowing the verification of a wide range of properties.

Interaction sessions allow users to (1) define boundaries
for the interaction history, and (2) define multiple, concur-
rent interaction histories which are maintained independently.
Placing limits on the history is important for practical concerns
as the time for verifying properties depends on the length
of the history. It is of interest to the developer to keep
histories as short as possible. Allowing concurrent sessions
is important as periodic interactions, such as the ones initiated
by Thread A in Fig. 1, require properties to be verifiable
on separate interaction histories. In Listing 1, a new session
starts each time Thread A takes a sensor reading at Line 3.
Intuitively, this means that multiple readings pass through the
system at any given time, and that properties are checked on a
per-reading basis on separate history sessions. After Thread E
has processed a reading, it closes the session at Line 29.

It is worth noting that, while a session must start at some
point to start recording history information, it needs not end.
In this case, the system continues to record interactions, and
any intersert() call will verify properties over the entire history.
This is useful for systems that enter a steady state with no clear
session boundaries, but where invariants such as ‘T, is never
present” are of interest. Infinite history is obviously impossible
to implement, hence, Intersert currently relies on user settings
(see Section IV) to work around this limitation.

IV. RUNTIME SUPPORT

Intersert mainly consists of three components. The history
recorder which uses an online interaction tracker to gather
interaction sessions. The second component, which distributes
the interaction history across nodes, is implemented inside the
kernel as part of the QNET messaging protocol. Finally, the
verification mechanism checks the validity of intersert() calls.

A. Recording Interaction Sessions

We implemented Intersert on the QNX Neutrino microker-
nel, a popular commercial real-time operating system used in
safety-critical systems such as nuclear plants and automotive.

In a microkernel, interactions manifest as messages passed
between threads. To maintain the interaction history, our
runtime system snoops these messages to record associated
metadata. Snooping interactions with low enough overhead
for use in embedded systems is a challenge. Our approach
builds upon the mTags infrastructure [6], which attaches user-
defined metadata, called rags, to processes and threads. By
means of a modified message passing routine in the kernel,
mTags provides a hook to implement additional actions on
messages. Depending on the function added to the hook,
one can implement various semantics for tag propagation,
such as tag duplication or baton passing. Tag duplication, the
default passing semantics, copies tags to other threads upon



interaction. Baton passing, however, hands over the tag from
one thread to another. While not default to the mTags system,
it was a trivial change to allow for both tags, and batons.

Intersert uses mTags with baton passing semantics to imple-
ment sessions. Thus, when Thread A, which currently holds a
tag, interacts with Thread B, Thread B receives Thread A’s tag,
while Thread A loses its tag. A call to start_session() creates
a new session and instantiates a new tag uniquely identifying
that session. Due to memory constraints, the interaction history
is stored in a circular buffer. The length of this buffer is
configurable, and should be large enough to track all prop-
erties of interest. Additional refinements could handle session
overflows. The number of concurrent sessions is also limited
by the available memory; in our implementation, a default of
32 sessions is used, but can be tuned by the developer.

B. Distributing Session History

Due to the linearity of interaction histories, the history
currently on node N, needs only be transmitted to node N,
when the thread in possession of the baron on N, sends a
message to a thread on Nj. As the sender thread relinquishes
control of the baton at this point, there is a guarantee that no
other thread on any node other than N; will be able to modify
the interaction history, until another QNET message pass
occurs. Since the QNET protocol requires far less space than
the size of the underlying protocol (in our tests TCP/IP), there
is space available in each QNET message pass to be utilized by
the interaction history, without exceeding the maximum packet
size. As such, it was possible to implement this distributed
feature with negligible overhead. The changes required to
the QNET module were likewise very efficient, only those
messages containing transaction histories are affected and this
only by the amount of time taken to copy the history.

C. Processing intersert() Statements

At run time, a call to intersert() results in a call to the verifier
module, which retrieves the interaction history of the named
session. The regex pattern and session name from the call
are passed on to the verifier module which checks the regex
against the session. The verifier processes the history from its
earliest recorded point, visiting each entry. On completion, a
truth value is returned and compared against the intersert()’s
third argument, triggering an error if they differ.

V. FORMAL MODEL

To clarify how Intersert works, we specify a formal model
for the creation, deletion and transferring of tags, and show
that these are the only events that affect the outcome of an
Intersert call. The model assumes a single session but can
easily be extended to multiple sessions.

The system state consists of a set of processes P, a set of
tags 7', and a global clock C. Our lifeline log L is a list of
tuples with L = (c,t,p1,p2) with a timestamp ¢ taken from
C, atagt € T, and two processes pi,ps € P for which p;
is the sender and p, the receiver. The log L is ordered by the
timestamps c. The assignment function A : T — 2 specifies

which tags are currently assigned to which processes. Finally,
we use e to indicate the outcome of intersert() statements with
e = T meaning passed and e = _L for failed.

The overall system state S = (P, T, A, L,e) contains all
information and the initial state of the system is that where all
processes p, € P exist, the exit state may be e = T, but the
sets T, A, and L are empty, i.e., no tags, no assignments and no
entries in the lifeline log. The system then works through a list
of actions E and updates its state. We define & = €1€5... €, to
be a list of allowed actions where €, = («, t) with an operation
a € {createtag, deletetag, settag, unsettag, append, intersert }
and a tag ¢t € T. We use €* as the suffix as in €;e* where
€* would be a list of all actions after e.

Table 1 shows the semantics for Intersert actions. Many
of the rules are self-explanatory. Rules R; to R, are basic
operations to create, delete, set, and unset a tag. Rule Rj
specifies how the lifelines work. Note that append actions are
only created as part of a message pass (c.f., Rule Rg), however,
if necessary, a user-level utility could also create such actions.
Rule Rg specifies what happens during a message pass from
process p to process p,. A message pass triggers several basic
actions, and Rule Rg lists them as part of €¢’; essentially it adds
the tag (baton) to the receiver, removes it from the sender,
and then appends the transaction information in the lifeline
log. Finally, Rules R; and Rg detail how intersert() statements
work. The processing is straightforward in that, if the assertion
a listed in the statement evaluates to true (T), the system will
continue (R7). Otherwise, the state is set to failed (s’.e = 1),
the action list cleared, and the execution stopped (Rg).

VI. CASE STUDY

The case study is an abstracted but complete version
of a deployed system of European Train Control System
(ETCS) Level 2 [7] for a customer of QNX Software Systems.
ETCS is a signaling and control system used by European
Railways for compatibility between several high speed rail
lines. The study demonstrates the applicability of Intersert to
real-world data acquisition and control applications.

A common need in data acquisition for safety-critical sys-
tems is to eliminate potentially spurious data from sensors
to prevent incorrect decisions. A typical solution is to cross-
validate and filter measurements before any decisions. The
application obtains periodic inputs from sensors installed on
two separate nodes. The system triggers specific responses
based on the input data. Upon reception, the system temporally
orders the input events, filters and cross-validates them to
finally make its decision. The system uses redundancy and
concurrency to process the data in two parallel streams.

Fig.2 shows an abstract model of the application. Each
node represents a process, and arrows between them indicate
message flow. Processes A and B produce new measurements
at arbitrary times, and communicate them to C' and D. A
and B reside on different nodes within the host system,
both of which are different from the node containing the
remaining threads. C' and D agree cooperatively upon the
order in which the events occur and identify correlated events.



TABLE I
SEMANTICS FOR INTERSERT ACTIONS.

Rule Semantics

R;y: Creating a tag  ((createtag,ts)e*, s) — (€*,s’)

with s'.T = s.T U {tz}

Ry: Deleting a tag deletetag, t)e*, s) — (e*,s')

with 8" A(tz) = 0,8 T = s.T \ {tz}

tag, pa,tz)e*, 5) = (", s")

with s". A(tz) = s.A(tz) U {ps}

Ry4: Unsetting a tag

with s’ A(tz) = s. A(tg) \ {pe}

(
(
(untag, pz,te)e*, s) — (e*,s’)
(

Rs: Log entry append, pz, Py, ta )€, s) — (€*,5')

with s'.L = s.L U {{c, tz, pz, py) } and c as the current time

(
(
R3: Setting a tag (
(
(
(

Rg: Message pass (msg, pe,py))e*, s) — (€'e*,s)

with €’ = {(tag, py, A(tz))(untag, pz, A(tz))(append, pe, py, A(tz))}

eval(a) =T ((intersert,a)e*, s)
Ry7: Intersert passes (e*, s) with property a and its valuation eval(a)
eval(a) = L ((intersert,a)e*, s)

Rg: Intersert fails

@,5")

with s’.e = L, property a, and its valuation eval(a)

®

®

Fig. 2. Process interaction in the case study.

Once in agreement, C' and D separately pass on their data
to filter processes E and F', respectively. £ and F' filter
the data to remove spurious events and performs other data
transformations. Processes G and H cross validate the data
and confirm with each other that the results were calculated
across the same set of input events. Afterward, G and H pass
on their results to I which decides on the course of action.
The following regex properties could be checked with
Intersert at the designated processes for this application:

id Regex Process ‘ id Regex Process
P1 A CD.*E E,F | P2 BDCH*F E, F
P3 *#GH-—-HG)I I | P4 *EG G
P5 ['D J*C D.*E E | P6 [C]*D C.*F F

Property P1, checked in both processes E and F', verifies that
if A produces a data which is later accessed by C, then C also
transmits this data to D. P2 checks the same property with B
as data source. P3 verifies that when G and H agree, [ is the
next process to receive the data; —’ is the logical OR. P4
checks the integrity of the interaction between £ and G. With
P5, if C first receives the data and D validates the data, then
E will filter the data. P6 is similar to P5 with D as receiver.

Before Intersert, the application had no clear mechanism in
place to enforce these properties and only assumed them to be
correct. This assumption may not always hold, and represents
a security glitch for such an application. Checking these prop-
erties at run time with Intersert ensures that any deviation from
the expected ordering of interactions is promptly detected,
which is particularly important in such a safety-critical system.
More, it can also be performed with minimal modifications to
the source code and low run time overhead.

VII. PERFORMANCE EVALUATION

We first evaluated the overhead of the runtime system
that tracks interaction sessions. To isolate the overhead, we
executed the benchmarks with and without interaction history
recording enabled, both in a local and a distributed setting.
We also demonstrate the relation between verification times
and interaction history lengths, to show that property checking
incurs low overhead even in long sessions. In this section, we
present the results for two sets of benchmarks: a message-
passing benchmark, designed to isolate and measure the over-
head of Intersert, and a verification benchmark, designed to
demonstrate how the verification time scales with history size.

A. Local Inter-Process Messaging Benchmark

This benchmark creates seven processes, named A through
G. Each process, except A, creates a messaging channel to
which the alphabetically preceding process connects. Then,
process A sends a 10 byte message to B, which, upon
reception, forwards it to C' which also forwards it until process
G receives its copy of the message from F. At this point,
all processes but G are blocked waiting for replies to their
respective messages. Then, G replies to F', which replies to £
and so on, until the reply reaches back to A. This pattern
is repeated 10000 times, all of which is timed using the
processors’ time stamp counter. This benchmark is run 100
times for each variant as described below for a fair sample.

We investigate four alternative setups: (1) baseline, (2)
no baton passing, (3) baton passing, and (4) full Intersert.
Scenario (1) consists of an unmodified QNX operating system,
which serves as a baseline for further measurements. Scenario
(2) measures the overhead of mTags on a kernel with mTags
support. In scenario (3), we pass batons with each message,
to measure the overhead of registering interaction history for
Intersert, however no assertions are made. In the final scenario,
we add the following call to process G: intersert(*AB.*G”,
my_session, true), which checks that the interaction history
consists of A, then B, and finally G. This scenario measures the
overhead of a periodic system that makes full use of Intersert,
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Fig. 3. Execution time for 10,000 message chains.

since process A creates a new baton with each message it
sends, and an intersert() made each time G receives a message.

Fig. 3 shows box-plots with an added x to indicate the mean
for the four scenarios, under two load conditions. All data
shown are collected on a Pentium 4, 3.2GHz with 2GB of
RAM, running QNX Neutrino 6.5.0. The scenarios appears
on the x-axis, while the y-axis shows the execution time
in seconds. In Fig.3(a), processes did nothing but sending
messages, and therefore the entirety of the measured time
relates to message passing and the overheads incurred by
Intersert. In Fig.3(b), a busy loop of approximately 100us
is added to each process to simulate a small amount of
work. This loop executes between receiving a message and
forwarding it or replying in the case of process G.

Fig. 3(a) shows that the mean execution time of the baseline
scenario is 0.1281s or, approximately 2.135us per message
pass, while the mean execution time with no baton passing
is 0.1337s, or 2.228us per message pass. From this, we can
extrapolate that every message pass will have an absolute over-
head of approximately 0.093us, which should be negligible
in most applications. We believe that the implementation of
similar functionality in other systems (e.g., other microkernels
or MPI systems) could be achieved with similar overhead.

The mean execution time of the baton passing and the
Intersert scenarios are 0.1515s and 0.1506s, respectively. This
speedup in the Intersert scenario over the baton passing case
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Fig. 4. Execution time of 10,000 distributed message chains.

is due to lower baton creation overhead: in both cases process
A must (1) create a baton, (2) attribute the baton to the caller
thread, and (3) set that baton as passable with no restrictions.
This takes three system calls in the baton passing scenario,
but is abstracted by a single call to start_session() in Intersert,
leading to this small speedup. A similar pattern is observed in
Fig. 3(b), where a small workload is added. If the threads do
some work other than messaging, the relative overhead of the
Intersert-capable versions is diminished; in this case, the full
Intersert version has an overhead of 0.259% over the baseline.

Similarly to the local benchmarks, we measured the over-
head of the distributed Intersert in three scenarios: (1) baseline,
(2) no baton passing, and (3) full Intersert. In this case, we
created three processes, A, B, and C, with A and C residing
on host 1 and B on host 2. Messages are passed in sequence
from A to C at which point C' performs an Intersert call
that verifies the property “ABC”. As such, each trial results
in 2 QNET message passes and responses. The y-axis in
Fig. 4 shows the execution time for 10 000 repetitions with 50
trials per scenario. The Intersert version has a mean execution
time of 5.502s, which, despite being a statistically significant
increase from the baseline of 5.34s, is negligible in practice.

B. Verification Benchmark

To further demonstrate the feasibility of checking Intersert
properties with low overhead, we check the property “.*AB”
on a series of synthetic histories generated following the
pattern [C, C, C, ..., C, A, B]. Histories ranging in size from
10,000 to 110,000 are obtained by increasing the number of C
entries at the start of the pattern. Since all histories end with
[A,B], the intersert() will always pass. This also means that
the full interaction history will have to be iterated through,
which is the worst case for any given assertion.

Fig.5 shows the verification times for different history
lengths. The y-axis shows the median of 15 executions for
each history. We plot the median of 15 execution time mea-
surements for each history length. As expected, the execution
time grows linearly with the size of the histories. Even with
the longest history, the worst execution time observed was
17.21ms. This demonstrates that our system could be used at
run time with little overhead. We note that the complexity of
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TABLE II
INCORPORATING LTL INTO INTERSERT().

Description LTL Intersert with LTL

Both A and Bexist A AB intersert_ItI(“A & B”)
Either A or B exists A V B intersert_[tI(“A — B”)

B must follow A A — XB intersert_ltI("A —> XB”)
A does not exist ~A intersert_[tI("~A”)

A exists before B AR ~B intersert_lt[("A R ~B”)

the regex property also affects the verification time of prop-
erties. As arbitrarily complex properties can be created and
checked, execution times are bound to vary widely. Therefore,
we suggest developers investigate that the execution times for
verifying their properties fit within their timing constraints.

VIII. DISCUSSION

This section discusses interesting observations about check-
ing interaction history and potential limitations of intersert().

LTL as an Alternative to Regex. In addition to regex, we
also explored the use of Linear Temporal Logic (LTL) [8] as
a means to express properties on interaction history. Table II
shows how some of the properties we support with regex could
be expressed in LTL. The first column describes the properties,
the middle column shows equivalent LTL properties, and the
last column an intersert() variant of the property. The syntax
is that of Spot [9], the LTL checking library we use.

While LTL is more expressive than regex, its use in inter-
sert() has a few problems. For instance, it may be unknown
whether a property will yield a verdict. Liveness properties,
as discussed in Section III, usually fall in this category. Thus,
the property “GF A” (always eventually A) is unverifiable
at run time. Therefore, much of the added expressiveness of
LTL is not useful for our purposes. Alternative logics such
as past time LTL (ptLTL) [10] could be used to avoid such
ambiguities, and is part of our future work.

Intersert Limitations. Currently, Intersert only supports a
limited number of concurrent sessions and a finite number of
entries in the interaction history. Intersert uses fags, encoded
as bit field metadata in the thread control block, to represent

its interaction sessions. The width of the bit field bounds the
number of concurrently active tags and thus, that of concurrent
sessions. This limitation is not a hard one, however, as the user
can trivially widen the field to increase the number of sessions.
Similarly, the user can increase the size of interaction histories
per session by configuring the history buffer.

Now, Intersert relies on the user to bound the number of
sessions and history length. Automatic configuration of these
parameters based on a high-level specification might be an
interesting future work. Yet, until now, we have not seen this
specific need in our case studies and examples as safety-critical
systems are usually well understood prior to implementation
and only a couple of kilobytes of memory already drastically
increase the number of sessions and length of the history. In
our implementation, an additional tag incurs the overhead of
64x bytes, where x is the length of the history session. An
additional entry in the session consumes 64 bytes of memory.

Intersert and Single-Threaded Applications. The general
concepts of the Intersert framework and intersert() statements
are also applicable to single-threaded programs. Our im-
plementation of intersert() statements only uses interaction
between processes and threads, however this can easily be
extended. For instance, intersert() statements may be used
to check interaction history of messages passed in an object
system like Smalltalk [11]. Furthermore, using aspect-oriented
programming, a user could weave a runtime support system
similar to that of Intersert into regular applications.

Intersert on Other Interactions. Presently, Intersert does
not permit assertions on resources. Adding resource interac-
tions, such as file access, to interaction history would allow
for a finer grained control over resource access. When a
thread holding a session accesses a resource it would add that
resource to the history. Assertions on file access could be used
to shut down threads that attempt to access certain files.

IX. RELATED WORK

The Intersert framework relates to past works in the areas
of runtime verification (RV) and information flow monitoring.

Runtime verification and extended assertions. Program
verification is achieved either online [8], [12] or statically [5].
However, while some propose to use sophisticated assertions
at programming level, our work relates specifically to those
providing software assert-based verification.

Some works use aspect orientation for RV. RMOR [13]
monitors C programs using state machines, as opposed to LTL
or regex. Volker and Bodden [14] verify LTL properties on
events they generate at arbitrary pointcuts, e.g., method calls or
data access, of Java programs using Aspect]. Allan et al. [15]
also use Aspect], and, similarly to Intersert, check regex on
execution traces to decide whether to execute a function.

Partial translation verification [16] uses LTL to capture
the requirements of models, then translates the LTL into C
assertions to verify the correctness of generated model-based
codes. Trace Analyzer (TaZ) [12] translates LTL properties
into finite-state automata, called observers, used to check



whether a Java process conforms to the LTL formula. Java-
Mac [17] defines events and relations in the Primitive Event
Definition Language, and uses runtime monitors to check Java
program executions against a defined formal specification.

Other approaches [18], [19] use annotation-based tech-
niques. Necula and Lee [20] propose a compiler that check
memory-safety properties of assemblers using annotations.
sPSL [21], a subset of the Property Specification Language
(PSL), proposes an assert-based verification of C programs
using LTL properties written in PSL.

Some tools such as DBRover [22] translate LTL into ex-
ecutable code for run time monitoring. ASAP [23] creates
assertions from first-order logic and partial functions to detect
faults at run time. Reinbacher [10] uses a dedicated hardware
to collect execution traces and check ptLTL [10] assertions
at run time. Intersert uses regex, but ptLTL would be an
appropriate alternative logic. Also, Intersert requires no extra
hardware support, but an additional kernel module.

The Intersert framework differs from prior work as it
concentrates on the interaction behavior of multi-threaded ap-
plications, and transparently supports closed-source software.
Additionally, Intersert is shown to have very low overhead,
being, therefore, usable in an embedded application.

Information propagation. Information propagation relates
to tag propagation in Intersert, although it is not the main
contribution of this paper. Thus, Asbestos [24] implements
information flow control by propagating labels among pro-
cesses. seL4 [25] uses badges to define the capability of a
process. TaintDroid [26] uses message-based taint tracking to
detect information leak in mobile devices. Techniques like
Datatomography [27] and Histar [28], use memory-location
tagging to track information flow. Some of these systems could
be used in Intersert, but suffer from prohibitive overhead.

Other existing approaches such as Jif [29], JFlow [30],
and Flume [31] propose information flow control to enforce
security policies and detect faults. The goal of Intersert is to
support assertions based on process and thread, not to enforce
security policies or uncover faults.

X. CONCLUSION

Program assertions are a common means for adding runtime
checks to applications. Assertions that verify properties on
interaction history would be useful in a wide variety of
systems. To enable such assertions, we introduce Intersert,
an infrastructure for checking interaction behavior between
processes and threads with regex at run time.

The work resulted in a number of surprising insights and
results: (1) placing assertions and interaction history is useful,
(2) exposing interaction history can be achieved with negligi-
ble overhead, and (3) it is possible to push the complexity of
this work into a toolchain that eases the use of such assertions.

This work’s results open up several possible and interesting
avenues for further work with some already highlighted in
Section VIII. Others include extending the amount of history
information used beyond interaction on local hosts as well as
synthesizing the assertions from high-level specifications.
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