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Abstract—Modern systems are growing in complexity beyond
deep comprehension of developers. Increasing difficulties of
keeping software projects on schedule and increasing recall rates
are symptoms of this development. Consequently, developers need
new methods and tools to build embedded systems, such as tools
that dynamically analyze systems and recover comprehensible
specifications of particular aspects.

In this paper, we address the problem of discovering temporal
behavior of real-time systems by mining periodic task sets and
their temporal characteristics from system execution traces. We
leverage the periodic nature of real-time systems to achieve this
goal in an automatic way.

We propose PeTaMi (PEriodic TAsk MIner) – a novel ap-
proach and a tool to mine periodic tasks along with information
on their periods and response time profiles from execution traces
of real-time systems. PeTaMi embraces an important observation
we make about operation of periodic tasks: their individual
jobs are usually followed by intervals of task inactivity of a
considerable duration. We evaluated PeTaMi on two case studies
(unmanned aerial vehicle and a commercial car in operation)
using traces containing tens of thousands of recorded execution
events.

I. INTRODUCTION

In the past few decades real-time embedded systems (RTES)

have seen an exponential growth in their source lines of code,

as for example RTES found in cars [14] and avionics [43]. The

complexity of these systems is also growing, which combined

with large number of source lines of code increases the number

of software related malfunctions [8]. For example, the auto-

motive industry shows an increasing trend in car recalls due to

ECU issues [25]. Multiprocessor systems, hardware accelera-

tion, and real time operating systems (RTOS) provide support

for more complex software. However, these new platforms are

also hindering the real-time analysis of embedded software.

This reality dictates the need to provide software developers

with tools to help them understand runtime behavior of these

complex systems.

Software reverse engineering aims at providing support for

the comprehension of complex systems by creating suitable

representations of the system in a higher level of abstrac-

tion [18]. Reverse engineering of desktop and enterprise

software systems has reached maturity and has been suc-

cessfully applied and commercialized for numerous software

engineering problems [11]. On the other hand, surprisingly

little amount of research has been done on reverse engineering

of embedded software, as confirmed in [28]. Indeed, tradi-

tional reverse engineering tools are mostly based on structure

recovery, and do not consider the timeliness aspect inherent

to RTES [22].
Mining task sets and their temporal properties from traces

collected during system operation could be an essential tool

for reverse engineering of modern RTES. Indeed, most RTES

are implemented as a set of tasks (recurrent programs) that

run on one or many processors. In many cases these tasks are

activated periodically to run a job and then wait until next

activation. For periodic tasks, the activation period and the

time to complete each job are critical to the proper operation of

the system. Regardless of whether the temporal specification

of a task set is known a priori, it is useful to learn these

properties from the system itself.
In this work we address mining of periodic tasks, their

periods and response times profiles, using passive learning.

To this end, we propose PeTaMi (PEriodic TAsk MIner) -

a novel approach to mine periodic tasks and their temporal

specifications from execution traces produced by RTES under

real operating conditions. In its first stage, PeTaMi performs

binary classification of the system’s task set into two subsets:

one containing periodic tasks, and another one containing non-

periodic tasks. The set of tasks deemed periodic is then used in

the second stage of PeTaMi to compute periods and response

times profiles of periodic tasks.
The key contributions of this paper include:

• A novel automatic method to classify task sets into

periodic and non-periodic categories using timestamped

event traces.

• A clustering-based approach to mine temporal specifica-

tions of periodic tasks, namely task’s period and response

time profile.

• A thorough evaluation using execution traces of two

deployed real-time systems.

The rest of the paper is organized as the following: Sec-

tion II presents a short review of the related work on mining

system behavior of complex RTES. Section III formally in-

troduces the problem addressed by PeTaMi, followed by an

overview of our approach in Section IV. Section V explains

how to pre-process execution traces before feeding them to

PeTaMi. In Section VI we address the problem of identifying

periodic task sets. We use run-to-completion and preemptive

scheduling as “extreme type” scenarios for which PeTaMi can

properly classify the system’s task set. In Section VII we tackle

the problem of mining periods and response time profiles from

the set of periodic tasks. In Section VIII we evaluate PeTaMi

firstly with synthetic data sets, and then discuss the results of
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using PeTaMi in two case studies: an unmanned aerial vehicle

and a CAN communication bus protocol. Finally we discuss

the obtained results in Section IX and conclude the paper in

Section X.

II. RELATED WORK

The problem of reverse engineering of complex systems has

two independent aspects: extraction of a system model and

representation of a system model.

A system model can be extracted either statically or dynam-

ically. Methods that implement the static approach only rely

on the source code to find erroneous or suspicious system

behavior, without actually executing programs [20] [4] [32].

Methods that implement the dynamic approach, on the other

hand, consider runtime system behavior, as recorded in an

execution trace. The two methods to extract a system model

from execution traces are active and passive learning. With

active learning [13] [7], the target system is asked to execute

under various stimuli (inputs), while passive learning considers

only the given execution traces, and does not need to interact

with the target system [35]. PeTaMi uses dynamic information

with passive learning.

Methods then use the extracted information to represent

a system model in an abstract formalism. There exists a

vast literature on different formalisms including state ma-

chines [3] [39], Petri nets [42], various types of invari-

ants [21] [19] and UML models [29] [2]. Some formalisms

support timing, such as mining LTL expressions [33], CTL

expressions [6], or hybrid system automata [37]. Unlike the

formalisms mentioned above, PeTaMi models system behavior

as a set of independent periodic tasks. This representation is

more intuitive to software developers of real-time systems, as

tasks are scheduling entities inside systems and used in many

aspects of analysis of real-time systems.

Several works attempted to mine periodic tasks from execu-

tion traces. The authors in [24] mine periodic tasks to discover

suspicious system behavior related to the missed deadlines.

Their model of periodic tasks, however, is too simplistic and

does not take into account the fact that a single task may have

different response times at run time. The authors in [36] deal

with situations where developers do not have knowledge about

the representation of tasks in execution traces, and mine groups

of events occurring periodically and in proximity of each

other. However, their approach works only if the developer

successfully chooses a time window whose value is a factor

of the task’s period.

III. PROBLEM FORMULATION

Consider a set of n tasks τ1, . . . , τn. Each task τi is a recur-

rent program that executes a sequence of jobs ji,1, . . . , ji,m.

We say that task τ is periodic, if it releases jobs with a fixed

interval of time T and not periodic otherwise. The response

time (RT) of τ is the time required to execute the task program

from job’s release time until completion. In the general case,

RTs will vary due to the task’s execution time profile and

scheduling interference. The variability in response times for

τ can be expressed as the task’s response time profile (RTP).

Let τ be an event generator. Each event is the result of

activities recorded by the operating system and saved into

a trace file or streamed to some communication channel.

Events can be related to the execution of task code (e.g.,

inter-process synchronization) or changes of the task state due

to scheduling activity (e.g., preemption). Figure 1 shows the

timeline of the sequence of events as well as the inter-arrival

time (IAT) series for some periodic task τ . Events (square

markers on the timeline) can potentially arrive at any time,

and no assumptions are made about what they represent. For

clarity, we have marked the jobs’ start times with arrows on

the shaded area.

0 8 16 24 32 40 48
t

IJI BJI BJI
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events

Fig. 1: Task events and IAT types.

The IATs of τ is the sequence of numbers on the shaded

area of Figure 1. The values of IATs are computed as the

time differences between consecutive events. There are two

types of IATs: intra-job inter-arrival times (IJI) and between-

jobs inter-arrival times (BJI). The whole-job inter-arrival times

(WJI) denote those intervals that account for complete jobs.

More precisely:

IJI: The time difference between consecutive events that

occur within a job. Regarding Figure 1, this set is

{IJI } = {4, 6, 2, 4, 4, 4, 2, 4, . . .}.
BJI: The time difference between the last event of a job and

the first event of the next job. In Figure 1 this set is

{BJI } = {8, 10, . . .}.
WJI: The time difference between first events of two con-

secutive jobs. In Figure 1, both jobs have a WJI of 24.

For a periodic task WJI ≡ T .

Since each WJI corresponds to one and only one BJI,

finding the set {BJI } becomes the key to job discovery. In

this example, there are two BJIs that clearly differentiate the

jobs. However, in general case, we expect BJIs to have a large

variability, thus complicating their identification.

In this paper, we argue that the set {BJI } of periodic tasks

can be discovered automatically from system traces. Therefore,

the set {WJI } can also be found. Our argument relies on

a single assumption regarding temporal behavior of periodic

tasks in RTES:

Assumption 1: If we let a periodic task τ execute for a

considerable amount of time, then the mean duration

of τ ’s BJIs will be larger than the mean duration of

τ ’s IJIs.

We argue that this assumption holds for industrial RTES by

simulating the execution of periodic real-time tasks scheduled
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Fig. 2: PeTaMi flowchart.

with RM and EDF algorithms (see the Appendix). According

to the obtained results (see Figure 13), Assumption 1 is true

for RTES with up to 85% of CPU utilization. At the same time,

systems with utilization above the Liu and Layland bound

(≈ 70%) may be considered unsafe in industrial settings (Table

1.3 on page 11 in [30]). Therefore, most systems are designed

with at least 30% slack capacity in the worst case, as for

example in the case study from [9]. Schedulability analysis

studies focused on characterization of RM [31] and EDF [10]

scheduling policies have found that it is hard to guarantee

schedulability of systems with high worst-case CPU utiliza-

tion. Finally, the results of case studies from Section VIII-B

show that BJIs tend to be significantly larger when compared

to IJIs.

Our goal is to mine periodic task sets along with the period

T and response time profile RTP for every periodic task τ .

We split this goal into two problems:

P1 Let T be a timed trace of an RTES. Classify the tasks in

T into periodic or non-periodic categories.

P2 Let PT = {τu, . . . , τw} be the set of tasks classified to

the periodic category. Find the period Tv and response

time profile RTPv for every task τv ∈ P
T .

IV. OVERVIEW

PeTaMi, as shown in the flowchart of Figure 2 takes as

input a timestamped trace of a RTES. During the first stage,

traces are disaggregated into a set of trace projections (see

Definition 2). A projection Pi is produced for every task τi ∈ T

and sent to the binary task classifier. The classifier finds the

set {BJI } after extracting IATs from P. Using {BJI }, tasks

are then classified into periodic or non-periodic category, and

the subset of periodic tasks PT with the set of projections

for every task τv ∈ P
T is fed into the temporal specifications

miner. The miner computes approximations of the period Tv ,

and the response time profile RTPv for every task τv ∈ P
T .

V. TRACE DISAGGREGATION

We consider those systems whose tracing module produces

a timed entry per traced event. Each trace entry is comprised of

a specific number of attributes precisely describing an event.

Definition 1 (Trace and Trace Entry): A trace

T = {E1, . . . .EN} is a chronologically ordered list of

trace entries. A trace entry E = 〈t, ID〉 is a tuple consisting

of a time stamp value t,and a task identifier ID.

Trace entries in T are ordered by their timestamps. Depend-

ing on the system and time resolution, more than one entry

can have the same timestamp. Those cases are not critical,

since PeTaMi does not make any assumptions on the ordering

of events with the same timestamps.

The task identifier (Ei.ID) is a conjunction of attributes

in the trace that uniquely identifies a task. A task can be a

process, a thread, or both, but its ID must be unique. For

example, in a system with processes and threads the task

identifier can be ID =< PID, TID >.

Definition 2 (Trace Projection): A trace projection P =
{Eu, . . . , Ew} over task τ is a filtered and chronologically

ordered list of trace entries where every Ev.ID ∈ P is equal

to the identifier of task τ .

Trace projections are required by both stages of PeTaMi.

The first stage uses timestamps in P to mine {WJI}. The

second stage uses timestamps to discover typical RTs.

VI. BINARY CLASSIFICATION OF REAL-TIME TASKS

In this section, we address the challenge of binary classifi-

cation of a real-time task τ into either periodic or non-periodic

category given τ ’s trace projection P. PeTaMi tackles this

problem by firstly mining the set of τ ’s between-jobs inter-

arrival times {BJI } from the set of τ ’s inter-arrival times

{IAT}, then extracting the set of τ ’s whole-job inter-arrival

times {WJI } from {BJI }, and finally measuring the spread

of {WJI }. If the spread is smaller than a given threshold α,

PeTaMi classifies the task into the periodic category.

We consider two possible cases of task scheduling and

explain how PeTaMi performs classification in each of them.

A. Run-to-completion scheduling

In the first case, PeTaMi deals with a scenario where a

task’s jobs are always scheduled to run to completion. In

this scenario, each job appears in the trace projection as a

single event, as shown in Figure 3. This makes the set of

IJIs empty ({IJI } = ∅), so that {IAT} = {BJI }. In general

case, {WJI } can be extracted from {BJI } by sorting BJIs in

ascending order of their timestamps and then calculating the

differences between the timestamps of the adjacent BJIs.

0 8 16 24 32 40 48
t

BJI ≡ WJI BJI ≡ WJIBJI ≡ WJI

Fig. 3: IATs under run-to-completion scheduling.

WJIs of a periodic task tend to have the same value (i.e.,

WJI ∼= T , the period of the task). Therefore, PeTaMi classifies

a task to the periodic category, if {WJI } has a small spread;

otherwise, the task is classified to the non-periodic category.

PeTaMi applies the quartile coefficient of dispersion (QCoD)

statistic [45] to evaluate the spread of {WJI }:

QCoD =
Q3 −Q1

Q3 +Q1

∗ 100%, (1)
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where Q1 and Q3 are the first and the third quartiles of {WJI }
accordingly. PeTaMi requires the user to provide a value for

the threshold α to assess the smallness of the QCoD statistic.

Setting α to 1% turned out to be a reasonable choice for real-

world traces considered in Section VIII-B. On the other hand,

the authors in [24] use a much more relaxed α = 10% to

assess the spread of recurrent events in execution traces. The

strong points of the QCoD statistic are: (1) it is a dimensionless

measure of spread, that is, its value does not depend on the

values of WJIs; (2) it is a robust measure of spread, as its

value is not sensible to outliers. Therefore, PeTaMi can use

the same threshold α for tasks with different values of WJIs,

and also correctly classify periodic tasks which occasionally

miss their deadlines. As an example, consider sets {WJI 1}
and {WJI 2} of two real-time tasks τ1 and τ2: {WJI 1} =

{32, 48, 40, 18, 53, 8, 25, 30, 49}, {WJI 2} = { 4305, 4277,

9350, 4311, 4302, 4340, 4293, 8100, 4301 }. QCoD({WJI 1})
= 31.5, QCoD({WJI 2}) = 0.22. Although the WJIs from

{WJI 1} and {WJI 2} have different ranges, we can easily

compare their spreads with the QCoD statistic and conclude

that the WJIs from {WJI 2} have a much smaller spread than

the ones from {WJI 1}, even in the presence of two clear

outliers (9350 and 8100).

B. Preemptive scheduling

With preemptive scheduling, a task’s execution can be

interrupted by the real-time system at any moment in time.

This way, a task’s job can appear as a sequence of events

in the execution trace. Therefore, the set of task’s IATs will

consist of both IJIs as well as BJIs: {IAT} = {IJI }∪{BJI }
(see Figure 4).

0 8 16 24 32 40 48
t

IJI BJI BJI

WJI WJI

IJI IJIIJIIJIIJI

Fig. 4: IATs under preemptive scheduling.

As we explained in Section VI-A, PeTaMi requires {BJI }
to classify a given task τ . Therefore, the set {BJI } must be

extracted from the set {IAT}. The brute-force approach of

extracting {BJI } from {IAT} would consist in considering

every possible subset {S} � {IAT} to find the one {S} =
{BJI }. Obviously, such method is computationally infeasible

for realistic trace projections with thousands of IATs.

PeTaMi relies on the Assumption 1 to efficiently mine an ap-

proximate set of BJIs from IATs. According to Assumption 1,

BJIs tend to be larger than IJIs. Therefore, if we denote the set

of i largest IATs as {Si}, i ∈ [1 : N ], where N is the number

of IATs, then we can expect that there exists k, such that

{Sk} contains BJIs with high precision and recall (i.e. with

a high F-score), and whose F-score is maximal among other

{Sj}, j �= k. In case {BJI } and {IJI } are linearly separable,

F-score({Sk}) = 1, that is, {Sk} = {BJI }. In order to find

k, we need to consider all {Sj}, j ∈ [1, N ], and pick the one

with the highest F-score. The function F-score, however, is

undefined as the set {BJI } is unknown.

The following observation allows us to approximate the

function F-score: the F-score of retrieving {BJI } with

{Sk} is negatively correlated with the spread of the WJIs

extracted from {Sk} using the technique presented in Sec-

tion VI-A. That is, the higher is F-score({Sk}), the lower

is spread({WJI Sk
}). Therefore, the {Sk} with the max-

imal F-score among all {Sj}, j ∈ [1, N ], j �= k, will

have the minimal spread of the corresponding WJIs. To

illustrate this negative correlation, consider the case where

spread({WJIBJI}) = 0, that is, all the task’s WJIs have

identical values. If we add ι ∈ {IJI } to {BJI }, so that

{BJI ′} = {BJI } + ι, then we get spread({WJIBJI′})
> 0, as this would imply replacing some w ∈ {WJI } with

w1 and w2 (w = w1 + w2). Trivially, F-score({BJI ′})
< F-score({BJI }). Similarly, by removing a random b ∈
{BJI }: {BJI ′} = {BJI } − b, we get spread({WJIBJI′})
> 0, and F-score({BJI ′}) < F-score({BJI }). The same

generally holds when spread({WJIBJI}) > 0.

PeTaMi mines an approximate set of BJIs {Sj} by calculat-

ing spread({WJI Sj
}) with the QCoD statistic (Equation 1)

for all j ∈ [1, N ], and then picks the one with the smallest

value of spread. If the computed value of the QCoD statistic

is smaller than the threshold α, then the task is classified as

a periodic one, and the set {Sj} is returned as an approxima-

tion of {BJI }. Algorithm 1 presents the pseudocode of the

classification stage of PeTaMi. Note that we do not consider

{Sj} for j < 5, as the QCoD statistic uses the first and the

third quartiles of {Sj}, which are present in the set only if

j ≥ 5. Algorithm 1 can as well classify tasks scheduled under

the run-to-completion scheduling.

Function classifyTask(IAT ,α = 1)
Data: IAT : set of task’s IATs sorted in descending

order, α: threshold for spread

Result: isPeriodic: boolean, BJI : set of task’s BJIs

q = 5

numBJI = length(IAT )−q + 1
foreach i ∈ 1:numBJI do

BJIs[i] = IAT [1:(i+ q − 1)]
WJIs = extract from BJIs[i] (see Section VI-A)

spread [i] = QCoD (WJIs) (see Equation 1)

end

minSpread = min (spread )

if minSpread > α then

return (FALSE )

else

m = index of minSpread in spread

finalBJI = BJIs[m]

return (TRUE , finalBJI )

Algorithm 1: Classification of real-time tasks in PeTaMi
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VII. MINING TEMPORAL SPECIFICATIONS OF PERIODIC

TASKS

Once a periodic task is identified, it is crucial to report

its period (T ) and response time profile (RTP), as we argued

in Section I. Therefore, the second stage of PeTaMi mines

temporal specifications of periodic tasks from their trace

projections.

Period mining can be performed as long as the set of BJIs

of a periodic task is known. Indeed, T will be equal to the

most common value among the WJIs extracted from the set

{BJI }. In statistical terms, having a distribution of WJIs, its

mode represents the most common value among the intervals

in {WJI }: T = mode({WJI }).
As we argued in Section III, a RTP of a periodic task τ must

be represented as a set of τ ’s “typical” RTs. As we can see

in Figure 1, τ ’s set of RTs ({RT}) can be calculated using

its sets {WJI } and {BJI }: RT i = WJI i − BJI i. At the

same time, to find the “typical” RTs we must first split the

set {RT} into groups, such that RTs from the same group

tend to be more similar to each other than to RTs from other

groups; “typical” RTs then will be equal to the representative

RTs from each such group.

PeTaMi applies partition clustering in order to mine typical

RTs of a given task τ . Partitioning clustering algorithms aim

at organizing the elements of a set into several exclusive

groups in an automatic (unsupervised) way [23]. Objects

within a cluster are similar to one another and dissimilar from

objects in other clusters. Dissimilarity of a pair of objects is

characterized by the distance (d) between them. In our case,

objects are RTs, and d is simply the absolute difference in

value between pairs of RTs: d = |RTi−RTj |. One of the most

popular partitioning clustering algorithms is the k-medoids

method [26]. Its objective is to find

argmin
{L1,L2,··· ,Lk}

k∑

i=1

∑

x∈Li

(x− ci)
2, (2)

where x = {x1, x2, · · · , xn} is the set of objects, ci is the

medoid 1 of the elements assigned to the cluster Li, and k is

the number of clusters. Informally, k-medoids aims to partition

n objects into k (k ≤ n) clusters L = {L1, L2, · · · , Lk}
so as to minimize the sum of distances from each object

in a cluster to the cluster’s medoid ci. We opted for the k-

medoids method instead of the extremely popular k-means

method [34], because by grouping objects around k medoids

rather than around k centroids, k-medoids allows to tolerate

outliers. For example, given a set {RT} = {10, 10, 10, 10,

10, 40, 40, 40, 40, 40, 100} and k = 2, k-medoids puts

RT11 = 100, an obvious outlier, into the cluster with medoid

= 40; instead, k-means assigns RT11 to a separate cluster and

puts RT1,. . . ,RT10 into a single cluster. This robustness of the

k-medoids method is crucial to clustering RTs, as a periodic

task may miss its deadline during system execution, hence,

1an object of a cluster whose average dissimilarity to all the objects in the
cluster is minimal

its set {RT} may have abnormally large RTs. PeTaMi uses

an efficient implementation of the k-medoids algorithm called

CLARA [27].

Partitioning clustering algorithms require a manual choice

of the number of clusters to group the objects into (parameter

k in Equation 2). PeTaMi, therefore, must find the right value

for k automatically. The state-of-the-art on the estimation

of the optimal number of clusters in a dataset is vast and

spans several decades [38] [17] [15]. One of the most popular

methods to estimate the value of k is the gap statistic [41].

The idea behind this method is to compare the value of

Equation 2 with a null reference distribution of the objects,

i.e., a distribution with no obvious clustering, for a range of

k values. The estimate for the optimal number of clusters k

is the value for which Equation 2 falls the furthest away from

the null reference distribution. A distinctive feature of the gap

statistic is its ability to return k = 1 if a given set of objects

does not form clusters. This is important for RTP mining in

case RTs have only a single typical value, i.e., the task’s jobs

tend to take the same amount of time to complete. Algorithm 2

summarizes RTP mining stage of PeTaMi.

Function RTPmining(RT)
Data: RT : a set of task’s response times

Result: RTP : an array of representative RTs

k = gap(RT ) (see [41])

clus = CLARA(RT , k) (see [27])

foreach i ∈ 1 : k do

RTP [i] = mode(clus[i])

end

return (RTP )

Algorithm 2: RTP mining in PeTaMi

VIII. EXPERIMENTS

We evaluate the capacity of PeTaMi to correctly mine task

sets and their temporal specifications from both synthetic

datasets and real-world execution traces of embedded real-time

systems.

A. Evaluation on synthetic data

In this section, we evaluate the accuracy of PeTaMi’s RTP

mining stage on synthetically generated data. We do not

address the evaluation of the classification stage because, as

shown in Section VI, PeTaMi correctly classifies periodic tasks

as long as the Assumption 1 holds true. Therefore, we leave

validation of the classification stage of PeTaMi to case studies

presented in Section VIII-B.

We evaluate RTP mining using a random sample from a

heterogeneous mixture of two Gaussians and one uniform

distribution. Observations from the Gaussians represent task’s

normal RTs, while observations from the uniform distribution

represent outlier RTs. Our choice of Gaussian distributions to

model normal RTs is supported by the non-determinism of

modern real-time systems: if a given task τ has m execution

scenarios each of which requires a particular response time ri,
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i ∈ [1,m], then τ ’s RTP will not be a set of m values but it

will rather follow a multimodal distribution where each mode

corresponds to one and only one ri, i ∈ [1,m]. Indeed, τ ’s

RTs will fluctuate around their normal values ri. On the other

hand, we expect outlier RTs to follow a uniform distribution,

as their values are completely random.

The accuracy of RTP mining is evaluated based on the

number of clusters mined by PeTaMi on the synthetic data.

We consider that PeTaMi correctly mines a RTP if the returned

number of clusters is equal to 2.

We ran 2IV experimental design and analyzed it with

ANOVA to find out the characteristics of mixtures of distribu-

tions that reduce the accuracy of PeTaMi’s RTP mining stage.

We chose the following factors and their corresponding low

(−1) and high (1) levels:

1) Distance between the means of Gaussians (δ): 3 and 30.

2) Ratio between the number of observations in Gaussians

(ρ): 50/50, 75/25.

3) Standard deviation of Gaussians (σ): 0.1 and 1.

4) Ratio of the number of observations in the uniform

distribution to the cumulative number of observations in

two Gaussians (ν): 1/100 and 10/100.

We chose 3 as the low value for δ according to [1] to

guarantee that none of the pairs of σ and ρ values will make

the distribution unimodal. Table I shows the reduced ANOVA

table for the synthetic data described above. Figure 5 presents

the effects of individual factors on the accuracy of RTP mining.

Factors Df SS MS F val Pr(>F) Sig
δ 1 9.00 9.000 40.500 0.000131 ***
σ 1 9.00 9.000 40.500 0.000131 ***
δ:σ 1 2.25 2.250 10.125 0.011149 *
δ:ν 2 3.25 1.625 7.313 0.012999 *
σ:ν 1 2.25 2.250 10.125 0.011149 *

Residuals 9 2.00 0.222
Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

TABLE I: ANOVA table for synthetic data

The first conclusion we draw from Table I is that there

is a significant effect of δ on the accuracy of RTP mining.

Indeed, when the distance becomes large, PeTaMi tends to

create spurious clusters in order to group noisy RTs situated

between the Gaussians. On the other hand, when δ becomes

small, PeTaMi may put RTs from both Gaussians into the same

cluster (see the top left box plot in Figure 5).

The standard deviation of Gaussians σ also has a significant

effect on the accuracy of PeTaMi’s RTP mining. In fact,

small values of σ make the gap between the Gaussians more

pronounced; hence, PeTaMi is more prone to group outlier

RTs situated between the Gaussians together, and not with

the RTs from Gaussians. At the same time, large values of σ

increase the probability that PeTaMi will cluster RTs from the

Gaussians together (see the bottom left box plot in Figure 5).

The reason of the significance of the interaction between δ

and σ factors is twofold. Firstly, a combination of a small σ

and a large δ increases the probability that PeTaMi creates

additional clusters to group the outlier RTs between the
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Fig. 5: Effects of the parameters of the mixture distribution on

RTP mining accuracy (correct number of clusters is always 2).

Gaussians. Secondly, a combination of a large σ and a small

δ will likely result in PeTaMi mixing RTs from the two

Gaussians into a single cluster. The same can be said about

the interactions between δ and ν, and between σ and ν: large

values of ν will make PeTaMi create spurious clusters when

δ is large and/or σ is small.

B. Case Studies

In this section, we validate both stages of PeTaMi on two

case studies.

UAV case study: We use kernel event traces generated by an

unmanned aerial vehicle (UAV) shown in Figure 6 running the

Fig. 6: Unmanned Aerial Vehicle (UAV)

time event pid tid

.... .... .... ....

891422416 THRECEIVE 61465 4

891423916 THRUNNING 1 1

893367166 THRUNNING 61465 4

893368458 THREADY 1 1

893372750 THREADY 61465 3

893419708 THRECEIVE 61465 4

893421208 THRUNNING 61465 3

.... .... .... ....

Fig. 7: UAV Trace Snippet
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(a) Probability density function of IATs generated by a periodic
task. Distributions of IJIs and BJIs as mined by PeTaMi are
marked.

time event pid tid IAT IAT type

.... .... .... .... .... ....

24896653179 THRECEIVE 61465 4 1928401 BJI

24898583583 THRUNNING 61465 4 82208 IJI

24898659458 THRECEIVE 61465 4 718333 IJI

24899375583 THRUNNING 61465 4 53292 IJI

24899427208 THRECEIVE 61465 4 940458 IJI

24900366166 THRUNNING 61465 4 67418 IJI

24900432375 THRECEIVE 61465 4 947166 IJI

24901377875 THREADY 61465 4 33333 IJI

24901409833 THRUNNING 61465 4 63542 IJI

24901468833 THRECEIVE 61465 4 1900792 BJI

24903368125 THRUNNING 61465 4 80958 IJI

.... .... .... .... .... ....

(b) Trace snippet showing events generated by a periodic task
annotated with IATs and IAT types as mined by PeTaMi.

Fig. 8: Temporal behavior of a periodic task

real-time operating system QNX Neutrino 6.4. The UAV was

developed at the University of Waterloo, received the Special

Flight Operating Certificate (SFOC), and flew real mapping

and payload-drop missions in Nova Scotia and Ontario [40].

The trace snippet in Figure 7 shows a subset of attributes

found in the execution traces considered in this case study.

The snippet is generated using the tracelogger and traceprinter

utilities available in QNX Neutrino. In the experiments, a task

τ has a unique ID that combines the values from the two

attributes shown in the snippet as pid and tid. This way, the

snippet shows various events generated by three tasks τ1 =

“61465.4”, τ2 = “1.1”, τ3 = “61465.3”.

We used eight UAV traces where each trace consists of a

stream of roughly 150K events generated by ten tasks. These

traces contain both periodic and non-periodic tasks. Figures 8

and 9 show probability density functions (PDFs) of IATs

generated by a pair of representative periodic and non-periodic

tasks along with the annotated trace snippets capturing events

generated by these tasks. As we can see in Figure 8a, the

PDF of the IATs generated by a periodic task is represented

�������

�������

�������

�������

�������

� ������� ������� ������� �������� ��������
�
�

��
��

���

(a) Probability density function of IATs generated by a non-
periodic task.

time event pid tid IAT

.... .... .... .... ....

24964395833 THRUNNING 20501 5 132125

24964526666 THRECEIVE 20501 5 3923251

24968448458 THRUNNING 20501 5 124500

24968571750 THRECEIVE 20501 5 11254832

24979825041 THREADY 20501 5 2085

24979841916 THRUNNING 20501 5 117609

24979954125 THRECEIVE 20501 5 4586341

.... .... .... .... ....

(b) Trace snippet showing events generated by a non-periodic
task annotated with IATs.

Fig. 9: Temporal behavior of a non-periodic task

by several well-defined peaks. This implies that the task tends

to generate events with consistent IATs. Indeed, we can notice

in Figure 8b that a task’s job consists of a sequence of nine

events: eight of those events have IATs that fall into one of

the two leftmost bumps from Figure 8a, while the last job’s

event (“THRECEIVE”) generates an IAT that falls into the

rightmost bump. On the other hand, Figure 9a shows that a

big number of IATs generated by a non-periodic task tend to be

uniformly distributed. In fact, the non-periodic task depicted

in Figure 9 is a sporadic task, and the trace snippet containing

events executed by this task (Figure 9b) shows that the task

generates arbitrarily large IATs.

PeTaMi’s classification stage showed a perfect F-score of

1.0 on UAV traces, as all periodic and non-periodic tasks

were correctly classified. The perfect F-score can be explained

by the clear difference in minimal spreads (minSpread , see

Algorithm 1) between periodic and non-periodic tasks. For

example, the periodic task from Figure 8 has the following

values of minSpread in eight UAV traces: {0.11, 0.13, 0.13,

0.12, 0.18, 0.2, 0.15, 0.16}. At the same time, the non-periodic

task from Figure 9 has minSpread of {7.3, 6.0, 5.6, 3.0, 5.6,

4.8, 4.5, 4.4}. Fixing the threshold α at 1% allowed to achieve

the perfect F-score.
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Fig. 10: Problematic PDFs of RTs in UAV case study

PeTaMi mined RTPs of periodic tasks with the accuracy

of 83%: it returned a correct set of typical RTs for 20 out

of 24 periodic tasks captured in eight traces. We evaluate the

accuracy of RTP mining by comparing the PDF of the task’s

RTs with the number and values of the typical response times

returned by PeTaMi: if each distinct peak in the PDF has a

corresponding entry in the mined RTP, then the mining is

considered as being correct. Figure 10 shows PDFs of two

sets of RTs that resulted in wrong RTP mining (the other

two were similar to the left-hand graph). In the first case

(the left-hand graph), PeTaMi mined only one typical RT,

while there are three visible peaks. This PDF is characterized

by a small distance δ between the peaks combined with a

large standard deviation σ of the peaks. Indeed, our findings

in Section VIII-A showed that interaction between δ and σ

is a significant factor in PeTaMi’s accuracy. In the second

case (the right-hand graph), PeTaMi returned two typical

RTs, while there is only one visible peak. The reason of

incorrect mining is the presence of “noisy” RTs which PeTaMi

decided to put into a separate cluster, thus, returning a spurious

typical response time. Again, our findings from Section VIII-A

support this case, because the interaction between δ and the

ratio of noise ν was found to influence the accuracy of PeTaMi.

CAN case study: We captured the traces of Controller Area

Network (CAN) messages from a Toyota RAV4 during eleven

driving scenarios. Each trace consists of roughly 10K CAN

messages which represents 10 seconds of message capturing

during the following driving scenarios: starting and stopping

the engine, accelerating and decelerating between speeds of 0

and 20km/h, 0 and 40 km/h, making lane changes to the left

and to the right, and driving around a ring road. Each trace

contains between 15 and 20 tasks, all of which are periodic.

The trace snippet shown in Figure 11 presents a subset of fields

time id length bitcount mode

.... .... .... .... ....

1.9986 2C1 228000 118 Rx

2.00194 B0 192000 100 Rx

2.00209 320 144000 76 Rx

2.00229 B2 190000 99 Rx

2.00576 2C6 238000 123 Rx

2.00793 20 148000 78 Rx

.... .... .... .... ....

Fig. 11: CAN Trace Snippet
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Fig. 12: Problematic PDFs of RTs in CAN case study

characterizing each traced event (CAN message), as well as a

few events as seen in captured traces. We use the “id” field of

CAN messages to identify a task.

PeTaMi’s classification stage showed a perfect F-score of

1.0 on CAN traces: all tasks were correctly classified as

periodic. Similarly to the UAV case study, the threshold of

spread α = 1% was a good choice. Indeed, only a few periodic

tasks in CAN traces had minSpread > 0.1%, which was far

smaller than 1%.

PeTaMi mined RTPs of periodic tasks with the accuracy

of 74.4%: 134 out of 180 mined RTPs were correct. We

evaluated the accuracy of RTP mining using the same approach

applied in the UAV case study. Figure 12 shows PDFs of two

representative sets of RTs for which PeTaMi returned incorrect

RTP. In the first case (the left-hand graph), PeTaMi returned

only one typical RT while there are two clearly visible peaks,

hence, two typical RTs. In the second case (the right-hand

graph), PeTaMi mined only 2 typical RTs corresponding to

the two rightmost peaks. Both cases confirm our conclusion

from Section VIII-A that the distance δ between the peaks and

the standard deviation σ of the peaks influence the accuracy

of PeTaMi’s RTP mining stage.

IX. DISCUSSION

Experimental results in Section VIII validated the effective-

ness of PeTaMi in both the classification of real-time tasks and

the mining of temporal specifications of periodic tasks from

execution traces of embedded real-time systems.

The classification stage of PeTaMi showed perfect F-scores

in case studies. This can be explained by the truthfulness of

our assumption that BJIs of periodic tasks tend to have larger

values than their IJIs in real-world execution traces. Indeed,

a real-time periodic task must meet its deadline; if a set of

periodic tasks has a feasible priority order, then an appropriate

scheduler will try to make every task meet its deadline by

minimizing task’s RTs. As a consequence, task’s BJIs are

maximized. Therefore, the set of BJIs of a periodic task will

tend to have larger values than its set of IJIs. We must note,

however, that there exist two scenarios where PeTaMi will fail

to correctly classify a real-time task:

1) The task is periodic, and its period is respected at run

time, but task’s BJIs and IJIs have random values. Indeed,

this scenario will imply a uniform distribution of IATs

so that PeTaMi will not be able to find an accurate
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approximation of the set {BJI } using Algorithm 1. Such

scenario, however, can occur only for low-priority tasks

in highly utilized systems.

2) The largest n ≥ 5 IATs of a non-periodic task are evenly

spaced in time. Given the inherent randomness in IATs

of non-periodic tasks, such scenario is extremely unlikely

to happen in real-world execution traces.

PeTaMi showed an acceptable accuracy of RTP mining in

case studies. In Section VIII-A, we analyzed the influence

of various characteristics of the probability density function

(PDF) of the task’s RTs on the accuracy of RTP mining.

According to our findings, the standard deviation of the

Gaussians which model the distributions of task’s RTs as

well as the distance between the modes of these Gaussians

are the most significant factors. The characteristics of the

problematic PDFs from the case studies (Figures 10 and 12)

confirmed our findings. We envision to improve the accuracy

of the RTP mining stage in the future. One possibility is to

replace the k-medoids method by a clustering algorithm based

on kernel density estimation (KDE), such as the mean shift

algorithm [16] [12]. The idea behind this type of clustering

algorithms is to leverage sound statistical properties of KDE

to group observations around the regions of high data density.

In our case, such method could be beneficial in ignoring the

regions of low density (i.e., avoiding the creation of spurious

clusters containing outlier RTs), while treating peaks in high-

density regions more carefully (i.e., correctly detecting typical

RTs having a small difference in values).

X. CONCLUSION

In this work, we address the challenge of reverse engineer-

ing modern real-time systems by representing their runtime

behavior with a set of independent periodic tasks. To this end,

we introduced PeTaMi – a novel approach to mine periodic

tasks, along with their periods and response time profiles from

execution traces of real-time embedded systems.

PeTaMi takes as input an execution trace and a set of trace

fields encoding a task. Upon termination, PeTaMi returns a

“periodic”/“non-periodic” classification label for each task,

and in case the “periodic” label is assigned, PeTaMi returns

the task’s period and response time profile represented as a set

of typical response times.

We validated the applicability of PeTaMi on two case

studies and showed that it is possible to discover the period

and the response time profile of a periodic task using only its

inter-arrival times extracted from the execution trace.

APPENDIX

To support Assumption 1, we performed the following simu-

lation using the YAO-SIM tool 2 . We generated 1000 periodic

task sets for each utilization from 0.5 to 1.0 with a step 0.05,

and simulated execution of the tasks on a single CPU for 107

time units (following a similar practice as in [44]) using RM

and EDF scheduling algorithms. The number of tasks in each

2http://yaosim.sssup.it/

task set was picked randomly from the interval [3, 10]. The

worst-case execution times of tasks were generated as random

integers uniformly distributed in the interval [1, 30], while the

tasks’ periods were computed from WCETs and utilizations

using the UUniFast algorithm [5]. Figure 13 presents the

results of the simulation. The horizontal line corresponds to

the case where the mean IJI value of a particular task execution

is equal to its mean BJI value. By comparing the simulation

results with this line, we can conclude that Assumption 1 holds

true for systems with CPU utilization of up to 85%.
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Fig. 13: Simulation results supporting Assumption 1.
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