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Abstract—Real-time embedded systems have evolved from
simple, self-contained single-processor computers to distributed
multiprocessor systems that are extremely hard to develop and
maintain. Execution tracing has proved itself to be a useful
technology to gain a detailed knowledge of runtime behavior of
software systems. However, the size and complexity of execution
traces generated by modern embedded systems make manual
trace analysis impossible. Therefore, software developers need
tools to extract high-level system models from raw trace data.

In this paper, we address the problem of mining task prece-
dence graphs (TPG) from embedded system traces. A TPG can
be helpful in performing several crucial software development
and maintenance activities: understanding legacy systems, finding
runtime bugs, and detect and diagnose anomalies in running
systems. We rely on the recurrent nature of real-time systems to
solve the TPG mining problem.

‘We propose algorithms to train a TPG on a set of system traces,
as well as an algorithm to detect anomalies in trace streams using
a TPG. We evaluate our algorithms on industrial execution traces
generated on production cars.

I. INTRODUCTION

Modern Real-Time Embedded Systems (RTES) have
reached an unprecedented level of complexity. An obvious
example of an industry impacted by this rise of complexity of
RTES are automobile manufacturers who are rapidly becoming
software-intensive companies [17]. Mere forty years ago,
software made its first appearance in a car (the 1977 GM’s
Oldsmobile Toronado) to control the ignition system of the
car’s engine [6] [8]. Modern cars, on the other hand, have
dozens of embedded microprocessors which need to communi-
cate with each other in real-time to deliver advanced safety and
entertainment features. Therefore, it comes as no surprise that
the size of software running in cars have grown exponentially
and gone from zero lines of code in 1977 to over a hundred
million lines of code in modern automobiles [8]. The same
trend can be observed in other industries that extensively rely
on RTES, such as avionics, space [19], medical [18] and
mobile phone industries. Among the outcomes of the ever-
growing software complexity in modern RTES are the extreme
difficulties confronting software developers in understanding
legacy code, finding bugs in new versions of software, and
detecting attacks on target systems.

Software execution tracing is a popular technique to get
insights into runtime operation of a system. Tracing allows
software developers to perform a fine-grained analysis of the
execution behavior of relevant parts of the code. At the same
time, the complexity of software running on modern RTES

requires software developers to analyze the totality of system
operation and not just the system’s components in isolation.
This way, software developers have to work with system
traces which capture activities and states of the whole system.
Unfortunately, the volume and complexity of system traces
usually exceed a human’s ability to navigate and make sense of
the captured data. Therefore, it is necessary to extract higher-
level models from raw trace data. This process is usually
referred to as reverse engineering, model inference, or else
model mining.

There is a wide choice of models that can be mined from
system traces. Conceptually, these models can be divided into
two categories: invariants and temporal properties [12]. An
invariant is a property that holds at a certain point or points in
a program; for example, a variable being equal to a constant
(x = a), being a function from a library (x = fn(y)), and
others [15]. Temporal properties define the timing constraints
of system components. This type of model is especially useful
in characterizing RTES since their software must operate under
stringent real-time constraints.

In this paper, we are interested in mining a particular
type of temporal property called task precedence graph from
embedded system traces. A task precedence graph (TPG) is a
directed acyclic graph that shows the partial order of execution
of system tasks. Embedded software developers use TPG to
model precedence constraints between real-time tasks. These
constraints are essential to accomplishing complex control ac-
tivities of the target RTES. Precedence graphs, like other parts
of software documentation, are often not properly maintained
during the software lifecycle. Hence, having a tool to mine
task precedence graphs from system traces would be highly
beneficial to embedded software developers.

Models extracted from execution traces can be useful not
only to enhance understanding of the underlying system but
also to detect anomalies in system executions. Indeed, if a
running system violates a model representing normal system
behavior, then this can be a sign of an internal bug, or an
external attack on the system. We believe that a practical
anomaly detector is not only accurate but also has the fol-
lowing properties: (1) facilitates diagnostics by indicating the
specific part of the code responsible for the observed anomaly;
(2) processes traces in real time (online) fashion, allowing the
system to halt or take preventive actions as soon as an anomaly
has been detected; (3) is interactive, that is, makes it possible
for the user to flag a detected anomaly as valid behavior



and update the model accordingly. Despite their practical
usefulness, these properties are not addressed simultaneously
by anomaly detection methods [7]. In this paper, we propose
a TPG-based anomaly detection approach that is characterized
by all the properties mentioned above. The implementation of
the proposed approach is available as open-source !.

The key contributions of this paper include:

« an algorithm to mine a task precedence graph from a set
of valid RTES traces;

e a TPG-based anomaly detection method;

« two case studies on the application of the proposed min-
ing and anomaly detection methods on a set of industrial
execution traces generated on production cars.

The rest of the paper is organized as follows. Section II
presents the relevant work on mining temporal properties
from execution traces. Section III introduces the necessary
definitions and notation. In Section IV, we state a theorem
which we further use as a ground truth for our contribution.
In Section V, we formulate the problem statement of this work.
Section VI presents our method of mining a TPG from a set
of system traces. Section VII explains how a TPG can be used
to detect anomalies in trace streams. We conduct case studies
of the proposed mining and anomaly detection approach in
Section VIII and discuss its limitations in Section IX.

II. RELATED WORK

Most of the existing research on mining temporal properties
from execution traces focuses on the qualitative aspect of time,
i.e., the order of events in traces, and ignores the quantitative
aspect, i.e., the actual duration of time between events [12].
In the following, we review the work that considers only
the qualitative aspect of time, since task precedence graphs
describe precedence relations, that is, the order among system
tasks.

A finite-state machine (FSM) is a well-studied formalism
that can be used to model sequential data. Inferring FSM from
symbolic sequences has been actively studied since the 1960s
in the context of grammar induction [14]. Since grammar
induction methods require negative examples, i.e., sequences
that can not be generated by the system, they are not practical
for system traces [32]. The k-tails algorithm [5], which allows
to infer an FSM from positive examples only, influenced a
number of works on mining FSM from execution traces, for
example [10] [32] [2] [25]. The basic idea of the k-tails
algorithm is to merge a pair of states if they generate the same
sequences of k events, where k is a user-specified number.

There exists a large body of work on mining process models
from workflow logs [37]. A workflow log is a counterpart
of an execution trace in the domain of business process
management; it captures a sequence of performed business
activities. Process models have been mined in different forms,
for example, as a Petri net [36], a directed graph [1], a
workflow net [39], and others.

Thttps://bitbucket.org/oiegorov/tpg_miner

An important limitation of the majority of FSM and process
mining algorithms is their implicit assumption that the under-
lying system is sequential. That is, if a system component
B depends on a system component A, then an execution of
B must directly follow an execution of A in system traces.
Some works allow events to occasionally occur between the
executions of A and B, but these situations are treated as
noise [10]. On the other hand, the interleaving of independent
system activities is an inherent property of embedded system
traces. This means that if a component B appears directly after
a component A in a system trace, A and B do not necessarily
have a precedence relation: they may be independent and
scheduled one after another by chance.

Some authors address the problem of mining FSM from exe-
cution traces of non-sequential systems. Beschastnikh et al [4]
mine communicating FSM (CFSM) from execution traces of
distributed systems. They do not require related components
to directly follow each other in traces. However, the user
must specify which system components can communicate, and
what is the set of allowed communication patterns between
components. Yang et al [41] propose to mine a single type of
patterns from execution traces: “A is followed by B before the
next A”. Their tool Peracotta then merges the mined patterns
into a chain. Our approach is similar to Peracotta in this regard,
but it mines a more general type of patterns “B executes n
times between the m'™ and the (m + 1)* executions of A”.
This allows us to capture precedence relations of recurrent
activities in RTES.

III. TERMINOLOGY

In this section, we present the terminology that will be used
in Section V to define the problem statement of our work.

A. String terminology

An item e is a symbolic representation of some entity. A
complete set of available items is called an alphabet T.

A string s is an ordered list of items, denoted as s =
(e1,€29,...,6e,) where ¢; € Z for 1 <14 < n. A string having
n elements is called a n-string. The i-th element of s is s]i].

A me-string s = (f1, fo,..., fm) 1S a substring of a n-
string s = (e1,€2,...,€,), denoted as s’ C s, if m < n
and 3i € [l,n — m + 1], such that (f1, fo,..., fm) =
(€iy€i11y .-, €itm—1). If the equality holds when i = 1, s’ is
called a prefix of s, written as s’ T, s. If the equality holds
when i = n —m + 1, s’ is called a suffix of s, written as
s’ Cg 8. Also, s[i,j] (1 <14 < j < n) denotes a substring of
s which starts at s[i] and ends at s[j].

Given a n-string s and its substring s’ = si, j] (1 <1 < j <
n), i is said to be an occurrence of s’ in s. We make O(s', s)
denote a list of occurrences of s’ in s sorted in ascending
order. O,(s’,s) denotes the position of the ¢* occurrence of
s in s.

We say that a string s’ covers a string s when s is a
concatenation of some number of s, possibly ending with
a prefix of s’. Formally, a m-string s’ covers a n-string s if
(1) O1(s',8) = 1; (2) O411(8",8) = O;(s',8) + m; (3) if
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On(s',s) +m < n, then s[On(s',s) +m+1,n] T, ¢,
where Op(s’,s) is the last occurrence of s’ in s. For
example, a 5-string s’ = (1,0,0,1,0) covers both s; =
(1,0,0,1,0,1,0,0,1,0) and s2 = (1,0,0,1,0, 1), but s’ does
not cover s = (0,1,0,0,1,0,1,0,0,1,0).

B. Trace terminology

In real-time systems, a fask 7 is an independent thread of
execution that can compete with other concurrent tasks for
processor execution time [24]. If we make Zg denote a task
set of a particular system S, then each task 7, € Zg can be
viewed as an item from an alphabet Zg.

A trace W = [e1,...en] of a RTES S is a chronologically
ordered list of events. An event £ = (¢, 7) is a tuple consisting
of a time stamp ¢ and a task 7 which started its execution
at time ¢, 7 € Zg. We refer to the timestamp and the task
of an event € as e.time and c.task correspondingly. In the
following, we will view traces as strings of tasks, ignoring the
time stamps of trace events. This way, the k-th element of a
trace W, written as Wk], is the task ej.task which started its
execution at time £y.time.

A 7;-transactionalized trace W, written as WTJ, is a list
of substrings of W obtained by splitting it at the occurrences
of 7;. For example, given a trace W from Figure 1(a) and
7; = B, the B-transactionalized W is shown in Figure 1(b).
We call a string s € W., a transaction.

D.A,B,D,B.D.C,B,D,A,C,B,D.B,C,A,D,B,C,D,B,D,B.D,A,B,D.B,D.A,B

(a) example trace W

({D.A), (D), (D.C), (D,A,C), (D), (C.AD), (C.D), (D), (D,A), (D), (D.A))
(b) B-transactionalized W (Wpg)

Fig. 1: Trace examples

Given a transactionalized trace WT], and atask 7, ; # T,
an occurrence string of 7; in W, , written as 0s(7;, T;), is
an ordered list of numbers of occurrences of 7; in W; . ’s
transactions. For example, given the Wp from Figure 1(b)
and ; = A, 0s(4, B) = (1,0,0,1,0,1,0,0,1,0,1). Given an
occurrence string s, an occurrence pattern p of s is a string
that covers s, and the length of p is minimal among all strings
that cover s. The occurrence pattern of os(A, B) from the
above example is (1,0,0,1,0). An occurrence pattern of the
occurrence string of a task 7; in a transactionalized trace W,
is denoted as op(;, 75).

A trace stream is a trace whose events (a) arrive online,
(b) have to be processed in the order of arrival, and (c) are
discarded as soon as they have been processed [3]. A trace
may be considered as a trace stream recorded for some period
of time.

C. Task precedence graph terminology

Real-time tasks may interact according to a fixed partial
order. This creates precedence relations among tasks [11].
Given a pair of tasks 7; and 7;, 7; is a predecessor of 7;,
written as 7; < 7, if 7; starts its execution after the completion

of 7;; 7; is a successor of 7;. A task 7; is an immediate
predecessor of a task 7;, written as 7; < T, if the output
produced by 7; is communicated as input to 7;.

Precedence relations among tasks of a RTES S are known
before execution and can be represented by a directed acyclic
graph called a task precedence graph (TPG) of S and de-
noted as TPG(S). The nodes of a TPG represent tasks and
the edges (e) correspond to immediate precedence relations
among nodes. This way, if 7, < 7; in a system S, then
e(ri,7j) € TPG(S); if 7; < 7, then there exists a path from
T; to Tj in TPG(S)

IV. A THEOREM ON PRECEDENCE RELATIONS OF
REAL-TIME TASKS

In this section, we present a theorem that serves as the
ground truth to our TPG mining method. In Section II, we
drew the reader’s attention to the fact that the interleaving of
independent system activities is an inherent property of system
traces. This makes the problem of mining precedence relations
from system traces non-trivial. The following theorem tells us
how to find pairs of real-time tasks with a precedence relation
from system traces.

Theorem 1. If a task 7; is an immediate predecessor of a task
Tj in a real-time system S, then there exists op(T;,7;) in any
execution trace of S captured during at least two hyperperiods

of S.

Proof. Assume that we are given a trace W of a real-time
system S and a pair of tasks 7;, 7, € W such that 7; is
an immediate predecessor of 7; (1; < 7;). Consider first a
simple precedence relation, when 7; < 7; implies that the k-
th execution of 7; must precede the k-th execution of 7;. In this
case, op(7;,7;) obviously exists and is equal to (1). In case
of a complex precedence relation, the periods of tasks, T'(7;)
and T'(7;), are different [11]. However, during the system’s
hyperperiod P there is a specific number of occurrences
of 7, and 7; (P/T(7;) and P/T(7;) correspondingly), and
execution of 7; must precede execution of 7; whenever 7; and
7; are both in the ready queue since 7; requires 7;’s output.
Put differently, the number of occurrences of 7; between
any pair of consecutive invocations of 7; is deterministic.
Finally, if a trace captures system’s activity during at least two
hyperperiods, then op(7;, 7;) is guaranteed to cover 0s(7;, 7;).
Figure 2 illustrates this when T'(71)=50 ms and T'(72)=20
ms. O

As a supporting example, consider Figure 3 which shows a
TPG and periods of tasks (in milliseconds) of an embedded
software running on a small unmanned helicopter discussed
in [40]. Tasks 71 and 75 (77 < 72) have the same period of
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Fig. 2: An example of a complex precedence relation between
a pair of real-time tasks (77 < 72); op(71,72) = (1,0,0,1,0).
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Fig. 3: The TPG of an unmanned helicopter presented in [40]
annotated with periods of tasks (in milliseconds).

50 ms, so op(71,72) = (1) in traces produced by this system.
At the same time, 5 and 77 (72 < 77) have different periods
(T(m2) = 50 ms and T(77) = 20 ms), which makes their
precedence relation complex and op(re,77) = (1,0,0,1,0)
(see Figure 2). Another example of a complex precedence
relation is the one between tasks 79 and 717 (79 < 711):
T(Tg) =20 ms, T(Tll) = 200 ms; Op(Tg,Tll) = <10>

Note that Theorem 1 addresses only immediate predeces-
sors/successors and does not require a non-immediate prede-
cessor 7; of a task 7; to have an occurrence pattern in Wo.
For example, given a trace W= (A, B,C, A, B, A,C,B,C),
the task A is a predecessor of the task C' since A < B,
op(A, B)=(1), and B < C, op(B, C)=(1), but op(A, C) does
not exist in W.

V. PROBLEM STATEMENT

The following definitions help us to formulate the problem
statement of this work.

We call a TPG G conformant to a set of traces W when
G contains an edge e(r;, 7;) only if there exists op(r;,7;) in
all W € W, and there is no set of tasks R = {71, 72,...Tn},
n>1 7 ¢ R and 7; € R, such that occurrence patterns
op(Ti,T1), 0p(T1, T2), - . ., 0p(Tp, T;) exist in all W € W. Note
that if a TPG G is conformant to a trace W, then it follows
from the definition of occurrence pattern that G is conformant
to any prefix of W.

An event ¢’ = (t,7;) in a trace W is called an anomaly
with respect to a TPG G, if there exists a task 7; such that
e(ri, 7j) is in G but there is no op(r;, 7;) in W' = Wieq, €'].
Simply put, an anomalous event in W violates a precedence
relation in G.

We are now ready to formally state the two problems
addressed in this work:

P1 (TPG mining). Given a set of traces W, mine a task
precedence graph G conformant to all traces in W.

P2 (TPG-based anomaly detection). Given a task precedence
graph G and an incoming trace stream W, determine if
there is an anomalous event € in W with respect to G.

VI. TASK PRECEDENCE GRAPH MINING

In this section, we present a method to mine a TPG from
a set of system traces. The method mines a complete set of
occurrence patterns from a single trace (Section VI-A), then
builds a TPG conformant to this trace (Section VI-B), and then
trains the mined TPG on the remaining traces (Section VI-C).

A. Mining occurrence patterns

We first address the problem of finding the occurrence
pattern of a n-string s. According to the definition, the
occurrence pattern of s is a prefix of s. Therefore, we proceed
by checking if there exists a prefix that covers s, starting from
the prefix of length 1. This way, if a prefix p is found to
cover s, p is necessarily the occurrence pattern of s since all
the shorter prefixes do not cover s. This approach is specified
in Algorithm 1. The worst-case complexity of Algorithm 1 is
O(n?), which is observed when all but the last element of s
have the same value.

Algorithm 1: Find the occurrence pattern of a string
Data: n-string s
Result: occurrence pattern p or NULL if p does not exist
1 max_p_length < n/2
2 foreach p_length =1,2,..

.,mazx_p_length do

3 15_op < TRUE

4 p + s[1: p_length)

5 num_included + ceil(n/p_length)

6 foreach £k =0,1,..., (num_included — 1) do
7 if lis_op then

8 ‘ break

9 foreach | = 1,2,...,p_length do

10 if !is_op then

1 | break

12 element_number < k x p_length + [
13 if element_number > n then

14 | break

15 if s[element_number] # p[l] then

16 | is_op < FALSE

17 end

18 end

19 if is_op then

20 | return p

21 end

22 return NULL

Algorithm 2 shows how to extract a set of occurrence
patterns () from a trace W using Algorithm 1. An element
of ) is a a tuple (parent, child, op), where parent and child is
a pair of tasks such that parent has an occurrence pattern op
in the child-transactionalized W. Algorithm 2 has the worst-
case complexity of O(|7|?|W|?), where |T| is the number of
tasks in W and |W| is the number of events in T, since an
occurrence pattern is mined for each ordered pair of tasks in
W. It is important to note, however, that the for loop on lines
5-10 can be run in parallel for all 7; € 7\7;, which can greatly



Algorithm 2: Mine a set of occurrence patterns of a trace
Data: trace W
Result: set of occurrence patterns
1Q+ 0
2 T < unique tasks from W
3 foreach 7, € T do
4 W, < 7;-transactionalized W
5 | foreach 7; € T\7; do
6 5 < os(m;, Wr,)
7
8
9

p < occurrence pattern of s (see Algorithm 1)
if p # NULL then
| Q < QU (parent= 7;,child= 7;, op= p)
10 end
11 end
12 return @

reduce the computational time of Algorithm 2. Moreover, if the
user knows that the trace W captures system activity for longer
than two system’s hyperperiods, they can reduce accordingly
the value of maz_p_length (line 1 in Algorithm 1) to speed
up the mining. In other words, max_p_length can be set to
n/k — 1, where k is the number of system’s hyperperiods
recorded in W.

B. Building a TPG

A task precedence graph G of an embedded system is
defined by the system’s task set (nodes of the graph) and pairs
of tasks with an immediate predecessor/successor relation
(edges of the graph). According to Theorem 1, the edges of
G can be extracted from the set of occurrence patterns () of
a trace W generated by the target system. However, if we
simply draw an edge from a task 7; to a task 7; such that
(parent = T;, child = 7;, op) € @, the obtained graph may
not be conformant to W, because there may exist another path
from 7; to 7; in G.

The problem of making a TPG G, obtained by draw-
ing an edge 7; — 7; when (parent = 7;, child = T,
op) € @, conformant to a trace W can be viewed as the
problem of finding a transitive reduction of a directed acyclic
graph (DAG). Indeed, a transitive reduction of a DAG H does
not contain an edge e(v;,v;) € H, if the vertex v; is reachable
from the vertex v; via another path in H, that is, if there
exists a set of vertices {v1,va,...,ux} such that {e(v;,v1),
e(vy,v2),. .., e(un,v;)} € H. Gries et al. [16] proposed an
algorithm to construct a transitive reduction of a DAG H by
firstly finding the transitive closure of H using the Warshall’s
algorithm [38], and then extracting the transitive reduction
from the transitive closure, since the transitive closure of a
DAG has the same transitive reduction as the DAG itself.
Algorithm 3 shows how we can find a TPG G conformant to a
trace W using the Gries’ algorithm. The worst-case complexity
of Algorithm 3 is the same as the complexity of the Gries’
algorithm, which is O(7?). This makes the total complexity
of mining a task precedence graph from a system trace W
equal to O(|T|2|W |2 + |T3).

Algorithm 3: Mine a task precedence graph conformant
to a trace

Data: trace W, set of occurrence patterns )

Result: task precedence graph G' conformant to W
1 V ¢ unique tasks from W // set of nodes
2 B0 // set of edges
3 foreach g € () do
4 | E < EU q.parentg.child)
5 end
6
7
8
9

G+ FEUV

G¢ « transitive closure of G (see [38])
G < transitive reduction of G¢ (see [16])
return GG

C. Training a TPG

Next, we present a method to train a task precedence graph
on a set of traces (see Algorithm 4). Observe that Algorithm 3
allows mining a TPG conformant to a single trace. It is
likely, however, that software developers would like to run
their system multiple times to capture as much normal system
behavior as possible and then mine a single TPG conformant
to all the execution traces.

The main idea behind Algorithm 4 is to verify for each
event ¢ of a trace W that all occurrence patterns ¢ € @,
such that g.child = ec.task, have been respected up to
e.time. This is done by introducing an additional pair of
elements to each tuple ¢ € @Q: tokens is the number of
times the g.parent task has appeared in W since the previous
appearance of the g.child task (line 2), and current_os is the
current occurrence string of the g.parent task in W chig
(line 3). Tokens are used to update occurrence strings by
appending q.tokens to g.current_os each time the ¢.child task
appears in W (line 8); g.current_os is reset if g.current_os =
g.current_op (line 14). If g.current_os is not a prefix of g.op,
then G needs to be updated because the trace W no longer has
the occurrence pattern q. If done naively, the update requires
recomputation of the transitive closure and reduction of G
using the Gries’ algorithm, which has the cubic worst-case
complexity with respect to the number of vertices in G (see
Section VI-B). La Poutre et al. [22] proposed an approach to
update a transitive reduction after an edge deletion which has
the quadratic worst-case complexity with respect to the number
of vertices in G. Since this method has a better complexity than
the naive one, we apply it on line 12 to update the precedence
graph G after the removal of a violated occurrence pattern ¢
(line 11).

VII. TPG-BASED ANOMALY DETECTION

In this section, we explain how a task precedence graph
trained on valid system traces can be used to find anomalies
in trace streams. Interestingly, Algorithm 4 presented in the
previous section can be easily adapted to perform anomaly
detection in trace streams. Indeed, our TPG training algorithm
processes input traces one event at a time in the increasing



Algorithm 4: Train a TPG on a set of traces

Data: set of traces W, set of occurrence patterns @), task
precedence graph G
Result: () and G trained on traces from W

1 foreach ¢ in Q do

2 q.tokens < 0

3 g.current_os < () // empty string
4 end

5 foreach W € W do

6 foreach ¢ € W in the increasing order of ¢.time do
7 foreach g € Q, such that q.child = c.task do

8 g.current_os < { g.current_os, g.tokens )

9 q.tokens < 0

10 if g.current_os [/, q.op then

1 Q <« Q\q

12 update G (see [22])

13 if q.current_os = q.op then

14 | g.current_os < ()

15 end

16 foreach ¢’ € Q, such that ¢'.parent = e.task do
17 ‘ ¢’ .tokens < ¢'.tokens +1

18 end

19 end

20 end

21 return Q,G

order of their timestamps (line 6), which makes it applicable
to trace streams.

The first necessary modification to Algorithm 4 reduces the
number of occurrence patterns that need to be verified during
anomaly detection process. According to the definition of an
anomalous event (Section V), only a violation of an occurrence
pattern between tasks connected by an edge in the TPG will
result in an anomaly. Therefore, if there is no edge from
g.parent to g.child in the TPG, where ¢ is one of the existing
occurrence patterns, then the anomaly detection algorithm can
proceed to the next event in the trace stream. The following
lines inserted into Algorithm 4 between lines 7 and 8 does
this check:

if e(g.parent, g.child) ¢ G then
| next

The second modification to Algorithm 4 makes it return the
anomalous event ¢ and the violated occurrence pattern g as
soon as an anomaly is found. Therefore, the following line
must replace lines 11 and 12 :

return ¢, g

Finally, if no anomaly is found in the trace stream, the algo-
rithm must return NULL on line 21. With these modifications
in place, Algorithm 4 becomes an anomaly detection algorithm
on trace streams.

Besides being able to work on trace streams, our TPG-based
anomaly detection algorithm has two other important features
outlined in Section I: it can make the anomaly detection

interactive, and it facilitates the diagnostics of the found
anomalies.

The interactivity feature makes it possible to mark a detected
anomaly as a valid system behavior, let the algorithm update
the TPG, and proceed with anomaly detection from the next
event in the trace. For this, we keep lines 11 and 12 in
Algorithm 4, which are responsible for updating the TPG,
but report an anomaly right after line 10. This feature can
be helpful when the amount of training data is limited, so
that software developers can decide themselves if a particular
unseen system behavior is valid.

The ability of our anomaly detection technique to return
the anomalous event and the violated occurrence pattern can
be extremely useful for guiding software developers through
the diagnostics of the detected anomaly. Indeed, instead of
simply saying that a given trace is anomalous, our approach
returns the precise moment of time and the violated precedence
relation that made the system enter the anomalous state.

VIII. CASE STUDIES

In this section, we present two case studies of mining
task precedence graphs from system traces and using the
mined graphs to detect anomalies in target systems. In the
first case study, we consider four CAN message traces that
were captured on a Hyundai YF Sonata car and were made
available for download 2 by the researchers from the HCRL
lab (Korea University). The car remained parked during trace
collection. Each trace starts with a period of normal CAN bus
activity followed by a period of anomalous activity caused
by a simulated attack on the system. For the second case
study, we obtained 15 CAN message traces from our partner
in the automotive industry. The traces were captured on a
production vehicle exercised on a test track during normal,
anomaly-free operation. Therefore, in this case study we focus
on the variation in the number of false positives returned by
our algorithm with respect to the amount of training data.

The traces in both case studies are standard CAN bus
activity logs, where each line shows the field values of the
captured frame as well as the time when the frame appeared
on the bus. Figure 4 shows a snippet of one of the CAN traces
from the first case study. In this work, we dispose of all but
the “message ID” field, which we interpret as the task name.

In the next two sections, we introduce an important type of
attacks on modern vehicles called spoofing and explain how
a TPG-based intrusion detection system can help in detecting
this type of intrusions.

A. Background on Spoofing Attacks on Modern Vehicles

A spoofing attack is an intrusion technique when an attacker
forges its identity to pass as another device. Spoofing has
gained a special notoriety in wireless networks where cryp-
tographic authentication is prohibitively expensive to apply
due to limited power and resources available to wireless
devices [9].

Zhttp://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset
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time message ID bytes Dbl
1478193190.235495 0545 8 ds
1478193190.235633 05f0 2 01
1478193190.236088 0130 8 Ob
1478193190.236324 0131 8 f2
1478193190.236565 0140 8 00
1478193190.236815 02c0 8 15

b2 b3 b4 b5 b6 b7 b8

5f 00 8b 00 00 00 00

00

80 00 ff 0f 80 Oc ea
Tf 00 00 15 Tf Oc 35
00 00 00 le 0d 2c 3b
00 00 00 00 00 00 00

Fig. 4: A snippet of a CAN trace from Case Study I

Spoofing attacks have been recently shown to be a major
security threat for modern automobiles [26] [28] [31]. A
particular demonstration of a spoofing attack performed by
Miller and Valasek [28] triggered a recall of 1.4 million
of Chrysler cars in 2015 3. Another example is a series of
successful hackings of a Tesla Model S by researchers from
Tencent KeenLab in 2016 and 2017 *.

We next explain what makes cars vulnerable to spoofing.
Modern cars are pervasively computerized: dozens of embed-
ded microprocessors called Electronic Control Units (ECU)
run tens of millions of lines of code monitoring sensors,
components, the driver, and the passengers [8]. The number
of ECUs is constantly growing to meet the demand for
new features that make driving more safe and enjoyable.
Many car features, for example, park assist, adaptive cruise
control, and collision prevention require complex real-time
communications between ECUs [21] [13]. The prevailing in-
vehicle communication protocol is Control Area Network
(CAN) [30]. With the CAN protocol, ECUs are interconnected
via a single or multiple CAN buses and communicate by
broadcasting messages. This makes it possible for an attacker
to send a message to any ECU once they have successfully
infiltrated the CAN bus. Moreover, CAN messages contain no
authenticator or even source identifier fields making it possible
for an attacker to send messages that are indistinguishable
from normal CAN traffic [21]. Finally, telematics, wifi, and
bluetooth modules found in new cars allow an attacker to
infiltrate the CAN bus wirelessly. These weaknesses of the
CAN protocol make it possible to spoof CAN messages
without physically accessing the vehicle.

One of the strategies to improve the resilience of cars to
spoofing attacks consists in employing an intrusion detec-
tion system (IDS) running inside a car on one or multiple
embedded microprocessors [27]. Existing anomaly-based IDS
for the CAN bus are mainly based on timing information of
CAN messages, since the messages are normally periodic [34].
The frequencies of CAN messages are learned during vehi-
cle validation and then used to detect an unusual number
of messages in the incoming CAN traffic using a sliding
window [29] [26] [35] [33]. The motivation behind these
IDS is that an attacker needs to introduce a high volume of
spoofed messages to override the messages sent by the original

3https://www.theverge.com/2015/7/24/9032179
“https://www.pcmag.com/news/35528 1 /tesla-model-s- hackers-return- for-
encore-attack

ECU [27]. Therefore, these approaches detect an intrusion only
after the number of spoofed messages in a fixed interval of
time reaches a specific threshold.

B. Detecting Spoofing Attacks with TPGs

As we explained in Section VII, a task precedence graph
trained on normal system traces can be used for online
anomaly detection in trace streams. A TPG-based IDS would
need to store the graph’s nodes (i.e., an array of character
strings), its incidence matrix, and a set of occurrence patterns
corresponding to graph edges. The IDS would also need to
keep two data structures for each edge: a current occurrence
string and a number of tokens. Computation performed on an
incoming trace event is a simple prefix verification (line 10 in
Algorithm 4). The light computational and memory require-
ments make this method compatible with the hardware used
in ECUs. Therefore, our TPG-based IDS can be programmed
on an onboard car computer.

In contrast to intrusion detection methods presented in
Section VIII-A, a TPG-based IDS makes it possible to de-
tect even a single spoofed message, as long as the spoofed
message has a predecessor and/or a successor message. In
other words, an anomalous event € can be detected using
a task precedence graph G only if e.task has an incoming
and/or an outgoing edge in G. Indeed, if for a pair of tasks 7;
and 75, Jop(7i, Tj), the number of occurrences of 7; between
consecutive invocations of 7; does not correspond to the
current element in op(7;, 7;), then the IDS will immediately
detect the anomaly. The same holds in the situation where 7;
appears an unexpected number of times between consecutive
invocations of 7;: the op(;, 7;) is violated which makes our
IDS immediately report the anomaly.

C. Case Study 1

The four traces we use in this case study contain CAN
bus activity of a parked Hyundai YF Sonata before and
during three types of attacks: a denial-of-service attack in
trace #1 (DoS_dataset.csv), a fuzzing attack [21] in trace #2
(Fuzzy_dataset.csv), a spoofing attack on the drive gear in trace
#3 (gear_dataset.csv), and a spoofing attack on the RPM gauge
in trace #4 (RPM_dataset.csv). Each message in these traces
is annotated with a flag which says whether the message is
normal (flag “R”) or forged (flag “T”). Therefore, it is possible
to evaluate the accuracy of an IDS on these traces. We decided
to disregard the first two attacks since they are performed
by introducing CAN messages with random IDs (fuzzing) or
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with the highest-priority ID (denial-of-sevice), which makes
their detection trivial. Indeed, it would suffice to remember the
message IDs appearing on the bus in normal conditions, and
then report any new message ID observed on the bus during
the testing. On the other hand, the spoofing attacks (traces #3
and #4) forge messages with existing IDs, which makes their
detection more difficult.

Given a lack of traces capturing normal car behavior in this
case study, we trained a TPG on the first 1000 messages (all
flagged “R”, i.e., normal) from traces #1 and #2. We did not
use more messages as training data since the attacks begin
shortly after the 1000™ message in these traces. The process
of mining a TPG conformant to a set of traces consists in
mining a TPG from a single trace, and then training the graph
on the remaining traces. Therefore, we first mined a TPG from
the trace #1 using Algorithms 2 and 3, and then trained the
graph on the trace #2 using Algorithm 4. Figure 5 shows the
trained TPG where each edge 7; — 7; is annotated with the
occurrence pattern op(7;, 7;).

Next, we present the results of detecting anomalies in the
trace #3 (drive gear spoofing) and in the trace #4 (RPM gauge
spoofing) using the trained TPG.

Fig. 5: A trained TPG from Case Study I

1) Detecting a spoofing attack on the drive gear: Our TPG-
based anomaly detector reported 28 anomalies prior to the first
forged message in the trace #3. The reported anomalies can be
split into three groups: 18 anomalies were detected near the
beginning of the trace (within the first 32 lines), one anomaly
was signaled on line #57, and 9 anomalies were detected
within 29 lines before the first spoofed message which appears
on line #2142. The first group is clearly false positives. All of
these anomalies occur when an occurrence pattern op(7;, ;)
is violated at the first occurrence of 7; in the trace. Therefore,
we suspect that our approach returns false positives because
of a lack of synchronization between the beginning of trace
recording and the start of system execution. Indeed, if a trace
does not capture the first execution of 7; but does capture
the first execution of 7, then op(r;,7;) will be violated if it

exists in the training traces. The anomaly in the second group
(also a false positive) can be attributed to insufficient training
data, since the violated occurrence pattern op(0350, 0370)
was respected in the training data. Next, we explain why
we consider the third group of detected anomalies as true
positives. During a manual analysis of the trace, we noticed
that the bus activity plunges moments before the first spoofed
message appears on the bus. We speculate that this can be a
result of activating an external board that the researchers used
to introduce spoofed messages to the bus (using a procedure
similar to the one they described in [23]). Our TPG-based IDS
had detected this event and had raised an alarm before the first
spoofed message manifested itself on the bus.

2) Detecting a spoofing attack on the RPM gauge: Our
TPG-based anomaly detector reported 9 anomalies prior to the
first forged message in the trace #3 appearing on line #1720.
The first 6 anomalies were reported near the beginning of the
trace (within the first 38 lines), one anomaly — on line #316,
and the other two anomalies — close to the first spoofed frame
(within 7 lines). The first 6 anomalies (false positives) can be
explained in the same way as the first group of the anomalies
in the drive gear example described above. Similarly, the single
anomaly on line #316 (also a false positive) can be attributed to
insufficient training data. As in the drive gear case, we consider
the two anomalies reported prior to the appearance of the first
spoofed message as true positives. In fact, the anomalies come
from the violations of op(018£, 02a0) and op(0260, 02a0).
When we manually analyzed the temporal behavior of task
02a0, we found out that its period being regular throughout
the normal part of the trace (10ms) was slightly violated prior
to the spoofed message (9.5ms). We assume that this slight
period violation was somehow caused by the connection to
the CAN bus for the injection of spoofed messages.

D. Case Study 11

In this case study, we evaluate the number of false positives
returned by our TPG-based IDS while it is being trained on
traces of normal CAN bus activity captured on a production
car exercised on a test track. Table I shows the statistics of
the 15 traces that we used in this case study.

Trace | Duration (s) | # events # tasks
1 312 793,653 252
2 245.5 653,932 240
3 361.3 907,038 224
4 390 1,044,558 251
5 352.6 891,195 235
6 287 727,508 243
7 288.7 767,148 239
8 307.2 1,260,299 243
9 600 1,425,667 219
10 343.2 866,187 229
11 319 847,882 241
12 249.9 635,463 235
13 342.1 991,105 276
14 314.3 834,942 257
15 283.8 754,786 239

TABLE I: Trace statistics from Case Study II



We applied the same procedure of training a TPG on a set
of traces that we used in the previous case study. The TPG
mined from the first trace contains 116 nodes with at least
one incoming and/or outgoing edge and 180 edges. At the
same time, the TPG trained on all the 15 traces consists of 44
nodes with at least one incoming and/or outgoing edge and
43 edges. The trained graph with obfuscated task names is
shown in Figure 6. The difference in number of nodes and
edges between the graph mined from the first trace and the
graph mined from all the 15 traces can be explained by the fact
that the target vehicle was probably tested on different driving
scenarios. This way, the TPG shown in Figure 6 reflects the
car’s behavior common to all the tested scenarios.

Fig. 6: A trained TPG from Case Study II

We evaluated the false positive rate of our precedence graph-
based IDS using the following procedure. We mined a TPG
from the first trace, then ran Algorithm 4 on the second
trace using the mined graph and recorded the number of
detected anomalies. The reported anomalies are, of course,
false positives, since all 15 traces were captured during normal
car operation. We then used the TPG trained on the first two
traces, and repeated the same procedure on the third trace.
Table II shows the number of false positives returned by our
TPG-based IDS when it was applied on the ‘" trace using the
TPG trained on the first 7 —1 traces. As we can see in Table 11,
there were no false positives after the 8" trace. This supports
the observation made in previous works [27] [34] that CAN
traffic is highly regular since it is machine-generated. This
allows us to posit that a task precedence graph-based IDS
requires only a limited amount of training data to reach a low
or even perfect false positive rate.

IX. LIMITATIONS

Our task precedence graph mining method works only with
perfect traces [41], that is, traces that capture all the executed
events that the software developer has chosen to trace. Indeed,
given a pair of real-time tasks 7; and 7; such that 7; reads 7;’s
output, if an execution trace W misses a single execution of 7;

(or 75), then Algorithm 1 will not mine the occurrence pattern
op(;, 1) from W.

It follows from the previous limitation that our method
requires the tracing to start when the system begins its exe-
cution. Consider the pair of real-time tasks from the previous
paragraph. If a trace W starts with an invocation of task 7;,
then the first element of the occurrence string os(;, 7;) will
be 0. Therefore, Algorithm 1 will not mine op(7;, 7;) from the
provided trace W.

Lastly, a TPG-based IDS does not allow to detect an
anomalous event € in a trace stream W if the corresponding
task e.task does not have at least one incoming and/or outgoing
edge in the precedence graph. Indeed, the proposed IDS
detects temporal violations of real-time tasks with respect
to other tasks in the system. If a task is independent and
does not have any precedence constraints with other tasks,
violations of its temporal behavior must be detected using
other anomaly detection methods. One idea of the future work
in this direction could be verification of tasks’ periods and
response time profiles mined, for example, with the PeTaMi
tool [20].

X. CONCLUSION

In this paper, we propose an approach to mine a task
precedence graph from a set of system traces. The main idea
behind our approach is that a real-time task 7; that sends its
output to a real-time task 7; executes a deterministic number
of times between a given pair of consecutive executions of
7j. The proposed method firstly mines a TPG from a single
execution trace and then trains the graph on the remaining
traces. We also show how to use a TPG to find anomalies in
incoming trace streams of an embedded system. The proposed
anomaly detection method returns the first event that violates
the TPG, facilitating the diagnostics of the detected problem;
it also allows the software developer to mark the anomaly as
a normal system behavior and resume anomaly detection with
the updated TPG.

Trace | # anomalies
1 —
2 140
3 220
4 11
5 1
6 38
7 2
8 9
9 0

10 0
11 0
12 0
13 0
14 0
15 0

TABLE II: The number of anomalies in the i*" trace detected
by our IDS using a task precedence graph trained on the
previous ¢ — 1 traces from Case Study II



We also present two case studies where we apply our
algorithms on CAN bus traces captured on different production
cars. We show that a TPG-based intrusion detection system
has good accuracy even when trained on a limited amount of
data. Moreover, we explain why our approach can be superior
to the methods available in the literature in detecting spoofing
attacks on automobiles.
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