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Abstract. This paper presents a novel and efficient parallel algorithm
for runtime verification of an extension of Ltl that allows for nested
quantifiers subject to numerical constraints. Such constraints are useful
in evaluating thresholds (e.g., expected uptime of a web server). Our algo-
rithm uses the MapReduce programming model to split a program trace
into variable-based clusters at run time. Each cluster is then mapped to
its respective monitor instances, verified, and reduced collectively on a
multi-core CPU or the GPU. Our experiments on real-world case studies
show that the algorithm imposes negligible monitoring overhead.

1 Introduction

Runtime verification (RV) is an automated specification-based technique, where
a monitor evaluates the correctness of a set of logical properties on a particu-
lar execution. RV complements exhaustive approaches such as model checking
and theorem proving and under-approximated methods such as testing. RV can
be particularly helpful in scenarios, where one needs to monitor parametric re-
quirements on types of execution entities (e.g., processes and threads), user- and
kernel-level events and objects (e.g., locks, files, sockets), web services (e.g., re-
quests and responses), and network traffic. For example, the requirement ‘every
open file should eventually be closed’ specifies a rule for causal and temporal
order of opening and closing individual objects which generalizes to all files.
Such properties can become even more complex by incorporating numerical con-
straints such as thresholds, floors, ceilings. However, to our knowledge existing
RV frameworks fall short in expressing counting semantics.

In this paper, we extend the 4-valued semantics of Ltl (denoted RV-Ltl
in this paper) [6] by adding counting semantics with numerical constraints and
propose an efficient parallel algorithm for their verification at run time. Inspired
by the work in [15], the syntax of our language (denoted Ltl4−C) extends Ltl
syntax by the addition of counting quantifiers. That is, we introduce two quanti-
fiers: the instance counting quantifier (E) which allows expressing properties that
reason about the number of satisfied or violated instances, and the percentage
counting quantifier (A) which allows reasoning about the percentage of satisfied



or violated instances out of all instances in a trace. These quantifiers are sub-
scripted with numerical constraints to express the conditions used to evaluate
the count. For example, the following Ltl4−C formula:

A≥0.95 s : socket(s) · (G receive (s)⇒ F respond (s))

intends to express the property that ‘at least 95% of TCP/UDP sockets must
eventually respond to a received request’. For a web admin, ideally the number
of dropped requests is zero, however in reality requests will be dropped some-
times [19]. Thus it is beneficial for a monitor to keep track of the percentage of
dropped requests and fire an alert once a certain threshold is exceeded.

The first contribution of the paper is extending RV-Ltl by redefining pre-
sumably true/false within the context of counting semantics. Consider the ex-
ample demonstrated above, where it is required that a web server drops less
than 5% of the requests. For such a property, counting semantics justify the
need for presumably true/false in a similar fashion to incomplete executions in
RV-Ltl. For instance, if only 4% of the requests have been dropped so far, that
does not mean that the property is permanently satisfied. There could be more
requests that arrive in the future and are dropped, increasing the percentage of
dropped requests beyond 5%. A verdict of true is incorrect, since the property
can be violated in the future. In Ltl4−C, this property is presumably satisfied,
with a potential to be violated by more requests. For a web admin, this verdict
indicates that the system is currently healthy.

The second contribution of this paper is a divide-and-conquer-based online
monitor generation technique for Ltl4−C specifications. Our technique first
synthesizes an RV-Ltl monitor for the inner Ltl formula of the given Ltl4−C
formula at pre-compile time using the technique in [6]. Then, based upon the
values of variables observed at run time, submonitors are generated and merged
to compute the current truth value of a property for the current program trace.

Our third contribution is a monitoring algorithm that implements the above
approach for verification of Ltl4−C properties at run time. The monitoring al-
gorithm evaluates properties in parallel, utilizing multicore CPUs or GPUs and
maximizing the throughput of the monitor. The algorithm utilizes the popular
MapReduce programming model to (1) spawn submonitors that aim at eval-
uating subformulas using partial quantifier elimination, and (2) merge partial
evaluations to compute the current truth value of properties.

Our parallel algorithm for verification of Ltl4−C properties is fully imple-
mented on multi-core CPU and GPU technologies using our own simple im-
plementation of the MapReduce programming model. We report experimental
results by conducting three real-world independent case studies. The first case
study is a monitor for HTTP requests and responses on an Apache Web Server.
The second case study is a monitor for upload chunk size based on a dataset for
profiling DropBox traffic. The third case study monitors a network proxy cache to
reduce the bandwidth usage of online video services, based on a YouTube request
dataset. We present performance results comparing single-core CPU, multi-core
CPU, and GPU implementations. Our results show that our GPU-based imple-
mentation provides an average speed up of 6.3x when compared to single-core
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CPU, and 1.75x when compared to multi-core CPU. The CPU utilization of the
GPU-based implementation is negligible compared to multi-core CPU, freeing
up the system to perform more computation. Thus, the GPU-based implemen-
tation manages to provide competitive speedup while maintaining a low CPU
utilization, which are two goals that the CPU cannot achieve at the same time.
Put it another way, the GPU-based implementation incurs minimal monitoring
costs while maintaining a high throughput.

2 LTL with counting semantics

Let IP be a finite set of interpreted predicates, and let Σ = 2IP be the power
set of IP . We call each element of Σ an event.

Definition 1 (Trace). A trace w = w0w1 · · · is a finite or infinite sequence of
events where each event consists of interpreted predicates; i.e, wi ∈ Σ, for all
i ≥ 0. �

We denote the set of all infinite traces by Σω and the set of all finite traces by
Σ∗.

2.1 Syntax of LTL4-C

Ltl4−C extends RV-Ltl [6] (also known as RV-LTL) with two counting quanti-
fiers: the instance counting quantifier (E) and the percentage counting quantifier
(A). The semantics of these quantifiers are introduced in subsection 2.4. The syn-
tax of Ltl4−C is defined as follows:

Definition 2 (Ltl4−C Syntax). Ltl4−C formulas are defined using the fol-
lowing grammar:

ϕ ::=A∼k x : p(x) · ϕ | E∼l x : p(x) · ϕ | ψ
ψ ::=> | a | p (x1 · · ·xn) | ¬ψ | ψ1 ∧ ψ2 | Xψ | ψ1 Uψ2

where A is the percentage counting quantifier, E is the instance counting quanti-
fier, x, x1 · · ·xn are variables with finite domains D,D1, · · · Dn,
∼∈ {<,≤, >,≥,=}, k :R ∈ [0, 1], l ∈ Z+, a is an atomic proposition, X is
the next, and U is the until temporal operators. �

If we omit the numerical constraint in A∼k (respectively, E∼l), we mean A=1

(respectively, E≥1). The syntax of Ltl4−C forces constructing formulas, where
a string of counting quantifiers is followed by a quantifier-free formula. We em-
phasize that A and E do not necessarily resemble standard first order quantifiers
∀ and ∃. In fact, ¬A and E are not equivalent.

Consider the Ltl4−C property ϕ = Ax : p(x) · ψ, where the domain of x
is D. This property denotes that for any possible valuation of the variable x
([x := v]), if p(v) holds, then ψ should hold. If p(v) does not hold, then p(v) · ψ
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evaluates to true. This effectively means that the quantifier Ax is in fact applied
only over the sub-domain {v ∈ D | p(v)} ⊆ D.

To give an intuition, consider the scenarios where file management anomalies
can cause serious problems at run time (e.g., in NASA’s Spirit Rover on Mars
in 2004). For example, the following Ltl4−C property expresses “at least half
of the files that a process has previously opened must be closed”:

ϕ = A≥50% f : inevent(f) ·G(opened(f) U close(f)) (1)

where inevent is the p predicate of the quantifier, denoting that the concrete file
appeared in an event in the trace.

2.2 Truth Values of LTL4-C

The objective of Ltl4−C is to verify the correctness of quantified properties
at run time with respect to finite program traces. Such verification attempts to
produce a sound verdict regardless of future continuations.

Similar to RV-Ltl, we incorporate four truth values to define the semantics of
Ltl4−C: B4 = {>,⊥,>p,⊥p}; true, false, presumably true, and presumably false,
respectively. The values in B4 form a lattice ordered as follows: ⊥ < ⊥p < >p <
>. Given a finite trace u and an Ltl4−C property ϕ, the informal description
of evaluation of u with respect to ϕ is as follows:

– True (>) denotes that any infinite extension of u satisfies ϕ. For example,
ϕ1 = E≥1t : thread(t) · log(t) is a property that checks a process has at
least one log thread. If one log thread is found in the trace, the property is
permanently satisfied.

– False (⊥) denotes that any infinite extension of u violates ϕ. For example,
ϕ2 = E=1t : thread(t) · log(t) is a property that checks a process has exactly
one log thread. If more than one log thread is found in the trace, the property
is permanently violated.

– Presumably true (>p) extends the definition of presumably true in RV-
Ltl [6], where >p denotes that u satisfies the inner Ltl property and the
counting quantifier constraint in ϕ, if the program terminates after execution
of u. An example is

ϕ3 = E≥1t : thread(t) · log(t) ∧G(event(t)⇒ Fwrite(t))

which evaluates to >p if there is only one log thread that has received an
event and has written it, but can still potentially receive another event and
never write it, thus violating the property.

– Presumably false (⊥p) extends the definition of presumably false in RV-
Ltl [6], which denotes that u presumably violates the quantifier constraint
in ϕ. For example, Property ϕ3 evaluates to ⊥p if there is one log thread
that has received an event and not yet written it. A future extension of the
trace can potentially contain a write event, thus transforming the valuation
of the property to >p.
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2.3 Valuation in Ltl4−C

An Ltl4−C property essentially defines a set of traces, where each trace is a
sequence of events (i.e., sets of predicates). We define the semantics of Ltl4−C
with respect to finite traces and present a method of utilizing these semantics
for runtime verification. In the context of runtime verification, the objective is
to ensure that a trace is in the set of traces that the property defines.

To introduce the semantics of Ltl4−C, we examine counting quantifiers
further. Since the syntax of Ltl4−C allows nesting of counting quantifiers, a
canonical form of properties is ϕ = Qϕ ψ where ψ is an Ltl property and
Qϕ is a sequence of counting quantifiers Qϕ = Q0Q1 · · · Qn−1 such that each
Qi = 〈qi,∼i, ci, xi, pi〉, 0 ≤ i ≤ n − 1, is a tuple encapsulating the counting
quantifier information. That is, qi ∈ {A,E}, ∼i∈ {<,≤, >,≥,=}, ci is the con-
straint constant, xi is the bound variable, and pi is the predicate within the
quantifier (see Definition 2).

Variable Valuation We define a vector Dϕ with respect to a property ϕ as
Dϕ = 〈d0, d1, · · · , dn−1〉 where n = |Qϕ| and di, 0 ≤ i ≤ n−1, is a value for vari-
able xi. We denote the first m components of the vector Dϕ

(i.e., 〈d0, d1, · · · , dm−1〉) by Dϕ|m. We refer to Dϕ as a value vector and to
Dϕ|m as a partial value vector.

A property instance ϕ̂(Dϕ|m) is obtained by replacing every occurrence of
the variables x0 · · ·xm−1 in ϕ with the values d0 · · · dm−1, respectively. Thus,
ϕ̂(Dϕ|m) is free of quantifiers of index less than m, yet remains quantified over
variables xm · · ·xn−1. ϕ̂(Dϕ) denotes replacing all quantified variables with val-
ues in Dϕ, resulting in an unquantified LTL property. For instance, for the fol-
lowing property ϕ = A>c1 x : px(x) · (A<c2 y : py(y) ·G q(x, y)) and value vector
Dϕ = 〈1, 2〉 (i.e., the vector of values for variables x and y, respectively), ϕ̂(Dϕ)
will be ϕ̂(〈1, 2〉) = px(1) · (py(2) ·G q(1, 2)) = G q(1, 2).

We now define the set Dϕ,u as the set of all value vectors with respect to a
property ϕ = Qϕ ψ and a trace u = u0u1 · · · :

Dϕ,u = {Dϕ | ∃j ≥ 0 : ∀i ∈ [0, |Qϕ|) : pi(di) ∈ uj} (2)

Valuation of Property Instances As per the definition of Dϕ,u, every value
vector Dϕ = 〈d0 · · · dn−1〉 in Dϕ,u contains values for which the predicates pi(di)
hold in some trace event uj . For simplicity, we denote this as a value vector in a
trace event uj . These value vectors can possibly be in multiple and interleaved

events in the trace. Thus, we define a trace uDϕ = u
Dϕ

0 u
Dϕ

1 · · · as a subsequence
of the trace u such that the value vector Dϕ is in every event:

∀ j ≥ 0 : ∀ i ∈ [0, n− 1] : pi(di) ∈ uDϕ

j

2.4 Semantics of LTL4-C

Definition 3 (Ltl4−C Satisfaction Relation). Given an Ltl4−C property
ϕ = Qψ where Q is a quantifier (either A or E), and ψ is an Ltl4−C formula.

5



Also, given an infinite trace w, we define the satisfaction relation w |=4 ϕ as
follows:

w |=4 ψ iff w |= ψ and ψ is an Ltl property

w |=4 E∼cx : px(x) · ψ iff ∃D′ϕ,w ⊂ Dϕ,w s.t. ∀Dϕ ∈ D′ϕ,w : wDϕ |= ϕ̂(Dϕ)∧
∀Dϕ /∈ D′ϕ,w : wDϕ 6|= ϕ̂(Dϕ) ∧ |D′ϕ,w| ∼ c

w |=4 A∼cx : px(x) · ψ iff ∃D′ϕ,w ⊂ Dϕ,w s.t. ∀Dϕ ∈ D′ϕ,w : wDϕ |= ϕ̂(Dϕ)∧
∀Dϕ /∈ D′ϕ,w : wDϕ 6|= ϕ̂(Dϕ) ∧ |D′ϕ,w|/|Dϕ,w| ∼ c

where Dϕ,w is the finite set of all value vectors in the infinite trace w. ϕ̂(Dϕ) is
an Ltl property and |= is the satisfaction relation as defined in Ltl semantics.

Definition 4 (Ltl4−C Semantics for finite prefixes). Given an Ltl4−C
property ϕ = Q∼c ψ where Q is a quantifier and ψ is an Ltl4−C formula. Also,
given a finite prefix u of a trace, Ltl4−C semantics are defined as follows:

[u |=4 ϕ] =



[u |=RV-Ltl ϕ] iff ϕ is an Ltl property

> iff ∃D′ϕ,u ⊂ Dϕ,u s.t.

∀Dϕ ∈ D′ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] = > ∧
∀Dϕ /∈ D′ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] 6= > ∧
|D′ϕ,u| ∼ c if Q = E else |D′ϕ,u|/|Dϕ,u| ∼ c ∧
∀v ∈ Σω : uv |=4 ϕ

⊥ iff ∃D′ϕ,u ⊂ Dϕ,u s.t.

∀Dϕ ∈ D′ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] 6= ⊥ ∧
∀Dϕ /∈ D′ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] = ⊥ ∧
|D′ϕ,u| 6∼ c if Q = E else |D′ϕ,u|/|Dϕ,u| 6∼ c ∧
∀v ∈ Σω : uv 6|=4 ϕ

>p iff ∃D′ϕ,u ⊂ Dϕ,u s.t.

∀Dϕ ∈ D′ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] ∈ {>,>p} ∧
∀Dϕ /∈ D′ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] /∈ {>,>p} ∧
|D′ϕ,u| ∼ c if Q = E else |D′ϕ,u|/|Dϕ,u| ∼ c ∧
∃v ∈ Σω : uv 6|=4 ϕ

⊥p iff ∃D′ϕ,u ⊂ Dϕ,u s.t.

∀Dϕ ∈ D′ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] ∈ {>,>p} ∧
∀Dϕ /∈ D′ϕ,u : [uDϕ |=4 ϕ̂(Dϕ)] /∈ {>,>p} ∧
|D′ϕ,u| 6∼ c if Q = E else |D′ϕ,u|/|Dϕ,u| 6∼ c ∧
∃v ∈ Σω : uv |=4 ϕ

�

The semantics are defined for five cases:

– If ϕ is an Ltl property, then we use the four-valued semantics in RV-Ltl.
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– Let D′ϕ,u be a subset that contains all values of the quantified variable that
satisfy the inner property. If the cardinality of this subset satisfies the nu-
merical constraint on the quantifier, and no infinite extension of the trace
can violate it, the valuation is >.

– Now, let D′ϕ,u contain all values for which the inner property is not ⊥, i.e. it
could be >, >p, or ⊥p. If the cardinality of this subset violates the numerical
constraint on the quantifier, and no infinite extension of the trace can satisfy
it, the valuation is ⊥.

– >p is similar to >, except that D′ϕ,u can include values with which the inner
property evaluates to >p, and there exists an extension to the trace prefix
that can violate the quantifier constraint.

– ⊥p is the opposite of >p, where D′ϕ,u violates the quantifier constraint, and
there exists an extension to the trace prefix that can satisfy the constraint.

Note that Ltl4−C semantics are defined recursively from the outermost
quantifier. The recursion can be observed in [uDϕ |=4 ϕ̂(Dϕ)] where Dϕ is a
value vector 〈d〉 for the quantified variable inQ, and ϕ̂(Dϕ) is property ϕ without
quantifier Q. Hence, the semantics recurse with one less quantifier at each step
until there are no counting quantifiers and ϕ is an Ltl property, at which case we
use RV-Ltl semantics. Also note that for a finite prefix of a trace, the semantics
of Ltl4−C is decidable since the quantification is over a finite set of objects that
exist in the trace.

3 Divide-and-Conquer-based Monitoring of LTL4-C

In this section, we describe our technique inspired by divide-and-conquer for
evaluating Ltl4−C properties at run time. This approach forms the basis of our
parallel verification algorithm in Section 4.

Unlike runtime verification of propositional RV-Ltl properties, where the
structure of a monitor is determined solely based on the property itself, a moni-
tor for an Ltl4−C needs to evolve at run time, since the valuation of quantified
variables change over time. More specifically, the monitor Mϕ for an Ltl4−C
property ϕ = Qϕψ relies on instantiating a submonitor for each property in-
stance ϕ̂ obtained at run time. We incorporate two type of submonitors: (1)
RV-Ltl submonitors evaluate the inner Ltl property ψ. An RV-Ltl submoni-
tor instance is denoted asM∗Dϕ

, where Dϕ is the unique value vector that binds
all quantified variables in the property, leaving only a simple Ltl property to
be monitored. (2) The second time of submonitors is quantifier submonitors,
described in Subsection 3.1. In Subsection 3.2, we explain the conditions under
which a submonitor is instantiated at run time. Finally, in Subsection 3.3, we
elaborate on how submonitors evaluate an Ltl4−C property.

3.1 Quantifier Submonitors

Given a finite trace u and an Ltl4−C property ϕ = Qϕψ, a quantifier submon-
itor (MQ) is a monitor responsible for determining the valuation of a property

instance ϕ̂(Dϕ|i) with respect to a trace subsequence uDϕ|i , if i < |Qϕ|.
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Definition 5 (Quantifier Submonitor). Let ϕ = Qϕψ be an Ltl4−C prop-
erty and ϕ̂(Dϕ|i) be a property instance, with i ∈ [0, |Qϕ| − 1]. The quantifier
submonitor for ϕ̂(Dϕ|i) is the tuple MQDϕ|i = 〈Qi,MDϕ|i ,F〉, where

– Qi encapsulates the quantifier information (see Subsection 2.4)
– MDϕ|i is the set of child submonitors (submonitors of child property in-

stances) defined as follows:

MDϕ|i =

{
{M∗D′ϕ | D

′
ϕ|i = Dϕ|i} if i = |Qϕ| − 1

{MQD′ϕ|i+1 | D′ϕ|i = Dϕ|i} if i < |Qϕ| − 1

– F is a function that applies the quantifier constraint Qi on the truth values
of all the child submonitors MDϕ|i .

Thus, if i = |Qϕ|−1, all child submonitors are RV-Ltl submonitors. Otherwise,
they are quantifier submonitors of the respective child property instances. �

3.2 Instantiating Submonitors

Let an Ltl4−C monitor Mϕ for property ϕ evaluate the property with respect
to a finite trace u = u0u1 · · · . Let Dϕ = 〈d0, d1, · · · 〉 be a value vector and u0 the
first trace event such that ∀di : pi(di) ∈ u0. In this case, the Ltl4−C monitor
instantiates submonitors for every property instance resulting from that value
vector. A value vector of length |Qϕ| results in |Qϕ|+1 property instances: one for
each quantifier in addition to an RV-Ltl inner property. Figure 1 demonstrates
the tree structure of submonitors graphically.

3.3 Evaluating LTL4-C Properties
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Fig. 1: Tree structure of an Ltl4−C
monitor.

Once the Ltl4−C monitor instanti-
ates its submonitors, every submon-
itor is responsible for updating its
truth value. The truth value of an
RV-Ltl submonitor (M∗) is deter-
mined by its automaton. Quantifier
submonitors update their truth value
by applying the quantifier constraint
on their child submonitors and pro-
ducing a valuation based on Ltl4−C
semantics.

4 Parallel RV Algorithm

The main challenge in designing a runtime monitor is to ensure that its behavior
does not intervene with functional and extra-functional (e.g., timing constraints)
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behavior of the program under scrutiny. This section presents a parallel algo-
rithm for verification of Ltl4−C properties. Our idea is that such a parallel
algorithm enables us to offload the monitoring tasks into a different computing
unit (e.g., the GPU). The algorithm utilizes the MapReduce programming model
to spawn and merge submonitors to determine the final verdict. It is important
to note that the algorithm supports both online and offline monitoring. We gen-
eralize the input to the algorithm as a trace, which could be the entire program
trace in the case of offline monitoring, or an event or a buffered sequence of
events in the case of online monitoring.

This section is organized as follows: Subsection 4.1 describes how valuations
are extracted from a trace in run time, and Subsection 4.2 describes the steps of
the algorithm in detail.

4.1 Valuation Extraction

Valuation extraction refers to obtaining a valuation of quantified variables from
the trace. As described in Ltl4−C semantics, the predicate pi(xi) identifies the
subset of the domain of xi over which the quantifier is applied: namely the subset
that exists in the trace. From a theoretical perspective, we check whether the
predicate is a member of some trace event, which is a set of predicates. From an
implementation perspective, the trace event is a key-value structure, where the
key is for instance a string identifying the quantified variable, and the value is
the concrete value of the quantified variable in that trace event.

4.2 Algorithm Steps

Algorithm 1 presents the pseudocode of the parallel monitoring algorithm. Given
an Ltl4−C property ϕ = Qϕ ψ, the input to the algorithm is the RV-Ltl
monitorM∗ of RV-Ltl property ψ, a finite trace u, the set of quantifiers Qϕ, and
the vector of keys K used to extract valuations. Note that the algorithm supports
both online and offline runtime verification. Offline mode is straightforward since
the algorithm receives a finite trace that it can evaluate.

In the case of online mode, the algorithm maintains data structures that
represent the tree structure shown in Figure 1, and repeated invocation of the
monitor updates these data structures incrementally. Thus, an online monitor
will receive batches of events in run time and process them, building the tree of
monitors with every invocation of the monitor. These invocations can be periodic
or event based, and the batches can be of any length.

The entry point to the algorithm is at Line 5 which is invoked when the
monitor receives a trace to process. This can be the entire trace in offline mon-
itoring, or a buffered segment of the trace in online monitoring. The algorithm
returns a truth value of the property at Line 8. Subsections 4.2 – 4.2 describe
the functional calls between Lines 5 – 8.

The MapReduce operations are visible in functions SortTrace and ApplyQuan-
tifiers, which perform a map (⇒) in Lines 10 and 40 respectively. ApplyQuanti-
fiers also performs a reduction (�) in Line 41.
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Algorithm 1 Ltl4−C Monitor
1: INPUT: An RV-Ltl monitor M∗ of Ltl property ψ, a

finite trace u, a set of quantifiers Qϕ, and a vector of
keys K to extract valuations of quantified variables.

2: declare T = {MQ
D|0
} . Tree of quantifier submonitors

3: declare D = {}, . Value vector set
4: declare M∗ = {} . RV-Ltl submonitor set
5: µ← SortTrace(u) . The entry point
6: SpawnMonitors(µ)
7: Distribute(u,µ)
8: return ApplyQuantifiers(|Qϕ − 1|)

9: function SortTrace(u). Trace sorting and compaction
10: ui ⇒ u′i :=ValueVec(ui, K) . ‖ map to value

vectors
11: ParallelSort(u′,K)
12: µ〈D, r〉 ← ParallelCompact(u′)
13: return µ

14: function SpawnMonitors(µ) . Monitor spawning
15: for D ∈ µ do in parallel
16: if D 6∈ D then
17: Add(D,D)
18: t← AddToTree(D)
19: t.addMonitor(CreateMonitor(D))

20: function AddToTree(D)
21: t = T .root
22: for i ∈ [1, |Qϕ| − 1] do

23: if MQ
D|i
6∈ t.children then

24: t.addchild(MQ
D|i

)

25: t← t.children
[
MQ

D|i

]
26: return t

27: function CreateMonitor(D) . Monitor creation
28: M∗D ← LaunchMonitorThread(D)
29: M∗D.D ← D
30: add(M∗,M∗D)
31: return M∗D

32: function Distribute(u,µ) . Distribute trace to
monitors

33: forM∗D ∈ M∗ do in parallel
34: ProcessBuffer(M∗D,u,µ[M∗D.D])

35: function ProcessBuffer(M∗D,u,r) . Process trace
36: filter include u ⇒ u′ := u[r.start, r.end] . ‖ filter
37: M∗D.b ←UpdateMonitor(M∗D, u′)

38: function ApplyQuantifiers(i) . Apply quantifiers
39: for t ∈ T.nodesAtDepth(i) do in parallel
40: t.children ⇒ {s := [v, v′, · · · ]} . ‖ map
41: s � t.v . ‖ reduction to truth vector
42: t.b← Valuation(t) . Ltl4−C semantics

43: if i = 0 then
44: return t.b
45: return ApplyQuantifiers(i− 1)

Trace Sorting As shown in
Algorithm 1, the first step in
the algorithm is to sort the
input trace u (Line 5). The
function SortTrace performs
this functionality as follows:

1. The function performs
a parallel map of ev-
ery trace event to the
value vector that it holds
(Line 10).

2. The mapped trace is
sorted in parallel using
the quantifier variable as
a key (Line 11).

3. The sorted trace is then
compacted based on val-
uations, and the function
returns a map µ where
keys are value vectors and
values are the ranges of
where these value vectors
exist in trace u (Line 12).
A range contains the start
and end index. This es-
sentially defines the sub-
sequences uDϕ for each
property instance ϕ̂(Dϕ)
(refer to Subsection 2.4).

Monitor Spawning Moni-
tor spawning is the second
step of the algorithm (Line 6).
The function SpawnMonitors
receives a map µ and searches
the cached collection of previ-
ously encountered value vec-
tors D for duplicates. If a
value vector in µ is new, it cre-
ates submonitors and inserts
them in the tree of submoni-
tors T (Line 18). The function AddToTree attempts to generate |Qϕ|−1 quantifier
submonitorsMQ (Line 22) ensuring there are no duplicate monitors in the tree
(Line 23).
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After all quantifier submonitors are created, SpawnMonitors creates an RV-
Ltl submonitor M∗ and adds it as a child to the leaf quantifier submonitor in
the tree representing the value vector (Line 19). This resembles the structure in
Figure 1.

Checking whether submonitors do not already exist and the creation of new
submonitors is performed in parallel for all value vectors in trace u. This is
because the trace has been sorted and grouped by unique value vectors in the
previous step. Thus, each subtree of monitors that corresponds to a unique value
vector is created in parallel, and connected to its parent via locks.

Distributing the Trace The next step in the algorithm is to distribute the
sorted trace to all RV-Ltl submonitors (Line 7). The function Distribute in-
structs every RV-Ltl submonitor to process its respective trace by passing the
full trace and the range of its respective subsequence, which is provided by the
map µ (Line 34). The RV-Ltl monitor updates its state according to the trace
subsequence and stores its truth value b.

Applying Quantifiers Applying quantifiers is a recursive process, beginning
with the leaf quantifier submonitors and proceeding upwards towards the root
of the tree (Line 8). Function ApplyQuantifiers operates in the following steps:

1. The function retrieves all quantifier submonitors at the ith level in the tree
T (Line 39).

2. In parallel, for each quantifier submonitor, all child submonitor truth values
are reduced into a single truth value of that quantifier submonitor (Lines 40-
42). This step reduces all child truth vectors into a single vector and then
applies Ltl4−C semantics to determine the truth value of the current sub-
monitor, essentially applying function F on the truth values of all child
submonitors.

3. The function proceeds recursively calling itself on submonitors that are one
level higher. It terminates when the root of the tree is reached, where the
truth value is the final verdict of the property with respect to the trace.

5 Implementation and Experimental Results

We have implemented Algorithm 1 for two computing technologies: Multi-core
CPUs and GPUs. We applied three optimizations in our GPU-based implemen-
tation: (1) we use CUDA Thrust API to implement parallel sort, (2) we use
Zero-Copy Memory which parallelizes data transfer with kernel operation with-
out caching, and (3) we enforced alignment, which enables coalesced read of
trace events into monitor instances. In order to intercept systems calls, we have
integrated our algorithm with the Linux strace application, which logs all sys-
tem calls made by a process, including the parameters passed, the return value,
the time the call was made, etc. Notice that using strace has the benefit of
eliminating static analysis for instrumentation.
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5.1 Case studies

We have conducted three case studies, the first demonstrates using our imple-
mentation for online monitoring, while case study 2 and 3 are monitored offline.
Following is a detailed description of the case studies:

1. Ensuring every request on a socket is responded to. This case study
monitors the responsiveness of a web server. Web servers under heavy load
may experience some timeouts, which results in requests that are not re-
sponded to. This is a factor contributing to the uptime of the server, along
with other factors like power failure, or system failure. Thus, we monitor
that at least 95% of requests are indeed responded to:

A≥0.95 s : socket(s) · (G receive (s)⇒ F respond (s))

We use the Apache Benchmarking tool to create varying loads on the Apache
web server, and monitor the property online.

2. Ensuring fairness in utilization of personal cloud storage services.
This case study is based on the work in [12], which discusses how profiling
DropBox traffic can identify the bottlenecks and improve the performance.
Among the issues detected during this analysis, is a user repeatedly upload-
ing chunks of maximum size to DropBox servers. Thus, it is beneficial for a
runtime verification system to ensure that the majority of chunks are not of
maximum size, ensuring fairness of service use. The corresponding Ltl4−C
property is as follows:

Au : user(u) · A<0.5 c : chunk(c) · ismaxchunksize (u, c)

3. Ensuring proxy cache is functioning correctly. This experiment is
based on a study that shows the effectiveness of utilizing proxy cache in de-
creasing
YouTube videos requests in a large university campus [20]. Thus, we monitor
that no video is requested externally more than once:

Av : vid(v) · E≤1 r : req(r, v) · external(r, v)

Notice that the formulas in the above case studies utilize counting seman-
tics to express properties that cannot be expressed in standard Ltl. Moreover,
evaluation of these properties can never result in permanent satisfaction nor per-
manent violation (Case Study 1 and 2 only). Thus, the use of four-valued logic
allows the monitor to produce a meaningful verdict for these properties.

5.2 Experimental Setup

Experiment Platform. The experiments machine comprises of a 12-core Intel
Xeon E5-1650 CPU, an Nvidia Tesla K20c GPU, and 32GB of RAM, running
Ubuntu 12.04.
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Experimental Factors. We experiment with three implementations: single
CPU, parallel CPU, and a GPU based implementation. We also experiment
with multiple trace sizes to demonstrate scalability.

Experimental Metrics. We measure the total execution time and the moni-
tor’s CPU utilization. This is to demonstrate the impact of monitoring on overall
CPU utilization. We perform 20 replicates of each experiment and present error
bars of a 95% confidence interval.

5.3 Results
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(a) Case Study 1
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(b) Case Study 2
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(c) Case Study 3

Fig. 2: Experimental results.

First of all, the case studies have been
evaluated with real-world datasets, except
in Case Study 1, where we use the Apache
benchmark tool to generate traces. We
have validated that the monitor works
correctly by ensuring that verdicts of pre-
sumably true/false are produced appro-
priately for Case Studies 1 and 2, and ver-
dicts of presumably true / permanently
false are produced appropriately for Case
Study 3.

The performance results of Case Study
1 are shown in Figure 2a. As seen in
the figure, the GPU implementation scales
efficiently with increasing trace size, re-
sulting in the lowest monitoring time of
all three implementations. The GPU ver-
sus single core CPU speedup ranges from
0.8 to 1.6, increasing with the increas-
ing trace size. When compared to parallel
CPU (CPU ||), the speedup ranges from
0.78 to 1.59. This indicates that parallel
CPU outperforms GPU for smaller traces
(32768), yet does not scale as well as GPU
in this case study. This is attributed to
the low number of individual objects in
the trace, making parallelism less impactful.

CPU utilization results in Figure 2a show a common trend with the increase
of trace size. When the trace size is small, parallel implementations incur high
CPU utilization as opposed to a single core implementation, which could be at-
tributed to the overhead of parallelization relative to the small trace size. On
the other hand, GPU shows a stable utilization percentage, with a 78% aver-
age utilization. The single core CPU implementation shows a similar trend, yet
slightly elevated average utilization (average 86%). The parallel CPU implemen-
tation imposes a higher CPU utilization (average 115%), since more cores are
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being used to process the trace. This result indicates that shipping the mon-
itoring workload to GPU consistently provides more time for CPU to execute
other processes including the monitored process. The results of Case Study 2 and
Case Study 3 in Figures 2b and 2c respectively demonstrate a more prominent
advantage of using GPU in terms of speedup. The number of individual objects
in these traces are large, making parallelism highly effective. For Case Study 2,
the speedup of the GPU implementation over single core CPU ranges from 1.8
to 3.6, and 0.83 to 1.18 over parallel CPU. The average CPU utilization of GPU,
single core CPU, and parallel CPU is 64%, 82%, and 598% respectively. For Case
Study 3, speedup is more significant, with 6.3 average speedup of GPU over sin-
gle core CPU, and 1.75 over parallel CPU. The average CPU utilization of GPU,
single core CPU, and parallel CPU is 73%, 95%, and 680% respectively. Thus,
the parallel CPU implementation is showing large speedup similar to the GPU
implementation, yet also results in a commensurate CPU utilization percentage,
since most cores of the system are fully utilized.

Although the parallel CPU implementation provides reasonable speedup
and the single-core CPU implementation imposes low CPU overhead, the
GPU implementation manages to achieve both simultaneously.

6 Related Work

Runtime verification of parametric properties has been studied by Rosu et al [13,
16]. In this line of work, it is possible to build a runtime monitor parameterized
by objects in a Java program. The work by Chen and Rosu [9] presents a method
of monitoring parametric properties in which a trace is divided into slices, such
that each monitor operates on its slice. This resembles our method of identify-
ing trace subsequences and how they are processed by submonitors. However,
parametric monitoring does not provide a formalization of applying existential
and numerically constrained quantifiers over objects.

Bauer et al. [5] present a formalization of a variant of first order logic com-
bined with LTL. The work by Leucker et al. presents a generic approach for
monitoring modulo theories [11]. This work provides a more expressive speci-
fication language. Our work enforces a canonical syntax which is not required
in [11], resulting in more expressiveness. However, the monitoring solution pro-
vided requires SMT solving at run time. Ltl4−C extends RV-Ltl by redefining
>p and ⊥p to support quantifiers and their numerical constraints. This four-
valued semantics provides a more accurate assessment of the satisfaction of the
property based on finite traces as opposed to the three-valued semantics in [11].

The work in [14] presents an extension to LTL that allows counting events
associated with the Until operator. In this work, it is possible to apply a nu-
merical constraint on the number of events satisfying subformulas. This differs
from Ltl4−C, where numerical constraints are applied on quantified objects,
allowing us to reason about the number or percentage of objects that satisfy a
property. The work in [2] allows a limited form of quantification over values of a
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variable, yet does not support a higher level of quantification on the entire LTL
property parameterized by the quantified variable, as is possible in Ltl4−C. The
work in [18] presents a property specification language that allows quantifica-
tion, and separates propositional evaluation from quantifier evaluation, similar
to Ltl4−C. However, Ltl4−C supports Ltl operators and quantification with
numerical constraints.

The work in [1] presents a method of using MapReduce to evaluate LTL prop-
erties. The algorithm is capable of processing arbitrary fragments of the trace in
parallel. The work in [3] presents a MapReduce method for offline verification of
LTL properties with first-order quantifiers. Our approach supports both offline
and online monitoring by extending RV-Ltl’s four valued semantics, which are
capable of reasoning about the satisfaction of a partial trace. This is unclear
in [3], since there is no evidence of supporting online monitoring.

The work in [10] presents a specification language for defining properties
on input streams. The work in [4] presents an extension to metric first order
temporal logic that allows aggregate operations.

Finally, the work in [7, 8] presents two parallel algorithms for verification of
propositional Ltl specifications at run time. These algorithms are implemented
in the tool RiTHM [17]. This paper enhances the framework in [7, 8, 17] by
introducing a significantly more expressive formal specification language along
with a parallel runtime verification system.

7 Conclusion

In this paper, we proposed a specification language (Ltl4−C) for runtime veri-
fication of properties of types of objects in software and networked systems. Our
language is an extension of Ltl that adds counting semantics with numerical
constraints. The four truth values of the semantics of Ltl4−C allows system
designers to obtain informative verdicts about the status of system properties at
run time. We also introduced an efficient and effective parallel algorithm with
two implementations on multi-core CPU and GPU technologies. The results of
our experiments on real-world case studies show that runtime monitoring using
GPU provides us with the best throughput and CPU utilization, resulting in
minimal intervention in the normal operation of the system under inspection.

For future work, we are planning to design a framework for monitoring
Ltl4−C properties in distributed systems and cloud services. Another direction
is to extend Ltl4−C such that it allows non-canonical strings of quantifiers.
Finally, we are currently integrating Ltl4−C in our tool RiTHM [17].
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order properties with aggregations. Formal Methods in System Design, 46(3):262–
285, 2015.

5. A. Bauer, J.-C. Küster, and G. Vegliach. From propositional to first-order moni-
toring. In Runtime Verification, pages 59–75. Springer, 2013.

6. A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL Semantics for Runtime
Verification. Journal of Logic and Computation, 20(3):651–674, 2010.

7. S. Berkovich, B. Bonakdarpour, and S. Fischmeister. GPU-based runtime verifi-
cation. In International Parallel and Distributed Processing Symposium (IPDPS),
pages 1025–1036. IEEE, 2013.

8. S. Berkovich, B. Bonakdarpour, and S. Fischmeister. Runtime verification
with minimal intrusion through parallelism. Formal Methods in System Design,
46(3):317–348, 2015.
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