Runtime Verification of LTL on Lossy Traces

Yogi Joshi
University of Waterloo

ABSTRACT

Runtime verification techniques mostly assume the existence
of complete execution traces. However, real-world systems
often produce lossy traces due to network issues, partial in-
strumentation, sampling, and logging failures. A few verifi-
cation techniques have recently emerged to handle systems
with incomplete traces. Some of these techniques sacrifice
soundness and may produce imprecise verdicts. The oth-
ers depend on the recovery of lost events for a sound and
meaningful verdict. In this paper, we present an offline al-
gorithm that identifies whether an LTL (Linear Temporal
Logic) formula can be soundly monitored in the presence of
a transient loss of events in a trace and constructs a mon-
itor accordingly. More, we introduce the concept of mono-
tonicity to express the persistence of the verdicts of a loss-
tolerant monitor regardless of the recovery of the lost events.
Our evaluation demonstrates the applicability, efficiency and
practicality of the technique on common LTL patterns, but
also on traces from Google Clusters and MPlayer.

CCS Concepts

eTheory of computation — Linear logic; eSoftware
and its engineering — Formal software verification;

Keywords

Runtime Verification; LTL; Transient Loss

1. INTRODUCTION

Runtime verification (RV) is the problem of, given a pro-
gram P and an execution trace o of P along with a speci-
fication ¢, decide whether o satisfies ¢. A monitor M?¥ is
synthesized for ¢. Thus, RV aims to find whether P exhibits
the behavior described by ¢. Most existing RV techniques
assume the existence of complete traces [5, 11, 10]. How-
ever, real-world applications often produce lossy traces due

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC 2017, April 03-07, 2017, Marrakech, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. .. $15.00
http://dx.doi.org/10.1145/3019612.3019827

Guy Martin Tchamgoue
University of Waterloo
y2joshi@uwaterloo.ca gmtchamg@uwaterloo.ca

Sebastian Fischmeister
_University of Waterloo
sfischme@uwaterloo.ca

to lossy network protocols [12], logging failures [3], sampling-
based profilers like OPROFILE [16], and partial instrumen-
tation tools like DIME [2]. Unfortunately, a sound monitor
for complete traces may deliver an incorrect verdict on lossy
traces. Hence, it is important to develop monitors that yield
sound verdicts even on lossy traces.

A few approaches have recently emerged for the verification
of lossy traces. Stoller et al. [22] proposed the concept of
RV with state estimation, where the probability of whether
a program satisfies or violates a specification ¢ is calculated
using a Hidden Markov Model (HMM). However, this ap-
proach is limited by the requirement of a comprehensive set
of traces used to learn the HMM. Thus, if no trace violates
¢, an unsound verdict may be delivered. Basin et al. [3]
showed that not all logging failures can affect the truth-
values of formulas in a fragment of metric first-order tempo-
ral logic (MFOTL). Thus, in some cases, if the truth-value
of a formula cannot be determined, three-valued semantics
are used to express the uncertainty about the verdict. Fur-
ther, if the lost events are recovered, such uncertainty may
be resolved. For safety-critical and financial applications for
instance, it is crucial that a monitor delivers sound verdicts
irrespectively of the recovery of lost events.

In this paper, we present a novel approach to the problem
of RV of LtL [17] formulas on lossy traces. We propose an
offline algorithm that identifies whether an LTL formula, ¢,
can be soundly monitored in the presence of a transient loss
of events in a trace o and constructs a monitor accordingly.
Since a transient loss is not permanent, it is required that
a system that encounters such a loss eventually recovers to
observe subsequent valid events. Evaluation of LTL formu-
las may be loss-sensitive. A finite loss of events results in
a failure for a monitor to process the corresponding events.
Consequently, such a monitor may deliver an unsound ver-
dict for the monitored LTL formulas, which can be either
violated or satisfied over a finite trace. For example, for the
LrtL formula, ¢ thread_ezit (a thread eventually exits), if a
monitor does not observe the event when the thread calls
pthread_exit, then it would deliver an incorrect verdict.

Some LTL formulas can never be satisfied or violated over
finite traces. Bauer et al. [5] showed that such formulas
count for about 45% of the commonly used LTL formulas.
The formula ¢ = O (job_killed — ¢ job_resubmitted) cap-
tures the idea that any job killed is eventually resubmitted.
A monitor for ¢ can tolerate a finite loss of events. Intu-

itively, even if finitely many events about the job are not
observed, the monitor can still determine the verdict based
upon the observation of subsequent events with at least one
stating that the job is killed or resubmitted. Although such
formulas can never be satisfied or violated by finite traces,
Falcone et al. [9] showed that they are monitorable.

The proposed technique extends the monitor construction
method of Bauer et al. [5] to synthesize loss-tolerant moni-
tors. It is expected that the verdict of a monitor that pro-
cesses a lossy trace aligns with that of a monitor processing
the complete trace. More, this verdict should remain un-
changed even with the recovery of the lost events. To cap-
ture this notion, we introduce the concept of monotonicity.
We note that probabilistic monitoring approaches [19, 20,
22] do not exhibit this behavior as the verdict of monitors
may change with the recovery of lost events. Finally, the
contributions of this paper can be summarized as follows:

e Monitorability: We present an offline algorithm that
identifies whether an LTL formula ¢ is monitorable in
the presence of a transient loss and constructs a loss-
tolerant monitor for ¢ guaranteeing monotonicity.

e Monotonicity: We introduce this concept to capture
the fact that the verdict of a monitor on a lossy trace
should match that of a monitor processing the com-
plete trace, regardless of the recovery of the lost events.

Evaluation: The evaluation of the technique on the set
of common LTL patterns identified by Dwyer et al. [8]
and on two real-world traces demonstrate the efficiency
and effectiveness of the lost-tolerant monitors.

2. OVERVIEW OF LTL

A program P is considered a generator of computation, i.e.,
an infinite sequence of events or states. We use the symbol X
to denote the set of states, also known as alphabet. Thus, an
infinite sequence of elements from an alphabet X is called an
infinite word. Similarly, a finite sequence of elements from X
is a finite word. Further, we use ©* and X7 to respectively
designate the set of all finite words and that of all nonempty
finite words. Also, we use X* to identify the set of all infinite
words. A program P produces an execution trace o, and a
monitor M? provides a verdict stating whether o satisfies
an LTL specification ¢. The concatenation of a finite trace
o with another trace p is denoted by o.p.

DEFINITION 1 (SYNTAX OF LTL). Let AP be a finite and
non-empty set of atomic propositions, and ¥ = 247 4 fi-
nite alphabet. The set of LTL specifications is inductively
defined as: ¢ == true [p| - |1 V@2 | O |1 U,
wherep € AP, and O (next), and U (until) are the temporal
operators. The boolean operators retain their usual meaning.

DEFINITION 2 (SEMANTICS OF LTL). Leto = a1, az,...
be an infinite word in 3%. LTL semantics are inductively de-
fined as per below:

a) o,ifET b) o,ifEpiff pea;
oiE—iff o,ifFp d) oiEQeiff oi+l1Eg
) oiEwiVe iff oiE@1 Vool e
) o0,iEei U iff 3k >i:0,kFEp2 A
Viti<j<k:0,jFE ¢
where |= denotes the satisfaction relation.

[LINe)
~

~

Further, o £ ¢, also referred to as [0 | ¢|., is true iff
0,1 E ¢. We introduce syntactic sugar in the form of two
operators O (always) and ¢ (eventually). Thus, O ¢ is de-
fined as true U ¢, and O ¢ defined as = —p. An LTL for-
mula ¢ defines a set of traces, which we refer to as L(p). A
trace o satisfies ¢ if o € L(p). Chang et al. [6] classified
LrL formulas into six classes: safety, guarantee, obligation,
response, persistence, and reactivity.

LTL semantics are defined over infinite paths. However, in
practice, a program may only generate a finite word. Thus,
multiple finite path semantics such as LTL3 [5], FLTL [4, 14],
RV-LTL [4] have been defined for LTL. In this paper, we
focus primarily on RV-LTL semantics.

DEFINITION 3 (RV-LTL SEMANTICS). Leto = ai,az, ...
€ X% denote a finite trace. The truth value of a RV-LTL
formula ¢ for the trace o, denoted [0 |= @|rv, is an element
of the truth domain By = {T,Tp, Lp, L} defined as follows:

T ifVveX¥: [owE ¢l

ifVo € 3% : [ow [~ ¢l
T, o E¢s=7andocE ¢lr=T
1, fjcE¢ls=7and[oc E ¢lr=1

o F L»D]RV =

[0 E ¢ls, [0 E ¢]r and [6 E ¢]o respectively denote the
satisfaction relations for LTLs [5], FLTL [4, 14], and LTL.

An alternate definition by Falcone et al. [9] states that an
LrL formula ¢ is monitorable iff the constructed monitor can
distinguish between good and bad finite prefixes, i.e.,

¥ 0g00d € L™ ()Y 0bad € L™ (7)) [0g00a = ¢l # [0bad F #lB

B denotes the truth-domain of the finite path semantics.
L*(¢) denotes the set of good finite prefixes for .

DEFINITION 4 (RV-LTL MONITOR). Let ¢ be a RV-LTL
formula over an alphabet 3. The monitor M¥ for ¢ is the
final state machine (3, Q, qo,d,), where Q is a set of states,
qo € Q is the initial state, § : Q X X — @ is the transition
relation, and X\ is a function that maps each state in Q to a
value in {T, Ty, Ly, L}, such that, [0 =]z, = A(d(qo,0)).

3. FORMAL PROBLEM DESCRIPTION

Given an LTL formula ¢ and a lossy trace o, our goal is to:

e Decide whether ¢ can be soundly monitored on o.

e If yes, construct a loss-tolerant monitor M?¥ for the
formula ¢ such that [0 |= ¢] 5, = A(0(qo,0)), i.e., M?
is sound w.r.t. RV-LTL semantics.

By soundness, we mean the truth-value output by M¥ should
align with that of a monitor processing the complete trace.
More, it is important that M¥ exhibits monotonicity, i.e.,
its verdict remains unchanged with the recovery of loss.

We assume only a transient loss of events, i.e., a finite loss
of a sequence of events in a trace o such that the loss is
not permanent, and it is guaranteed that the monitor can
observe subsequent valid events after the loss.

DEFINITION 5 (TRANSIENT LOSs). Leto = a1, a2,...,an
€ X" denotes a finite trace of size n. o exhibits a transient

loss of events iff there exists a finite, non-empty set of dis-
joint and bounded integer intervals, Is = {[i1, j1], [¢2, 2], -,
[im,im]} ordered s.t. (Vk,ir < ikt1 < M, Jr < Jet1 <
n, ik <k Adk > 1) ANV € Is,Vk € Tap =x AVl ¢
I,a; # x). x marks the loss.

In this paper, a lossy observer O incrementally extracts
events from P to feed a monitor M, which verifies whether
P satisfies a formula ¢. The extracted word may thus con-
tain gaps, but we assume that O transmits the trace to M
without any extra loss. When no event is observed, O out-
puts a x symbol to mark the loss. This extraction model is
common with sampling-based profilers like OPROFILE [16],
and partial instrumentation tools like DIME [2].

In our model, a loss-tolerant monitor M consumes an ele-
ment of ¥ to produce an output in the truth-domain Bs =
{T,Tp,?, Ly, L}, which is a B4 augmented with ’?” and de-
fined by the function A : Q — Bs, where @ is the set of states
of the monitor. Thus, M is defined similarly to a RV-LTL
monitor, except that it yields ’?’ on the unknown input .

4. MONITORABILITY CRITERIA

This section presents our monitorability criteria and uses a
few motivating examples to describe the concepts.

4.1 Formal Definitions

Let ¢ be an LrL formula, and M = (X, @, qo,J, A) the RV-
LTL monitor for ¢. Let 0 € ¥* denote a finite trace, which
exhibits transient loss. Let Qs be a set of states of M such
that Qs C Q. Let Qy be the set of final states of M.

DEFINITION 6 (LOSS-TOLERANT ALPHABET). A loss-tol-
erant alphabet, X_, is a non-empty subset of X, such that
an element o € X_ iff Vg € Q, §(qi,) = g € Q.

Each element of a loss-tolerant alphabet forces the monitor
to transition into a unique state irrespectively of its current
state. This is particularly important when a monitored sys-
tem is facing transient loss. Thus, at the end of the loss, by
processing an element o € ¥_, the monitor can safely move
from its current state to its next state qq.

DEFINITION 7 (LOSS-TOLERANT CLUSTER). A loss-tol-
erant cluster, Qs, is a non-empty subset of @, s.t. Ya €
E—,V(qu(bﬂqz € Qs/\qj € QSa 6((]2,06) = 5(Q]7a) = q € QS'

A loss-tolerant cluster ensures that although the monitor
cannot make a transition during the loss, it can still reach a
state equal to that of an RV-LTL monitor processing the full
trace, when it observes subsequent events. Given the same
input from X _, states in a loss-tolerant cluster all transit to
the same next state within the same loss-tolerant cluster. If
a loss happens when the current state of the monitor belongs
to a loss-tolerant cluster, the transitions of the cluster ensure
that the state would still be one of the same cluster. After
the loss, the monitor can process subsequent known events,
and it is ensured that the monitor can precisely determine
its current state if it processes at least one element of > _.

LEMMA 1 (MONITORABILITY WITH TRANSIENT LOSS).
A formula ¢ can be monitored in the presence of a transient
loss if 3% _, 3Qs, such that Vo € 3, Y(qs,q5)|q: € Qs Ngj €
Qs (@ €X-) = (0(qi,a) = 6(qj,0) =q € Qs Nq & Qy)).

PrOOF. The proof to Lemma 1 trivially follows from Def-
inition 6 and Definition 7. Thus, a formula ¢ is monitorable
in the presence of a transient loss if we can identify a loss-
tolerant alphabet ¥_ and a loss-tolerant cluster Qs such
that each element a € X _ allows M?¥ to transition to the
same non-final state in Q.. [

4.2 Motivating Examples

The formulas in the obligation [6] class can be satisfied or
violated over a finite prefix of a trace. Under transient loss,
the monitor may not be able to observe some events in such
a finite prefix. Thus, in general, the formulas in obligation
cannot be soundly monitored unless a recovery of the lost
events is possible. For a safety formula for example, a miss-
ing event may cause a violation of the property, but the
monitor cannot report the violation unless the lost event is
recovered. Similar can be argued for a guarantee formula.
However, in some cases, the satisfaction or violation status
of obligation formulas can be determined despite the tran-
sient loss in the trace. For example, let us consider the LTL
formula ¢1 = Op, where p is an atomic proposition. If ¢; is
already violated by a finite prefix of a trace, then a transient
loss of subsequent events will not change the verdict.

Further, the satisfaction or violation of certain LTL formulas
cannot be determined with a finite prefix of a trace. For ex-
ample, let 2 = p — OO(qUr) be an LTL formula; p, ¢ and r
are atomic propositions. Figure 1a represents an RV-LTL [4]
monitor for ¢2. Once in state ¢ or g2, the monitor can never
deliver its verdict as T or L, because 2 can never be satis-
fied or violated by a finite word. This monitor can provide
a sound verdict in the presence of a transient loss, because
even though its current state may be unknown, the monitor
can still provide a correct verdict for the next element in the
trace provided its state immediately before the loss is either
q1 or q2. Thus, the set of loss-tolerant clusters consists of a
single cluster Qs = {q1,g2} and the loss-tolerant alphabet
>._ = 3. The states in @)s upon receiving an identical el-
ement from ¥ _ as the input yield a transition to the same
next state. Although its previous state is unknown due to
a transient loss, the monitor can reach a correct next state.
During the loss, the RV-LTL monitor’s verdict is unknown
for the formula 2, because the current state of the monitor
is unknown. However, once the monitor observes the subse-
quent events, it can determine a verdict, which is same as
that of a monitor which processes the complete trace.

Now, let us consider ¢3 = O(p — Og), whose RV-LTL mon-
itor is as shown in Figure1b. This monitor can deliver a
sound verdict for a lossy trace provided the part of the trace
that is observed after the loss, contains at least one input
element o;|0; € {p, ¢, pAq}. Here, the loss-tolerant alpha-
bet is ¥_ = {p, q¢, p A q}. The loss-tolerant alphabet, for
instance, does not include the subset {—p A —¢q}.

5. ALGORITHM DESIGN

(r),(pAr),(aAr)
(PAGAY)

@ (p)

(a),(pAq)

start —

@ (7(pAr>)~,<qAr)
AQAT
(9),(), (), P

(a) w2 = p — 00 (qUr)

J(a),(pAa)
(b) p3=0(— Oq)

Figure 1: RV-LTL Monitors for LTL Formulas 2 and 3

This section describes our algorithm to construct a loss-
tolerant monitor for monitorable LTL formulas.

5.1 Synthesis of Loss-Tolerant Monitors

Algorithm 1 describes a process to find whether an LTL for-
mula ¢ is monitorable on a lossy trace. Thus, if ¢ is moni-
torable, the main procedure FINDMONITORABLITY outputs
T and synthesizes a loss-tolerant monitor M¥. Otherwise,
it returns 1 with the corresponding RV-LTL monitor. The
monitor construction of FINDMONITORABLITY, Line 3, is
based on the method of Bauer et al. [4]. The function checks
M?, from Line 4 to Line 16, for possible combinations of a
loss-tolerant cluster and a loss-tolerant alphabet that satisfy
Lemma 1. These combinations are stored in the ascending
order of the size of clusters at Line 13. All clusters with at
least two states are verified. The reason being that single-
state clusters that satisfy Lemma 1 consist of a final state.

From Line 17, Algorithm 1 processes the list generated at
Line 13. If at least one combination satisfying Lemma 1
is found at Line 10, ¢ may be monitored on a lossy trace.
MEETSMONITORABILITY chooses the maximum loss-tolerant
alphabet of respective loss-tolerant cluster, which involves
checking matching transitions for states of the cluster at
Line 45. Further, the function ADDCHITOCLUSTER is called
at Line 18 to synthesize a loss-tolerant monitor by augment-
ing M? with new states and transitions. For each combina-
tion, if a transition to one of the states in the corresponding
loss-tolerant cluster is not defined for input Yy, a new state
is created with output as ‘?’. The states in the cluster then
perform a transition to the newly added state, when the
input is x. Further, for each element in the loss-tolerant al-
phabet, the new state makes transitions to one of the states
in the loss-tolerant cluster. Also, for each element not in
the loss-tolerant alphabet, the new state performs a transi-
tion to itself. FINDMONITORABLITY connects all other states
that are not in the list of clusters identified at Line 13 to a
common unknown state as seen at Line 19.

To further understand Algorithm 1, let us consider the LTL
formula ¢ = O(a — ¢b) and its two-state monitor, i.e.,
Q = {qo, ¢1}, shown in Figure2a. FINDMONITORABLITY
identifies the tuple ({qo, g1}, {a A b, a, b}) as the only com-
bination of a loss-tolerant cluster and alphabet that satisfies
Lemma 1. ADDCHITOCLUSTER adds a new state labeled as

0.0 ;
0:(2)
(a) (b),(aAb) @ (a) @
start —
start—) (),(b),(aAb) (b),(aAb)
0:(b),(anb) 0:(2)
(a) RV-LTL Monitor (b) Transformed Monitor

Figure 2: Monitor Synthesis for ¢ = O(a — 0 b)

‘unknown’ to the identified cluster. This new state outputs
a verdict as ‘?’. For every state in the cluster {qo, ¢1}, a new
transition is added for the symbol x, and such transitions
yield the new state. The transitions of the new state for all
symbols in ¥_ are same as that of any of the states in the
cluster. For every element not in ¥_, but in 3, a new tran-
sition is added from the new state to itself. The transformed
RV-LTL monitor for ¢ appears in Figure 2b.

As discussed by Bauer et al. [4], the computation time of
SYNTHESIZERVLTLMONITOR is exponential w.r.t. the size of
® in the worst-case. If m is the size of ¥ and n the number
of state in M?¥, the complexity of MEETSMONITORABILITY
is O(m x n). Similarly, the complexity of ADDCHITOCLUS-
TER is O(m + n). Thus, the worst-case time complexity of
the inner section of Algorithm 1, i.e, from Line 7 to Line 16,
is O(m x n x 2"). Therefore, the time complexity of Algo-
rithm 1 is exponential w.r.t. the number of states of M?.

The number of new states added to the RV-LTL monitor is
bounded by n. Therefore, the size of the synthesized loss-
tolerant monitor M¥ is also in O(22"), where p is the size of
the formula . Thus, the size complexity of the loss-tolerant
monitor is identical to that of the RV-LTL monitor [4].

5.2 Correctness of Loss-Tolerant Monitors

A loss-tolerant monitor M?¥ should guarantee soundness.
Lemma 2 states that the verdict of M¥ matches that of an
RV-LTL monitor processing the complete trace, provided
for instance that a loss-tolerant alphabet, ¥_, and a loss-
tolerant cluster, Qs, exist.

LEMMA 2 (CONDITIONAL EQUALITY OF VERDICTS). Let
M?¥ =(3,Q, qo,0,) be a loss-tolerant monitor for ¢ to pro-
cess a lossy trace o; = a1, az, . .
the corresponding RV-LTL monitor to process a complete
trace o; = bi,ba,...,bn. NI = [i1,j1] s.t. Vk : (ax =
b))V (i <k < jiANax = x) A (J1 < n). The verdict of
M? s equal to M iff: A(Qs,X-) - Im € (j1,n]-Vk €
[1,n] (((ai; = XA giy—1 € Qs) A (am € X)) <= ((k >
mVk <ii) ANS(gr—1,ak)) = N (8 (qr_1,b))) V (i1 < k <
m A AG(gi-1,ax)) = 7))).

Proor. We start with the first part of Lemma 2, i.e.,
HQs,2-) - Im € (j1, n] - Vk € [L,n] (((ai; = XA gir—1 €
Q)N (am €X)) — (E>mVEk <ii) AXd(qr-1,ar)) =
N (6" (qh—1,bx))) V (i1 <k <m A Md(gr—1,ar)) = "))

If the current input is x and M¥’s state at the beginning of
the loss belongs to a loss-tolerant cluster, then M¥’s next

., 0n and./\/lw = (ZvQ/aq675/7A,)

1

=W oN

© 0 N o w

10
11
12
13
14
15
16
17
18
19
20
21
22
23

V)

4
25

26

FINDMONITORABLITY (¢) {
isMonitorable = false
M?% = SYNTHESIZERVLTLMONITOR (¢)
n = FINDNOOFSTATES (M%)
if (n < 1)
return (isMonitorable, M%)
for(i = 2; i< n; i++) {
for(j = (1); 3 > 0; j--){
Qs = next Cluster of size i of states of M?
(ms,X_) = MEETSMONITORABILITY (Qs)
if (ms != false){
isMonitorable = true
cllList = ADDCLTOLIST(Qs,X_)

}
}
for (each (Qs,X_) €cllist)
ADDCHITOCLUSTER (Qs, X)
Create chiState s.t. A(chiState) =7
for (¢|VQs € clusterList s.t. q ¢ Qs)
if (¢ is not a final state)
0(q,x) = chiState
for(each 8 € Y UY)
0(chiState, 8) = chiState
return (isMonitorable, M¥)

}

27 ADDCHITOCLUSTER (Qs, X) {
28 /*Add unknown state to
20 loss-tolerant cluster*/
30 Create chiState such that A(chiState) =‘7
31

32 ¢ = any state s such that s€ Q,
33

34 for(each f € ¥_)

35 O(chiState, B) = 0(q, B)

36

37 for (each ¢ € Qs U chiState)
ss 1if (d(q,x) undefined)

39 0(g, x) = chiState

10 for(each B¢ X_ABEX)

a1 d(chiState, B) = chiState

42

43

44 MEETSMONITORABILITY (Qs) {

45 if (Qssatisfies Lemma 1){

46 /*Check performed

a7 with elements of X*/

48 Find »_ for Qs

49 return (T,X_)

50 relse
51 return (L,null)
52 }

Algorithm 1: Synthesis of a loss-tolerant monitor

state is one of the new states with output ‘?’. This state was
earlier added to M¥ by Algorithm 1 via ADDCHIT0OCLUS-
TER, which post-conditions ensure that all states in a cluster
transition to a state with output ‘?’ on an input x. Further,
M?¥ remains in this state until it can process an element,
am € Y—. Hence, its output remains ‘?” when i; < k < m.

Further, when M?¥ observes a,, at the end of the loss, it
moves to a state, equal to that of M'¥ as per the transition
function defined in ADDCHITOCLUSTER at Line 34. The
post-conditions of procedures MEETSMONITORABILITY and
ADDCHITOCLUSTER ensure that such equality between the
states of M¥ and M'¥ exists. Thus, for k > m, M%’s output
remains equal to that of M’?. When k < i1, i.e., before the
beginning of the loss, the outputs of M¥ and M'¥ are equal
as both perform identical transitions on identical inputs.

Now, we prove the second part of Lemma 2, i.e., 3(Qs, X_)-
Im € (j1, n]-Vk € [1,n] ((((k > mVk < i1)AN6(qe—1,ak)) =
N3 (ghrs b)) V (i1 < k < mAAG(geos,a0)) = 7)) =
((aiy = XA giy-1 € Qs) A (am € B))).

Let us assume the output of M¥ is equal to that of M'?,
when k < 41 Vk > m and M¥’s output is ‘?’, when i1 <
k < m. It is evident that a;,—1 = x as per the monitor
construction by Algorithm 1 where an unknown state has its
output as ‘?’. The loss begins at ¢ — 1, because the output of
M? is ‘7’ starting at index 1. Further, as the outputs of M¥
and M'® are equal for the m*” element of the trace, a., must
belong to one of the loss-tolerant alphabets, and the state
@i, —1 of M? before the processing of the i1 element must
belong to the corresponding loss-tolerant cluster. Unless
@i, —1 belongs to the same loss-tolerant cluster, M¥ cannot
produce an output equal to that of M’? upon processing @,
which belongs to the loss-tolerant alphabet. []

With Lemma 2, a monitor M*¥ may provide a sound verdict
if its state at the start of the loss belongs to a loss-tolerant
cluster. This guarantees that, after the loss, M¥ can move
to a correct next state by processing an input from X_.
Theorem 1 states the conditions for the correctness of M*¥.

THEOREM 1 (CORRECTNESS OF M¥). Let M?¥ be a loss-
tolerant monitor for an LTL formula @. For all o € X%, if
o exhibits a transient loss of events, and a run of M¥ on o
satisfies (1) the state of M¥ immediately before each lossy
interval belongs to one of the loss-tolerant clusters and (2)
the subsequent trace after the end of the loss contains at least
one element from the corresponding loss-tolerant alphabet,
then the following holds: A(0(qo,0)) = [0 E ¢]rv.

PRrOOF. The proof directly follows from that of Lemma 2,
Definition 5, and the proofs of correctness provided by Bauer
et al. for LTLz [5] and RV-LTL [4] monitors. []

It is important for the verdict of a monitor not to be invali-
dated upon the recovery of lost events. To express this idea,
we define the monotonicity of monitors w.r.t. lost events.

DEFINITION 8 (MONOTONICITY W.R.T. PAST EVENTS).
A monitor is monotonic if its verdict on a lossy finite word
cannot be invalidated by the loss recovery in the finite word.

COROLLARY 1. A loss-tolerant monitor M¥ built with Al-
gorithm 1 is monotonic.

ProoOF. This proof trivially follows from that of Theo-
rem 1 and Lemma 2. [

5.3 Performance

We measured the performance of Algorithm 1 on common
patterns of LTL formulas [5, 8]. A total of 42 formulas
were identified as monitorable from the 97 available. We
note that some patterns such as O(a — (b A ¢)) cannot
be soundly monitored under transient loss. Figure 3a com-
pares the number of states of RV-LTL monitors with cor-
responding loss-tolerant monitors. It shows that the ad-
ditional size overhead incurred by loss-tolerant monitors is
not significant and represents only an increase of at most
two from that of the corresponding RV-LTL monitor. Sim-
ilarly, Figure 3b compares the number of transitions, which
depends on the number of states and the size of the alphabet.
The number of transitions depicts the additional overhead
in terms of memory at run time. We observe a minimum
of 5 and a maximum of 534 extra transitions w.r.t. that of
RV-LTL monitors. Consequently, the constructed monitors
incur minimal extra overhead at run time.

6. EVALUATION

We evaluated our approach on MPlayer 1.1 4.8 [23], a cross-
platform media player, and Google cluster traces [24, 18].
We used a computer with 31.4Gb of RAM running Ubuntu
14.04 LTS 64 bit on an 8-core Intel i7-3820 CPU at 3.60GHz.
We implemented our loss-tolerant monitor generator in Java
using RV-LTL monitors generated with LamaConv [21].

6.1 MPlayer

We monitored MPlayer while playing a high definition, 29.97
fps, 720x480, 1 Mbps bitrate video, to evaluate the following;:

Property 1: 1 :: Oplay — O (buffer — Odecode). This
property states that whenever MPlayer plays a file, a buffer
action is always followed by an eventual decode action.

Property 2: 2 :: O(play — O(audio V (video A subtitle) V
pause)). This expresses that when MPlayer plays a file, it
may be an audio file or a video with subtitle or just paused.

Settings. We use DIME [2], a periodic dynamic binary in-
strumention (DBI) tool, as a lossy observer. For a period of
T time units, DIME instruments only for a predefined time
budget B < T, thus, extracting no data for T"— B time units.
We modified DIME to output x when no data is extracted.
We use PIN [13], a DBI framework, to generate complete
traces for comparison purpose.

Results. We instrumented MPlayer with both DIME and
PIN to track function calls related to properties 1 and 2.
We varied the budget of DIME by 10 from 10% to 100%
and fixed the period to 1 second. We repeated each experi-
ment five times. Figure 4a plots a portion of the truth-values
generated by the monitors for the trace obtained from the
first runs of DIME with 10% budget and PIN. The x-axis
represents the index of each symbol in the input trace, the
y-axis, the truth values. We observe that the output of the
loss-tolerant monitor matches that of the RV-LTL monitor
except for the x symbol. For example, the verdict of the
synthesized monitor for the 55" input symbol is ’?’ while
that of the RV-LTL monitor is T,, suggesting that the input
was a x. The final verdict is T, for both the loss-tolerant
and the RV-LTL monitor for the two properties.

Further, we analyzed the run time overhead of the monitors

as shown in Figure4b and Figure4c for property 1 and 2,
respectively. Both figures show that it is more expensive to
monitor a complete trace than a lossy trace.

We also compared the number of lost events to that of
dropped video frames. Figure 4d shows the results for Prop-
erty 1. The x-axis represents the budget. The lost events
appear of the left y-axis, while the right y-axis represents the
dropped frames. The percentage of lost events w.r.t. pro-
cessed events are also shown in Figure4d. We observe that
more frames are dropped as the budget increases, while on
the contrary, the number of lost events decreases as the bud-
get increases. With 80% budget for example, the number of
lost events is around 60% with 1000 frames dropped. When
the budget is at 100%, DIME still generate about 47% of
loss. This is because DIME turns off instrumentation un-
til the budget is next replenished. The video hardly plays
with PIN as nearly 3000 frames are dropped. Figure 4d sug-
gests that for a smooth video experience, it is preferable to
monitor while instrumenting with a 10% budget per second.
This result is interesting as it shows that for monitorable LTL
formulas, one can achieve sound and lightweight monitoring
using a lossy observer like DIME. More, we can drastically
reduce the monitoring time of such formulas on large traces
by deliberately injecting losses into the traces.

6.2 Google Cluster Traces

A Google cluster is a set of machines, packed into racks, and
connected by a high-bandwidth cluster network [18, 24]. The
cluster runs jobs, each comprising of one or more tasks. The
ClusterData2011_2 [18, 24] used in this paper, provides data
from a 12.5k-machine cell over about a month-long period
in May 2011. Data in the traces are periodically collected
from the machines. When the monitoring system or clus-
ter gets overloaded, data may not be collected. However,
when an event is lost, a reconstruction is attempted and a
‘missing info’ field set to state the reason. Each task pro-
gresses through different states such as ‘submitted’, ‘sched-
uled’; ‘failed’, ‘evicted’, and ‘killed’ throughout its lifecycle.
The trace is lossy since some states for some jobs and tasks
are not captured due to unknown reasons. We extracted
7,170,572 events for 16,467 tasks and verified the following
properties on their state transitions.

Property 1: O((fail vV killV evict) — O(submit — Ofinish)).
This states that whenever a task fails or is killed or is evicted,
it is always re-submitted, and eventually finishes.
Property 2: O(evict — (Qsubmit). Means that whenever a
task is evicted, it is eventually re-submitted.

Property 3: O(schedule — O(finish V fail V kill V evict)).
This states that whenever a task is scheduled, it will even-
tually finish, fail, get killed or evicted.

Property 4: O(update_pending — Oschedule). This states
that whenever a task is updated at runtime before been
scheduled, it is eventually scheduled for execution.
Property 5: O(submit — {finish). This states that when-
ever a task is submitted, it eventually gets finished.

The monitoring results appear in Table 1 with the monitored
tasks in the first column. Some tasks were skipped as seen
in the second column, because their traces did not meet
the transience criteria of Definition 5. For Property 1 for
instance, the loss-tolerant monitor delivered verdict as T,

n Number of states of RV-LTL monitor
Number of states of Loss-tolerant Monitor =—=

S S PONINORIRINND

Number of States in the Monitor
O=NWAUIDHNWO=NWAUIDNWO—=NWHA IO
e e e A e LA B e o o e o
o AR R R A A A R SR R S AR

tillid dlidiidl il

0 10 20 30 40
The 42 monitorable LTL specification patterns
(a) States

N Size of RV-LTL Monitor
Size of Loss-tolerant Monitor —= 1

S
o o
S o
o o
—
L

or
n
(=3
S
o
T
L

11110 11 1 e e o e
The 42 monitorable LTL specification patterns

(b) Transitions

Figure 3: Size Comparison for RV-LTL and Loss-tolerant Monitors

T
" Monitor with Cémple1e Trace
Monitor with Lossy Trace
Tp g
\\ /
\
8 \ /
E 2 b \—/ i
£
]
=
1p
n

45 50 55 60 65
Sequence of Input Events

(a) Comparison of Verdicts

1.6 -
+
14 Monitor with Lossy Trace C——1]
Monitor with Complete Trace —+—
12 i L 4

™= M /& A

0.6 [1

Monitoring Time (secs)
o
©
T
.

04t ,

02 | 1

0 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 5 60 70 8 9 100 110

Budget (%) per Period

(c) Property 2

1.6

Monitor with Loésy Trace ——

Monitor with Complete Trace ——+—
1.4 q
12 1

+
1F = =] 1
£

06 [1

Monitoring Time (secs)
o
(==
T
.

0.4 4

0 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 8 9 100 110

Budget (%) per Period

(b) Property 1

80000 2000
70000 | 1 1800
1 1600
60000 |-
1 1400
50000 3
@ 1 1200 E
c ©
2 e
G 40000 [11000 o
2
S {80 8
30000 |- 2
1 600
20000 |-
1 400
10000
K 1 200

0 1 1 1 1 1 1 1 1 1 1 0
0 10 20 30 40 50 60 70 80 90 100 110

Budget (%) per Period

(d) Dropped Frames vs Lost Events

Figure 4: MPlayer’s Monitoring Results

for 3,572 tasks and L, for 7,275 out of the 10, 847 processed
tasks. A total of 5,620 tasks were skipped. These results
confirm that important LTL properties can still be soundly
monitored with low overhead on lossy traces.

7. RELATED WORK

While most RV techniques [5, 11, 10, 15] assume the exis-
tence of complete traces, a few approaches have been devel-
oped for lossy traces. However, the probabilistic approach

taken by Stoller et al. [22] may have its verdict changed with
the recovery of lost events. Our loss-tolerant monitor guar-
antees a sound verdict on lossy traces for monitorable speci-
fications irrespective of the recovery of lost events. Basin et
al. [3] used a three-valued semantics to express uncertainties
about the verdict on lossy traces. However, to resolve such
uncertainties, the approach may require a recovery of lost
events. Contrarily, our approach identifies monitorable LTL
properties for which a recovery of lost events is not needed

Table 1: Verification of Google Cluster Data

Mon. Skipped Verdict Avg.

Prp. e Stderr
Tasks Tasks Tp 1, Time

1 10,847 5,620 3,572 7,275 7.68s 0.036

2 10,892 5,575 10,891 1 7.49s 0.047

3 10,892 5,575 6,240 4,652 8.20s 0.026

4 16,467 0 16,461 6 7.15s 0.030

5 10,892 5,575 2,876 8,016 7.63s 0.055

to deliver a sound verdict. Alechina et al. [1] developed
techniques for monitoring multi-agent systems based upon
norms, which are described using obligations and prohibi-
tions. These norms are approximated so that they can be
monitored under partial observability. While this approach
requires full knowledge of the transition system, our tech-
nique only considers runtime execution paths, and does not
alter the LTL specifications. Criado and Such [7] also moni-
tored multi-agent systems with norms based on approximate
reconstruction of unobserved actions. To our knowledge, our
approach is the first that does not depend on the recovery
of lost events to produce a sound verdict.

8. CONCLUSIONS

In this paper, we presented an offline algorithm that iden-
tifies whether an LTL formula can be soundly monitored on
a lossy trace and constructs the corresponding loss-tolerant
monitor. We analyzed the complexity of the algorithm and
also evaluated it against commonly used patterns of LTL for-
mulas to show that the synthesized monitors incur minimal
additional overhead in terms of size of monitors. Further,
we evaluated the algorithm on traces from two real-world
systems to show its effectiveness and applicability. The
evaluation shows that our approach increases the applica-
bility of RV to real-world applications which often produce
lossy traces. Finally, we define the concept of monotonicity
to evaluate the soundness of monitors, especially when lost
events are not recovered. In the future, we plan to extend
the method to timed traces and distributed systems.

9. REFERENCES

[1] N. Alechina, M. Dastani, and B. Logan. Norm
approximation for imperfect monitors. In Autonomous
Agents and Multi-Agent Systems, pages 117-124, 2014.

[2] P. Arafa, H. Kashif, and S. Fischmeister. DIME:
Time-aware Dynamic Binary Instrumentation Using
Rate-based Resource Allocation. In Proc. of Int’l Conf.
on Embedded Software, pages 25:1-25:10. IEEE, 2013.

[3] D. Basin, F. Klaedtke, S. Marinovic, and E. Zalinescu.
Monitoring Compliance Policies over Incomplete and
Disagreeing Logs. In Proc. of Runtime Verification,
pages 151-167. Springer, 2013.

[4] A. Bauer, M. Leucker, and C. Schallhart. Comparing
LTL Semantics for Runtime Verification. J. Log.
Comput., 20(3):651-674, 2010.

[5] A. Bauer, M. Leucker, and C. Schallhart. Runtime
Verification for LTL and TLTL. ACM Trans. Softw.
Eng. Methodol., 20(4):14:1-14:64, Sept. 2011.

[6] E. Chang, Z. Manna, and A. Pnueli. Characterization
of Temporal Property Classes. In Int’l Colloquium,
pages 474-486. Springer, 1992.

[7] N. Criado and J. M. Such. Norm Monitoring under
Partial Action Observability. IEEE Trans. on
Cybernetics, PP(99):1-13, Jan. 2016.

[8] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Patterns in Property Specifications for Finite-State
Verification. In Softw. Eng., pages 411-420, 1999.

[9] Y. Falcone, J.-C. Fernandez, and L. Mounier. What
can you verify and enforce at runtime? Int. J. Softw.
Tools Technol. Transf., 14(3):349-382, 2012.

[10] K. Havelund and G. Rosu. Efficient monitoring of
safety properties. Int. J. Softw. Tools Technol. Transf.,
6(2):158-173, 2004.

[11] J. Huang, C. Erdogan, Y. Zhang, B. M. Moore,

Q. Luo, A. Sundaresan, and G. Rosu. ROSRV:
Runtime Verification for Robots. In Proc. of Runtime
Verification, pages 247-254, 2014.

[12] L. Kong, M. Xia, X.-Y. Liu, G. Chen, Y. Gu, M.-Y.
Wu, and X. Liu. Data Loss and Reconstruction in
Wireless Sensor Networks. IEEE Trans. on Parallel
and Distributed Systems, 25(11):2818-2828, Nov 2014.

[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building Customized Program
Analysis Tools with Dynamic Instrumentation.
SIGPLAN Not., 40(6), June 2005.

[14] Z. Manna. Temporal Verification of Reactive systems:
Safety. Springer, 1995.

[15] J. Morse, L. Cordeiro, D. Nicole, and B. Fischer.
Model Checking LTL Properties over ANSI-C
Programs with Bounded Traces. Softw. Syst. Model.,
14(1):65-81, Feb. 2015.

[16] OProfile. http://oprofile.sourceforge.net/news/, 2002.
[17] A. Pnueli. The Temporal Logic of Programs. In Proc.
of Foundations of Computer Science. IEEE, 1977.

[18] C. Reiss, J. Wilkes, and J. L. Hellerstein. Google
cluster-usage traces: format + schema. Technical
report, Google Inc., Nov. 2011.

[19] U. Sammapun, I. Lee, and O. Sokolsky. RT-MaC:
Runtime Monitoring and Checking of Quantitative
and Probabilistic Properties. In Proc. of RTCSA,
pages 147-153. IEEE, 2005.

[20] U. Sammapun, I. Lee, O. Sokolsky, and J. Regehr.
Statistical Runtime Checking of Probabilistic
Properties. In Proc. of Runtime Verification, pages
164-175. Springer, 2007.

[21] T. Scheffel, M. Schmitz, S. Hungerecker, M. Kabelitz,
C. Kriiger, and J. Thorn. LamaConv: Logics and
Automata Converter Library.
http://www.isp.uni-luebeck.de/lamaconv, 2015.

[22] S. D. Stoller, E. Bartocci, J. Seyster, R. Grosu,

K. Havelund, S. A. Smolka, and E. Zadok. Runtime
Verification with State Estimation. In Proc. of
Runtime Verification, pages 193-207. Springer, 2012.

[23] The MPlayer Project. http://www.mplayerhq.hu.

[24] J. Wilkes. More Google cluster data. Google research
blog, Nov. 2011. http://googleresearch.blogspot.com/
2011/11/more-google-cluster-data.html.

