Prevent: a Predictive Run-time Verification
Framework Using Statistical Learning

Reza Babaee, Arie Gurfinkel, and Sebastian Fischmeister

Electrical and Computer Engineering, University of Waterloo, Canada

Abstract. Run-time Verification (RV) is an essential component of de-
veloping cyber-physical systems, where often the actual model of the
system is infeasible to obtain or is not available. In the absence of a
model, i.e., black-box systems, RV techniques evaluate a property on the
execution path of the system and reach a verdict that the current state
of the system satisfies or violates a given property.

In this paper, we introduce Prevent, a predictive runtime verification
framework, in which if a property is not currently satisfied, the monitor
generates the probability based on the finite extensions of the execu-
tion path, that satisfy the specification property. We use Hidden Markov
Model (HMM) to extend the partially observable paths of the system.
The HMM is trained on a set of id samples generated by the system.
We then use reachability analysis to construct a tabular monitor that
provides the probability that the extended path satisfies or violates the
specification from the current state. The current state is estimated at
run-time using Viterbi algorithm which gives the most probable state.
We show the empirical evaluation of Prevent on a modified version of
randomized dining philosopher and on the QNX Neutrino kernel traces
collected from the autopilot software of a hexacopter.

1 Introduction

Run-time Verification (RV) [19] has become a crucial element in developing
Cyber-Physical Systems (CPSs) [51,47,51,47,37]. In RV, a monitor checks the
current execution, that is a finite prefix of an infinite path, against a given
property, typically expressed in Linear Temporal Logic (LTL) [27], that rep-
resents a set of acceptable infinite paths. If any infinite extension of a prefix
belongs (does not belong) to the set of infinite paths that satisfy the property,
the monitor will accept (resp. reject) the prefix. For example, o : Gerror (resp.
g : O—-error) is satisfied (resp. is not satisfied) on any infinite paths with the
prefix uy : —error, merror, error. If the monitor is not able to reach a verdict with
the prefix, because it can be extended to both satisfying and violating paths, the
monitor will output unknown [3]. For example, the prefix us : —error, —error
can be extended to both a path that satisfies ¢ : Cerror (e.g., any extension of
u1) and a path that violates ¢ (e.g., (—merror)?).



With the exception of non-monitorable properties [14] that require an infinite
extension, the monitor will be able to reach a verdict, if a finite extension of the
prefix is available. A néive approach to extend the finite prefix is to append an
infinite sequence of empty string € [4]. In our example, if € = g, by appending
€ to ug we will be able to achieve us = ¢g. However, the temporal logic hier-
archy [34] of an LTL property implies conflicting semantics for the empty string
in combination with X [23]. For instance, € = <error; otherwise, OXerror is
satisfied on any finite path [23].

In this paper, we propose a different perspective: we estimate the finite ex-
tensions of a prefix using a prediction model. The prediction model is trained
from identically and independently distributed (#d) samples of the previous ex-
ecution paths of the system, that are collected either on-line or off-line. We use
Hidden Markov Models [30] (HMMs) to realize a prediction model of a system
with partially observable behavior: the system produces some observations at
each state, but the actual state of the system is not directly visible.

In this paper, we merely focus on the properties that can be evaluated with
regular extensions, that is, the extensions that are expressible by a Deterministic
Finite Automaton (DFA). Depending on the given property, the extensions may
specify the prefixes that satisfy the property (good extensions) or violate it (bad
extensions). We use an upper-bound on the length of the estimated extensions.
The monitor in our framework, hence, is the result of a bounded reachability
analysis on the product of the HMM and the DFA. Using the product model, the
monitor is able to predict a verdict, in terms of the probability of the extensions
that satisfy or violate the property. To extend an execution path, the monitor
needs to know the current state, which is estimated at run-time by Viterbi
algorithm [44]. Viterbi algorithm generates the most likely state based on a
given observation, i.e., the execution path in our case.

We implemented our approach as a proof-of-concept tool !, called Prevent
(predictive runtime verification framework), and report applying it on two case
studies: the original and a modified version of randomized dining philosophers
algorithm, and the QNX Neutrino kernel traces collected from running the flight
control of a Hexacopter.

Our paper makes the following contributions:

— Introducing Prevent, a predictive runtime verification framework to detect
satisfaction/violation of a property in advance,

— Constructing a prediction model, that is, the product of a trained HMM and
the DFA specifying the good/bad extensions,

— Defining the prediction error on a sequence and evaluating the monitor’s
performance using hypothesis testing,

— Implementing the runtime monitoring algorithm using Viterbi approxima-
tion,

— Evaluating Prevent on two case studies: a modified version of the randomized
dining philosophers problem and the flight control of a hexacopter.

! Available at https://bitbucket.org/rbabaeecar/prevent/



The main sections of our paper are organized as follows: in Section 2 we give
an overview of Prevent. In Sections 4 and 5 we provide the details of respectively,
constructing the the monitor, and the run-time monitoring algorithm. We define
a measure to assess the prediction accuracy and validate the performance of the
monitor using hypothesis testing in Section 6. Finally, we provide the empirical
evaluation of Prevent on two case studies in Section 7.

2 An Overview of Prevent

The key idea in Prevent is to finitely extend the execution trace using a pre-
diction model, and check the extended path against the specification property.
The prediction model is obtained from 7id sample traces collected from the past
executions of the system. The prediction model enables the monitor to estimate
the extensions that satisfy or violate the given property within a finite horizon,
represented as the maximum length of the finite extensions. This gives the mon-
itor the ability to detect a property violation before its occurrence with a certain
confidence.

Fig. 1 demonstrates an overview of Prevent, with its two main components
learning and monitoring, each explained in the following.

Learning: We use the sample traces to train HMM using Baum-Welch algo-
rithm [30]. The training samples are collected independently from the system,
representing an independent and identical distribution (éid). The trained HMM
represents the joint distribution of the paths over X* and S*, where Y is the
observation space and S is the state space of the system.

Monitoring: The monitor in our framework is the result of a bounded reachability
analysis on the product of the HMM and the DFA, that specifies the acceptable
or unacceptable extensions by the property. The monitor is implemented as a
look-up table, where each entry is a composite state that specifies a DFA state, a
hidden state in the HMM, and an observation, and the probability that from the
current state the system will satisfy or violate a property in a bounded number of
steps. The current hidden states maintain a history of the previous observations
(the prefix Y in Fig. 1). The monitor updates its estimation of the current state
by running the Viterbi approximation to obtain (% x A)y. The output of the
monitor is therefore Pr(H x Ay = O="Accept), where h is the finite horizon,
or the maximum lengths of the extensions that are estimated by the monitor.
Since H x A has a small size, the probability results of this reachability analysis
can be computed off-line for all the states of H x A, for 1 < h < Hprax, and
stored in a table. The value of Hj;ax represents the maximum length of the
extensions that the monitor needs to predict in order to evaluate the property,
and can be obtained empirically from the execution samples of the system.
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Fig. 1: The overview of Prevent framework.

3 Definitions and Notations

In this section we briefly introduce the definitions and notations that are used
throughout the paper.

A probability distribution over a finite set S, is a function P : S — [0,1]
such that ) ¢ P(s) = 1. We use Xi.; to denote a sequence x1,s,...,2, of
the values of the random variable X, and use u and w to denote generic finite
and infinite paths, respectively.

Hidden Markov Model (HMM): HMM is the joint distribution over Xj.,, the
sequence of one state variable, and Yj.,, the sequence of observations (both
with identical lengths). The joint distribution is such that Pr(y;|Xi.,Y1.4) =
Pr(y;|z;) for i € [1..7] (the current observation is conditioned only on the current
state), and Pr(z;|X1.5-1, Y1.i—1) = Pr(z;|z;—1) for i € [1..7] (the current state is
only conditioned on the previous hidden states). We use 7 to denote the initial
probability distribution over the state space, i.e., Pr(z1) = m(z1). As a result,
an HMM can be defined with three probability distributions:

Definition 1 [HMM] A finite discrete Hidden Markov Model (HMM) is a tu-
ple H : (S, X,m,T,0), where S is the non-empty finite set of states, X is the
non-empty finite set of observations, m : S — [0,1] is the initial probability dis-
tribution over the state space, T : S x S — [0,1] is the transition probability
between two states, and O : S x X — [0, 1] is the observation probability that the
model at each state emits an observation.

The matrices 7,7 and O are called the parameters of an HMM, denoted
together with ©.

Discrete-Time Markov Chains (DTMC). We use Discrete-Time Markov Chain
(DTMC) to execute the reachability analysis and construct our monitor. A
DTMC is defined as follows:



Definition 2 (DTMC) A (Labelled) Discrete-Time Markov Chain (DTMC) is
a tuple M : (S, X, 7,P, L), where S is a non-empty finite set of states, X is a
non-empty finite alphabet set, w: S — [0, 1] is the initial probability distribution
over S, P : S x S — [0,1] is the transition probability between two states, such
that for any s € S, P(s,-) is a probability distribution, and L : S — X is the
labeling function.

Deterministic Finite Automaton: The extension of a prefix in our setting is
described as a Deterministic Finite Automaton (DFA). A DFA is defined as
follows:

Definition 3 (DFA) A Deterministic Finite Automaton (DFA) is a tuple A :
(@, X, 6,q1,F), where Q is a set of finite states, X is a finite alphabet set,
§:Q x X — Q is a transition function determining the next state for a given
state and symbol in the alphabet, qr € Q is the initial state, and F C @ is the
set of final states.

We use L£(.A) to show the set of strings accepted by DFA A.

4 Monitor Construction

A monitor is a finite-state machine (FSM) that consumes the output of the
system execution sequentially, and produces the evaluation of a given property
at each step, typically as a Boolean value [4]. The monitor in our framework
is still an FSM, in the form of a look-up table, that instead of Boolean values
produces a finite set of values in [0, 1]. The value indicates the probability of the
extensions that satisfy or violate the specification, assuming that the property
is currently not satisfied/violated. These probability values are the result of a
bounded reachability analysis on the product of the trained HMM and the DFA
that specifies the good or bad extensions.

The rest of this section is as follows: in Section 4.1, we describe how an HMM
is built using standard Ezpectation-Mazimization (EM) learning technique [6],
followed by Sections 4.2, which provides details on building a product model as
a DTMC that is used to perform the reachability analysis. We finally explain
our monitor construction approach in Section 4.3.

4.1 Training HMM

We resort to Mazimum Likelihood Estimation (MLE) technique to train an
HMM. The log-likelihood function L(©) of the HMM H : (S, X, m,T,O) over
an observation sequence Y7., is defined as L(O) = log(zxm Pr(Xi..,Y1..19)).
Since the probability distribution over the state sequence Xj., is unknown,
L(©) does not have a closed form [42], leaving the training techniques to heuris-
tics such as EM. One well-known EM technique for training an HMM is Baum-
Welch algorithm [30] (BWA), where the training alternates between estimating



the distribution over the hidden state variable, @ : X — [0, 1], with some fixed
choice for © ( Ezpectation), and maximizing the log-likelihood to estimate the
values of © by fixing Q (Mazimization) [33].

The Ezpectation phase in BWA computes Pr(X; = s|Y,0) and Pr(X; =
8, X¢41 = §'|Y,0) for s,s" € S through forward-backward algorithm [30]. Maxi-
mization is performed on a lower bound of L(©) using Jensen’s inequality:

L(©) = Q(X)log Pr(X1.;,Y1:-|0) — Q(X)log(Q(X)) (1)

Since the second term is independent of © [33], only the first term is maxi-
mized in each iteration: ©) = argmaxg Q(X)log Pr(Xy.,, Yl:T\@(k_l)).

The training starts with random initial values for ©(®), and consequently
running the forward-backward algorithm to update the parameters of the model
as follows:

7(s) = Pr(X, = s|Y,0)
— Zthl Pr(X; =s,Xi11=5Y,0)
S Pr(X, =s]Y,0) @
S #(Yi=o0) Pr(X, = s|Y,0)
L (X =4Y.0)

T*(s,s")

0*(s,0)

BWA is essentially a gradient-decent approach, thus its outcome is highly
sensitive to the initial values of © [42].

We use the Bayesian Information Criterion (BIC) [9] to choose the number
of hidden states. BIC assigns a score to a model according to its likelihood but
also penalizes models with more parameters to avoid overfitting:

BIC(H) = log(n)|6| — 2L(O) (3)

where |©| = |S|? +|5]|| X is the size of an HMM, and n is the size of training
sample.

4.2 Constructing the Product of the Prediction Model and the
Specification

From each state of the trained HMM, the monitor needs to expand the observed
execution, u, and determines the evaluation of the given property. The expansion
of u is based on a DFA that specifies the good or the bad extensions of u. The
monitor maintains the configurations of both the DFA and the trained HMM by
creating a product model of both models [46, 50]:

Definition 4 (The Product of an HMM and a DFA) Let H = (5, X,
T,0) and A = (Q,X,9,qr, F) respectively be an HMM and a DFA. We define
the DTMC Mysa : (8" =5 x Q x X, {Accept}, n’, P, L) as follows:



TI'I(S,q,O) _ {71‘(8) ifq € qr

0 otherwise.

T(s,s')-0(s',0) if6(¢,0)=q

0 otherwise.

P((s,q.0). (s'.4,0')) = {

L(s.q.0) = {{Accept} ifge F

0 otherwise.

4.3 Constructing Monitor with Bounded Prediction Horizon

The monitor’s purpose is to estimate the probability of all the finite extensions
of length at most h that satisfy a given property. The variable h is a positive
integer we call the prediction horizon. Let define the finite path ogoy...0, (0 =
(s,q,0) € S’ is the composite state of the product model M and oy = o, for
all t < h), the extensions according to the given DFA A, such that L(oy) =
Accept. The monitor’s output is Pr(cgoy ...oy),Vt < h, which is computed by
performing the following reachability analysis on M [1]:

Pr(o = =M Accept) (4)

In order to compute (4), we adopt the transformation of the transition prob-
ability in [18]:

0 if L(o) = Accept and o # o’
Pac(o,0) =<1 if L(o) = Accept and o = o’ (5)

P(o,0') otherwise.

The transformation (5) allows us to recursively compute (4) as follows:
Pr(o = OS" Accept) = Z Pacc(o,0)Pr(o’ = O Accept) (6)

Equation (6) is essentially the transient probability for {og...opw} [18], that
is, starting from o the probability of being at state oy, (i.e., after h steps), such
that L(op) = Accept. The probability measure of og...o,w is based on the
prefix ogoy . ..o, and can be written as the joint probability distribution of the
hidden state variable and that of the observation determined by the underlying
trained HMM.



Computing (6) for all the states at runtime is not practical, due to multi-
plications of large and typically sparse matrices [18]. Instead, for all ¢ < h we
compute the probabilities off-line and store them in the table MT(o,t), where
MT(o,t) = Pr(c = ©<tAccept). Our monitor, thus, is simply transformed into
a look-up table with the size at most O(|S| x |@Q| x | X| x k).

5 Run-time Monitoring With Viterbi Approximation

For each state o = (s, ¢, 0) the monitor needs to estimate the hidden state s (¢
is derivable from o). We employ the Viterbi algorithm to find the most likely
hidden state during monitoring.

For an observation sequence Y = Yj., Viterbi algorithm [44,12] derives
X7, = argmaxy,  Pr(Xi.;]Y,0), so-called the Viterbi path. Let v.(s) be the
probability of the Viterbi path ending with state s at time t¢:

vi(s) = O(s, Yy) max(vi(s)T(s", 5)) (7)

To find X at step t, the monitor only requires v;_1(s) for all s € S. There-
fore, we can obtain X, by using only two vectors (we call Viterbi vectors) that
maintain the values of v;(s) and v;_1(s).

Procedure MONITOR demonstrates the runtime monitoring algorithm in Prevent.
We assume that the monitor table MT is already constructed as described in
Section 4 (line 3). Lines 4-6 initialize the Viterbi vector. The horizon index t
stores the prediction horizon at each iteration (initialized to h at the beginning—
line 8). Each iteration of the for loop in lines 9-23 is over one observation in
the sequence Y. For each observation Y;, the configuration (s,q,Y;) (lines 10-
11) combined with ¢ gives us the index to retrieve the probability value in the
monitor table (line 12). If the path is not accepted by the DFA, the monitor
will shrink its horizon index by one (¢ will be decremented—line 16). Each time
that the observed path is accepted by the DFA, the horizon index will be re-
set to h (line 14), for the prediction of the next extension. Similarly, once the
prediction horizon has reached zero, i.e., the property is not satisfied within the
given prediction horizon, the horizon index will be reinitialized to h. At the end,
the Viterbi vector is updated for the next iteration in lines 18-22.

In each monitoring iteration (the loop in lines 9-23) reading the value from
the monitor table MT is constant. For a trained model with k& hidden states,
updating the Viterbi vector requires O(k) operations of finding maximums (can
be improved to lg(k) using a Max-Heap). Therefore, each monitoring iteration
is of O(klg(k)) in execution time. The space complexity is mainly bounded by
the size of the monitor table and the Viterbi vectors: O(kh).

6 Prediction Evaluation

In this section we first define a lower bound on the prediction error of the mon-
itor on a given execution trace, and then use two-sided hypothesis testing to
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evaluate the average prediction performance on a set of testing samples. Finally,
we exploit the hypothesis testing results to find an empirical minimum value for

MonITOoR(Y, H, A, h)

inputs : Execution observation Y, HMM H = (S, X, 7, T, O), DFA
A=(Q, X, 4, q, F), Prediction Horizon h

output: Pr((H x A)y = 0= Accept)
begin

Construct the monitor table MT(H, A, X, h)
foreach s € S // Initializing the Viterbi vector
do

| v(s) « O(s, Y1)m(s)
end
i 1,t< h, g+ qr // t is the horizon index
forall Y; €Y do
s < argmax, v(s)
q+ (¢, Y)
output MT((s,q,Y;),t) // Output the prediction
if g€ F ort =0 then

| t«h
else

| tet—1
end
forall s € § // Updating the next Viterbi vector
do

| Vneat(s) < O(s, Yiy1) maxy (v(s")T (s, 5))
end
V4 Upeat, L 1+ 1
end
end

Runtime monitoring procedure using Viterbi approximation.

the prediction horizon.

6.1 Prediction Error

Let (0;...0i4x,(4)) be an extension of length X;(A) at point i that is accepted
a given DFA A, ie., (0;...0i1+y,) € L(A) (for brevity we use \; in the rest
of this section). Recall that the monitor’s output at point i is the probability
of all the extensions of the length at most h that are accepted by A (Pr(o;

by

O=h Accept)). For any \; < h we have:

Pr(o; = OSM Accept) > Pr(o;...044a, = Accept)
i X Pr(o; = OSP Accept) > \j x Pr(o...0i1 = Accept)



We define \; = \; x Pr(o; = OSPAccept) as the expected value of \; esti-
mated by the monitor. Therefore, we can obtain the following minimum error of
the prediction at point i:

Mt — Ny — N (9)

Notice that since \; > S\i, €™ is always positive. If there isno k, i < k < \;
such that (0;...0;4%) € L(A), i.e., (0;...0:4;) is the minimal extension that
is accepted by A, then Ef_}f{‘ = (-1 - S\Ai,t,O <t < X < h, where t is
the horizon index in Algorithm Monitor. As a result, the value of ™" can be
computed on-the-fly as the monitoring executes.

In our implementation, we assume that there exists at least one point k£ <
h such that (0;...0i4%) € L(A); otherwise, (9) is not well-defined, and the
prediction accuracy can not be verified. If such a point does not exist, we can
extend the prediction horizon by increasing h such that there is at least one
accepting extension in the trace. The remaining of the path after the last point
in which the trace is accepted by A is discarded as there is no observation to
compare the prediction and compute the error.

In the following, we give an empirical evaluation of the monitor’s prediction
using hypothesis testing which leads to an empirical minimum for h.

6.2 Empirical Evaluation Using Hypothesis Testing

To assess the performance of the prediction, aside from the execution trace, we
use hypothesis testing on a set of test samples.

Let A = %22:1 A; be the random variable that represents the mean of all
A; values, for 1 < 4 < 7. Notice that for iid samples, the A value of a trace is
independent of that of the other traces.

Let Ajs be the estimation of A by the monitor over a set of monitored traces,
and A be the mean of A on a separate set of n iid samples with variance v. We
test the accuracy of the prediction using the following two-sided hypothesis test
Ho : S\M = 5\:

Using confidence «, we use student’s t-distribution to test Hy:

AL S (10)

:‘§ >~

Given the mean of the length of the shortest finite extensions in the test
sample we can use (10) to obtain a lower bound for h:

h> X —ty10Y (11)
that is, the prediction horizon h must be at least as large as the mean of the
length of the extensions in the test sample that are accepted by A.

10



7 Case Studies

We evaluate Prevent on two case studies: (1) the randomized dining philosophers
from PRISM case studies [31], which includes the original algorithm, and a mod-
ified version that we introduce specifically for evaluating Prevent, (2) the QNX
Neutrino kernel traces collected from the flight control software of a hexacopter.
We show the estimation of good and bad extensions in the randomized dining
philosophers and hexacopter traces, respectively, each of which represents one
of the most commonly used property patterns in Matthew Dwyer et al. [13]’s
survey: response pattern in the randomized dining philosophers algorithm, and
the absence pattern for monitoring a regular safety property [1] in the flight
control of a hexacopter. The implementation of monitoring in both experiments
is conducted off-line.

7.1 Randomized Dining Philosopher

We adapt Rabin & Lehmann [29]’s solution to the dining philosophers problem
that has the characteristics of a stochastic system to be trained using HMM.
We also present a modification of their algorithm, which represents a generic
form of decentralized on-line resource allocation [41] that is widely used in dis-
tributed and cloud systems [48,7, 45, 8], wireless communication systems [25, 32,
49], sensor networks [20] and micro-grid management [43]. Our monitoring solu-
tion described in Section 7.1 can be particularly considered as a component of
the liveness enforcement supervisory [22] in such applications.

We consider the classic form of the problem, where the philosophers are in
a ring topology, and they are selected for execution by a fair scheduler. Fig. 2a
demonstrates the state diagram of one philosopher, with Th, H, T, P, D, and E
representing the philosopher to be, respectively, thinking, hungry, trying, picking
a fork, dropping a fork, and eating. A philosopher starts at (Th), and immediately
transitions to (H)2. Based on the outcome of a fair coin, the philosopher then
chooses to pick the left or the right fork if they are available, and moves to
(T). If the fork is not available the philosopher will remain at (T) until it is
granted access to the fork. The philosopher will move to (E), if the other fork
is available; otherwise, the philosopher will drop the obtained fork, moving to
(D), and eventually transitioning back to (H). After the philosopher finishes
eating, it will drop (D) the forks in an arbitrary order, and moves back to
(Th). This algorithm is shown to be deadlock-free; however, the lockouts are
still possible [29].

Our modification of the algorithm is to add a self-transition at (P): a philoso-
pher does not drop the first obtained fork with probability ¢, i.e., it stays at (P),
which is shown with dotted lines in Fig. 2a (the transition from (P) to (D) takes
the probability 1— ¢, which is not shown in the figure). This modification enables

2 For simplicity, we remove a self-transition to (Th); however, unlike [11] we do not
merge the states (Th) and (H) because we want to distinguish between the incoming
transitions to (Th) and (H) in computing the waiting time.

11



(a) The states of one philoso-
pher in the randomized dining
philosophers algorithm. The
dotted self-transitions display
our modification of the algo-

rithm. (b) The trained HMM of one philosopher, in a
system with three philosophers.

Fig. 2: Training an HMM for the monitored philosopher in a program with three
philosophers.

the philosopher to control its waiting time, the period between when it becomes
hungry for the first time after thinking, and when it eats. A higher value of ¢
means that, instead of going back to (H), the philosopher will more likely stay
at (P) so that as soon as the other fork is available it will eat. It is not diffi-
cult to observe that as long as there is at least one philosopher with ¢ # 1, the
symmetry that causes the deadlock [29] will eventually break, and the algorithm
remains deadlock-free. In a distributed real-time system, where each philosopher
represents a process with deadlines, that dynamically change, changing the value
of ¢ enables the processes to dynamically adjust their waiting time according to
their deadlines.

The purpose of our experiments is to implement a monitor that observes the
outputs of a single philosopher, and predicts a potential starvation (lockout) by
estimating the extensions that will lead to eating.

Predicting Starvation at Run-time We use Matlab HMM toolbox to train
HMMs, and 100 iid samples collected from the implementation of our modified
version, with ¢ = 1 for all philosophers except the one that is being monitored?.
The trained model presents the behavioral signature of the system when a longer
waiting time is likely. The size of HMM (i.e., the number of hidden states) is
chosen based on the BIC score of each model with different sizes (see Section 4.1).

3 We tweaked the implementation in https://ti.tuwien.ac.at/tacas2015/
from [16].
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Fig. 2b demonstrates the trained HMM of one philosopher that is constructed
from the traces of a 5-second execution of three philosophers. The trained model
reflects the distribution of the prefixes in the training sample, which in turn is
determined by how the scheduler behaved during training (i.e., resolving non-
determinism of the model) as well as other philosopher. For instance, multiple
consecutive trys in the training sample will create several states in the trained
HMM, each emitting the symbol (T), but only one has a high probability to
transition to (P) and the others will model the state where the philosopher can
not pick a fork.

The finite extensions that we consider in the prediction are based on the
following regular expression: (—hungry)*(hungry(—eat)*eat(—hungry)*)*.

Fig. 3 gives a comparison between the prediction results (h = 33) of two
trained models, one trained using the samples from the original implementation
(LR) and the other one trained from the samples of our modified version (LR-
sap), both containing three philosophers. The monitored trace is synthesized in
a way that it does not contain any eat, and up to point 33 the philosopher is
only at state (T). After that the philosopher frequently picks and drops a fork.
When the last event of a prefix is pick, compared to when it ends with any
other observations, the philosopher will have a higher chance to reach eat (e.g.,
with probability 0.98 at point 35); however, since HMM maintains the history
of the trace, a prefix with frequent pickdrop one after another shows a decline
in the probability of observing eat (e.g., with probability of 0.8 at point 57).
These results are more informative than the néive way of extending the path.
The prediction results in Fig. 3 also demonstrate that the model that is trained
on the bad extensions provides an under-approximation for the model that is
trained on the good traces, and is more conservative in predicting a potential
starvation, and thus, produces more false positives.

The summary of our results is displayed in Table 1. We use PRISM to perform
the reachability analysis on the product of the trained HMM and DFA. The size
of the product model is equal to the size of the HMM, as each state in the trained
HMMs emits exactly one observation. The minimum prediction horizon (h™™) is
obtained empirically from 100 test samples. We choose the prediction horizon to
be three times as large as K™ during monitoring. The average of the estimated
length of the acceptable extensions by the monitor is shown as A7, and the mean
of the error on the entire testing set is denoted by mean(e™"). In average, the
monitor predicts the next eat (within the prediction horizon) with one step error.
The monitor is not able to detect the waiting periods that approximately are
longer than 3 x h™*"+1. Increasing the prediction horizon will decrease the error,
with the cost of a larger monitor table (MT). The value of \y; demonstrates
the number of the discrete events produced by the monitored philosopher. With
more philosophers Ay decreases because the monitored philosopher, and hence
the monitor, are scheduled less often when there are more philosophers.
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Table 1: Prediction results on 100 test o ’_-%V\'\\:\\:\\
samples. E e

Size of | BIC |, ,.:n|Size of| ¢ min £
N HMM |(+€03) h MT Anm |mean(e™™) qu
3 17 25.1 19.94| 360 (9.30 1.75 ﬁ'
4| 14 | 11.9 |5.49| 180 [5.30 1.28 L.
5 10 10.1 | 6.36 | 154 |6.16 0.80
6 14 7.69 | 5.61| 180 |5.17 1.05 o - - - = p
7 16 6[)9 428 170 384 106 Trace Index
8| 10 | 5.42 |4.94| 110 |4.32 1.33 Fig. 3: The comparison of the pre-
9| 14 | 483 1315] 120 12.77)  0.92 diction results from two trained
10, 10 4.40 | 4.31| 110 |3.84 0.97
models.

7.2 Hexacopter Flight Control*

In this section, we apply Prevent to detect injected faults from QNX Neu-
trino’s [28] kernel calls. The traces are obtained using QNX tracelogger during
the flight of a hexacopter. The vehicle is equipped with an autopilot, but can
be controlled manually using a remote transmitter. The autopilot system uses
a cascaded PID controller. QNX’s microkernel follows message-passing architec-
ture, where almost all the processes (even the kernel processes) communicate via
sending and receiving messages that are handled by the kernel calls MSG-SENDV,
MSG-RECEIVEV, and MSG-REPLY. Fig. 4a shows a sub-trace of our the kernel calls
sample from the hexacopter.

In this case study, we inject faults by introducing an interference process,
with the same priority as the autopilot process, that simply runs a while-loop to
consume computation time. The interference process abrupts message-passing
between the processes of the same or lower priorities, causing a kernel call to
handle the error (typically due to a timeout) and to unblock the sender (shown
as event MSG_ERROR in Fig. 4a). The purpose of the monitor is to predict the
existence of an interference process by only observing the kernel calls.

We use SFTHMM [10] on an Intel Xeon 2.40GHz 128GB RAM machine with
Debian 9.3 to train an HMM from 1-second of the auto-pilot execution, with the
intervening process in full effect. The HMM with the minimum BIC has 19 states.
The regular expression (—MSG_ERROR)* (MSG_ERROR)X™ is used to generate the
finite extensions that contain an instance of MSG_ERROR (i.e., the bad prefixes of
the property O—-MSG ERROR).

The monitor’s prediction on part of the trace generated from another scenario
where the interference process started executing in the middle of the flight, is
depicted in Fig. 4. The event MSG ERROR is emitted at index 10861, and the
probability of the prefix that contains MSG_ERROR within next 50 steps is 0.15
at index 10815. The points where the probability is zero is because the monitor

4 Full system description is available at https://wiki.uwaterloo.ca/display/
ESGDAT/QNX+Hexacopter+Flight+Control+Dataset
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10843 : MSG-SENDV

10844 : MSG-SEND-PULSE

10845 : MSG-REPLYV

10846 : MSG-RECEIVEV 0.15
10847 : MSG-RECEIVEV

10848 : MSG-RECEIVEV

10849 : MSG-RECEIVEV

10850 : MSG-SENDV 0.1
10851 : CONNECT-CLIENT-INFO
10852 : MSG-REPLYV

10853 : MSG-RECEIVEV

10854 : MSG-SENDV 005
10855 : CONNECT-CLIENT-INFO

10856 : MSG-REPLYV
10857 : MSG-RECEIVEV A AA A

Probability

10858 : MSG-RECEIVEV * " o760 10780 10800 10820 10840 10860
10859 : MSG-SENDV Trace Index
10860 : CONNECT-CLIENT-INFO

10861 : MSG-ERROR (b) The monitor prediction 50 steps before the
: event MSG_ ERROR.

(a) A sub-trace of the kernel
calls, 20 steps before the event
MSG_ERROR.

Fig.4: The monitoring of O-MSG ERROR on the flight control trace with the
interference process.

was not able to correctly estimate the hidden state of the model. More training
samples are required to enable the monitor to estimate the correct state of the
model (in our case for example, three consecutive instances of MSG_RECEIVEV
have not appeared in the training sample, hence, the prefix can not be associated
to any state of the model by the monitor).

8 Related Work

There have been numerous proposals to define semantics of LTL properties on
the finite paths [23]; however, to the best of our knowledge, this paper is the
first approach in verifying finite paths based on the extensions obtained from a
trained HMM.

HMMs have been recently used in run-time monitoring of CPSs [40, 15, 36, 38,
47,35, 2]. Prasad Sistla et al. [36] propose an internal monitoring approach (i.e.,
the property is specified over the hidden states) using specification automata
and HMMs with infinite states. Learning an infinite HMM is a harder problem
than the finite HMMs, but does not require inferring the size of the model [5].

The notion of acceptance accuracy and rejection accuracy in [35] are the
complement to our notion of prediction error. According to their definition, our
Viterbi approximation generates a threshold conservative monitor for any regular
safety property and regular finite horizon. The analytical method to find an
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upper bound for the timeliness of a monitor [38] can be applied to Prevent to
find an upper bound for h.

Several works focus on efficiently estimating the internal states of an HMM
at runtime using particle filtering [40, 15]. Particle filtering uses weights based on
the number of particles in each state, and updates the weights in each observa-
tion. Viterbi algorithm provides the most likely state, as an over-approximation.
Adaptive Runtime Verification [2] couples state estimation [40] with feed-back
control loop to generate several monitors that run on different frequencies. These
works are orthogonal to our framework and can be combined with Prevent.

Learning models for verification is executed on Markov Chain models [26,
21]. HMMs are trained in [16] for statistical model checking. Our work focuses
on predictive monitors using a similar technique. We also provide assessments
for evaluating the learned model and inferring its size.

9 Conclusion

We introduced Prevent, a predictive run-time monitoring framework for prop-
erties with finite regular extensions. The core part of Prevent involves learning
a model from the traces, and constructing a tabular monitor using reachability
analysis. The monitor produces a quantitative output that represents the prob-
ability that from the current state, the system satisfies a property within a finite
horizon. The current state is estimated using Viterbi algorithm. We defined an
empirical evaluation of the prediction using the expected length of the extension
of the execution that satisfies the property. In future, we are interested in ex-
ploring other evaluation methods, including comparing the prediction results of
the trained model with those of the complete model by applying abstraction [17].

We provided preliminary evaluation of our approach on two case studies: the
randomised dining philosophers problem, and the flight control of a hexacopter.
In both cases, the trained models are extracted from bad traces, thus, the monitor
has a tendency to produce false positives. An interesting future modification to
our approach, which reduces the number of false positives, is to involve a mixture
of trained models based on good and bad traces. Only those models are employed
in prediction, that have high correlation with the past observation (i.e., a higher
likelihood of the generated prefix).

Lastly, an implementation of Prevent with the application of on-line learning
methods (such as state merging or splitting techniques [39,24]) is necessary to
apply the framework to the real-world scenarios.
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