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Abstract—In this paper we present a large dataset for use
in embedded systems research which has been gathered from
a realistic development environment operating in the path of an
accelerated neutron beam. The dataset contains traces with events
from a real-time operating system as well as user events from
a safety critical application. All data is carefully timestamped
and in human understandable form. We present two use cases
for this dataset: mining timed regular expressions to extract
system specifications from clean and possibly anomalous data
generated during the operation of the neutron beam, and
runtime monitoring to extract information from traces with
incomplete information. The dataset is available for research at:
http://doi.org/10.5281/zenodo.248008

I. INTRODUCTION

Errors in the computer memory system that change an
instruction or a data value in a program lead to software
related issues that can be resolved by cold booting the system.
These kind of errors are also referred to as soft errors. A soft
error will not damage the system hardware; the damage only
occurs to the data being processed. However, such errors can
be catastrophic if they occur in safety-critical systems.

The design and implementation of embedded systems are
complex tasks that involve developing heterogeneous sub-
components. Development of strategies to monitor and an-
alyze these errors in embedded systems is a challenge [1].
Analysis of event traces provides an approach for studying
the conformity of embedded systems behavior to specified
requirements [2], [3].

One challenge of the trace analysis approach is the require-
ment for good datasets to design and test algorithms for tasks
such as runtime monitoring, specification mining, and anomaly
detection. Here, a good dataset can be classified as the one
in which there are data without any errors or system faults
and fragments of data where the system under consideration
is exposed to random errors. It is common practice to create
artificial datasets with manually induced errors during system
execution for the design of novel algorithms.

Modern Systems-on-Chips (SoCs) must undergo experi-
ments to evaluate their reliability. SoCs are found in almost
every electronic device, from consumer electronics like re-
frigerators and televisions to devices in safety critical ap-
plications such as biomedical implants, airplanes, satellites,
and autonomous vehicles. Most of these devices are exposed
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to radiation to induce failures during testing. Failure rates
under these conditions are not negligible even in consumer
electronics [4], [5] due to the shrinking size of transistors,
and they can have a catastrophic impact when occurring in
safety critical applications such as airplanes [6].

Our idea is to use the same radiation testing that commercial
SoCs undergo to generate good, genuine datasets for the design
and evaluation of algorithms. By using a radiation experiment
to generate soft errors, we can avoid the bias inherent in the
injection of manual errors into a dataset. Because the error
rates are known to be significant, we can expect errors to
appear frequently enough to be useful.

The rest of the paper is organizes as follows: in Section II,
we provide a general overview of the approach adopted for
the conduct of such an experiment. Section III delves deeper
into the experimental setup and explains the parameters,
applications, and metrics used for analysis and control. In
Section IV, we present two use cases of our datasets in the
context of system analysis and monitoring. The first use case
is Timed Regular Expression (TRE) mining, a technique for
mining system specifications with timing constraints, and the
second is an evaluation of a runtime monitoring technique that
is fault tolerant and designed specifically for lossy traces. In
Section V we present a discussion on lessons learned from the
experiment and the steps required to clean the data to make
it available to others for evaluation of their algorithms. We
provide concluding remarks in Section VI.

II. APPROACH

In this work, we present a dataset acquired by running
a safety critical application in a high-radiation environment
typically used for testing resilience to soft errors. Four de-
velopment boards were exposed to an accelerated neutron
beam in a test facility at the Los Alamos Neutron Science
Center (LANSCE), New Mexico, USA. The boards ran the
application-under-test continuously for a period of five days
while exposed to the neutron beam. The dataset is comprised
of the system trace from each development board with various
configurations of the application.

This dataset provides high quality system traces with ran-
dom effects from the ionization beam on the application. The
dataset is valuable for any kind of analysis in the domain of
anomaly detection or prediction.

Figure 1 provides a high level overview of our approach to
collect data from a real time operating system running on a
embedded development board with a safety critical application
exposed to a ionization beam.
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Fig. 1. An overview of the experimental setup

In Figure 1, the Real-Time Operating System (RTOS)
receives a safety critical application for execution. In this case
the application is an automotive cruise-control simulation and
the RTOS under consideration is QNX 6.6.0 [7]. The RTOS
with application is loaded onto the on-chip Static Random
Access Memory (SRAM) memory of the development boards
to avoid damage that is possible when writing to flash memory
during neutron bombardment. The application is designed to
generate user events in the system trace to identify the state
of the application. The system traces are collected on a hard
disk connected to the an external control computer away from
the ionization beam’s influence. A custom designed watchdog
program continuously monitors the trace logs generated by the
boards under test. In the event that logs have not been written
to for a given time, the script reprograms the board and the
cycle continues.

III. EXPERIMENTAL SETUP

We placed the SoCs of four Xilinx development boards
in the path of an accelerated neutron beam at LANSCE in
New Mexico, USA. Two of the development boards were the
Xilinx ZC702 featuring a XC7Z020 SoC, while the other two
boards were the Xilinx ZC706 featuring a XC7Z045 SoC [8].
The boards were programmed via their onboard Digilent Joint
Test Action Group (JTAG) debuggers connected via Universal
Serial Bus (USB) to control computers and programmed using
a Xilinx Microprocessor Debugger (XMD) console interface.
Power to the boards was supplied using an APC switched
rack Power Distribution Unit (PDU) controlled via Ethernet,
allowing the boards to be power-cycled remotely. The control
computers were a Lenovo T420 and a Lenovo T430 laptop
running Ubuntu Linux 16.04. Each of the boards under test
were placed a different physical distance from the origin of
the beam, so they received different numbers of accelerated
neutrons.

Each SoC ran identical software apart from differences
to account for hardware variations between the ZC702 and
ZC706 models. The software was an automotive cruise-control
simulation developed by QNX Software Systems and running
on version 6.6.0 of the QNX real-time operating system [7]
out of SRAM. After booting, QNX was configured to write
system logs using the tracelogger utility to a mounted Network
File System (NFS) share served by the control computers over
Ethernet. Tracelogger was configured with the flags -c -s
60 -f <log filename>. Watchdog software running on
the control machines monitored the logs and reprogrammed an
SoC if its logs stopped growing - an indication that the SoC

was no longer functioning properly. If a board failed to boot
after reprogramming, it was power-cycled by the watchdog
using the APC PDU.

The cruise-control software attempts to keep the driving
speed of a simulated car at 100 kilometers per hour. An
artificial, randomized speed sensor periodically sends signals
to multiple, identical controller programs which calculate
the necessary brake or accelerator pressure to correct the
value. If the controller programs are not unanimous in their
calculations, an error is logged. If they are unable to reach a
quorum, an error is logged and the simulation is terminated.

Figure 2 shows a high level overview of the cruise-control
software. The simulated speed sensor on the left represents the
randomized value sent to the brake and accelerator controllers,
represented by the boxes in the center of the diagram. The
number of controller programs is parameterized from 1 to N,
with each controller receiving an identical speed value from
the simulated sensor. Once their calculations are complete their
results are compared to see if a unanimous answer, or at least
a quorum is reached.
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Fig. 2. High level overview of the software-under-test

The simulation had two parameters: the number of con-
troller programs to run, and the probability of injecting a
synthetic software error. In the initial configuration, the pro-
gram was run with three controllers and a 1% chance of
injecting a software error. After the experiment had stabilized,
the probability of injecting software errors was set to 0% and
four different quantities of controller programs were tested:
two, three, five, and seven.

IV. USE CASES

As an example, this section presents two use cases of the
dataset: mining of TRE [9] to extract system specifications
and runtime verification of Linear Temporal Logic (LTL) [10]
properties.

A. TRE Mining

Regular expressions offer a declarative way to express
the patterns for any system property or specification. Every
language defined by a regular expression can be recognized
by a finite automaton [11]. It is possible to convert any
regular expression into a non-deterministic automaton, and
further to convert from a non-deterministic to a deterministic
automaton. We can thus generate a classical Deterministic
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Finite Automaton (DFA) for any property expressed as a
regular expression.

Classical automata theory handles only the qualitative no-
tion of time, i.e. a sequence of events specifies the ordering
of events but not the time between the occurrence of those
events. Such a qualitative abstraction is useful for the analysis
of certain systems, but many other real-time, safety-critical
application domains require more detailed models which in-
clude accurate timing information. For example, we might
want to modify a formal specification “a is followed by b”
to a more precise specification with timing constraints “a is
followed by b within x seconds”. Since our focus lies on real-
time safety-critical systems, we use the technique for mining
specifications that include the relevant timing information
using the formalism of TREs [3].

The following four TRE templates are used for the evalu-
ation of traces. The templates are parametrized with a time
interval of 0 to 1,500.
T-1(response): (ˆP )∗.((〈P.(ˆS)∗.S〉[0, 1500]).(ˆP )∗

T-2(alternating): (ˆP, S)∗.((〈P.(ˆP, S)∗.S〉[0, 1500]).(ˆP, S)∗
T-3(multi-effect): (ˆP, S)∗.((〈P.(ˆP, S)∗.S〉[0, 1500]).(ˆP )∗

T-4(multi-cause): (ˆP, S)∗.((〈P.(ˆS)∗.S〉[0, 1500]).(ˆP, S)∗

The trace used for the evaluation contains a minimum of
three million events, with 139 distinct events. We used
the four TRE templates, T-1 to T-4, for evaluation. The
interval used in the templates is sufficient for most interesting
interactions to complete. The tables below report the most
dominant specifications mined by our algorithm in traces
with 2 controllers. We mined the dominance and presence
of properties in traces collected during the experiment with
injection of the ionization beam and clean traces collected
in the lab with no interference. The results are presented
in Table I and Table II for both cases. The results indi-
cate that the template T-1 is the most dominant with the
five most dominant properties presented in the table. The
properties ranked 3 and 5 might look apparently similar but
they are associated with class of interrupt enter and
interrupt handler enter but for different interrupts
(0x00000036), (0x0000001d) respectively.

TABLE I
DOMINANT PROPERTIES OBTAINED FOR TRE - T-1 WITH FAULT

INJECTION

Rank Instance Counts Actual Events
1 45765 P:CONTROL TIME,

S:COMMSND_PULSE_EXE
2 12613 P:INT_EXIT(0x00000036),

S:THREAD READY
3 10976 P:INT_ENTR(0x00000036),

S:INT_HANDLER_ENTR(0x00000036)
4 9598 P:INT_HANDLER_EXIT(0x00000036),

S:THREAD RUNNING
5 9381 P:INT_ENTR(0x0000001d),

S:INT_HANDLER_ENTR(0x0000001d)

We can similarly mine more TREs to determine the proper-
ties of the complex embedded software where event sequence
and timing is important. In the above results we see the
dominance of the property at rank 3 is different in the two
cases which might be an effect of fault injection. We may be
able to compare the situations by crafting an interesting TRE

TABLE II
DOMINANT PROPERTIES OBTAINED FOR TRE - T-1 WITHOUT FAULT

INJECTION

Rank Instance Counts Actual Events
1 44644 P:CONTROL TIME,

S:COMMSND_PULSE_EXE
2 6269 P:INT_EXIT(0x00000036),

S:THREAD READY
3 5721 P:CONTROL TIME, S:THREAD

RUNNING
4 4965 P:INT_HANDLER_EXIT(0x00000036),

S:THREAD RUNNING
5 4347 P:INT_HANDLER_EXIT(0x000001d),

S:INT_EXIT(0x000001d)

that could reveal more in-depth workings of the application
and faults occurring due to impact of the ionization beam.

B. Runtime Monitoring

Runtime verification (RV) is the problem of, given a
program P and an execution trace σ of P along with a
specification ϕ, deciding whether σ satisfies ϕ. A monitor
Mϕ is synthesized for ϕ. Thus, RV aims to find whether P
exhibits the behavior described by ϕ, but generally requires
the existence of a complete execution trace [12], [13].

Real-world applications, however, often produce lossy
traces due to reasons which include lossy network protocols,
logging failures, sampling-based profiling, and partial instru-
mentation. A computing system subjected to radiation, as is
the case in this paper, may produce errors and may even fail.
The portion of the trace obtained during the period of exposure
to radiation should not be trusted but rather be considered as
lossy.

A sound monitor for complete traces may deliver an incor-
rect verdict on lossy traces [14] or on execution traces obtained
under recording uncertainty [15]. A loss-tolerant monitor Mϕ

verifies a specification ϕ on a lossy trace σ. A lossy interval
in a trace σ represents an interval of time in which events
may be produced by a program, but none of such events
are observed by the corresponding monitor. Thus, whenever
the logger fails to observe events or simply cannot record
them precisely due either to soft or firm errors, we mark the
corresponding intervals as lossy intervals in the final trace.

In this paper, we use the loss-tolerant monitoring tech-
nique and tool developed by Joshi et al. [14] to evaluate
the following LTL properties on the dataset. This monitor
produces a sound verdict on lossy traces without any other
requirements on the lost events. However, the lossy input
trace should not end with a lossy interval. The loss-tolerant
monitor accepts an input trace σ and the LTL formula ϕ to
be evaluated on σ. The output of the monitor is in the truth-
domain B5 = {>,>P , ?,⊥,⊥P }, which is the truth-domain
of an RV-LTL monitor [16] augmented with a ’?’ for unknown
(i.e., lost) events. In this definition, the monitor outputs > for
true (respectively ⊥ for false) when the input trace satisfies
(respectively violates) the property. Similarly, a verdict of >P

presumably true (respectively ⊥P for presumably false ) is
generated when the trace presumably satisfies (respectively
violates) the monitored property.
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We evaluated the following LTL properties on the dataset:
P1. �(thread create → �(thread ready →

♦thread run)). This states that whenever a thread
is created, it is always the case that when it becomes
ready, it eventually runs.

P2. �(kernel enter → ♦kernel exit). This property states
that it is always the case that when a thread enters into
a kernel call, it eventually exits.

P3. �(int enter → ♦int exit) → �(thread ready →
♦thread run). This property states that if the processing
of an interrupt starts and eventually completes, then the
corresponding thread gets ready and eventually runs.

P4. �(msg send → ♦(msg receive ∧msg reply)). This
property verifies that whenever a message is sent, it is
eventually received and acknowledged by the receiving
thread.

P5. �(thread block → ♦(thread ready ∧ thread run)).
This property verifies that whenever a thread is blocked,
it eventually becomes ready and runs.

P6. �(int enter → �((handler enter →
♦handler exit) → ♦int exit)). This property checks
that whenever the system enters the interrupt state, an
interrupt handler is invoked to service the interrupt. The
handler eventually exits and the system also eventually
exits from the interrupt state.

We monitored the properties using a computer that runs
Ubuntu 16.04 on an Intel Core i3 processor at 2.10GHz with
8GB of memory. We focused the experiments only on the
cruise-control application running on the boards.

Table III presents the verdict of each property on the input
execution trace. The verdict for P1, P2 and P5 is presumably
false (⊥P ), meaning that the properties were presumably not
satisfied by the execution. We believe one of the reasons for
these violations is the radiation that caused errors in the entire
system. The final verdict for properties P4 and P6 is presum-
ably true (>P ), showing that the properties were presumably
satisfied by the application. Finally, property P3 is evaluated
to an unknown verdict. In this case, the verdict is unknown
due to the lossy trace not satisfying the requirements [14] for
a conclusive verdict for the property.

TABLE III
MONITORING VERDICTS

P1 ⊥P P2 ⊥P

P3 ? P4 >P

P5 ⊥P P6 >P

Figure 3 shows the monitoring overhead for ten runs of
each property. We observe that the monitoring overhead is
linear with respect to the trace size. These results confirm that
instead of monitoring full execution traces, one can soundly
monitor LTL properties on lossy traces with reduced overhead.

V. DISCUSSION AND LESSONS LEARNED

A. Cleanup of Dataset

The data collected from the four Xilinx development boards
consisted of the tracelogger logs. The boards under test would
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Fig. 3. Monitoring Overhead

crash randomly in the presence of the neutron beam. Hence,
for every board we marked the time when the board crashed
and required a reboot. The logs are split up by their crash times
so that logs until a crash occurred are in a single data file. The
total number of logs (total number of crashes) for each board
are listed in Table IV. The number of logs varies for each
board as it depends on the time during which the board was
powered down during the experiment or was crashing more
frequently resulting in more time spent booting.

TABLE IV
TOTAL NUMBER OF LOGS FROM THE SOCS

Board Number of Logs
Xilinx ZC702 (1) 989
Xilinx ZC702 (2) 631
Xilinx ZC706 (1) 1324
Xilinx ZC706 (2) 485

The standard trace generated by the tracelogger utility in
QNX has the following fields as shown in Table V.

TABLE V
VARIOUS FIELDS IN A QNX TRACE

Fields
time inkernal msb
cpu area lsb
class sigevent d0
event intnum d1
pid callnum retval
tid rcvid priority

ppid scoid policy
name sequence strid

ip numevents str

The tracelogger utility produces files in a specific format
with files having *.kev extension. We transformed the files to
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an easily readable *.csv format.
Since each of the trace event is associated with various

experimental parameters such as the beam intensity, the num-
ber of controllers, neutron counts etc. The time on the board
resets after every crash and hence the time logged by the
operating system is not the actual time and it is difficult to
correlate the trace events with the neutron flux and other
experimental parameters. Therefore, we added another column
to the *.csv file with the actual time that enabled us to get
accurate experimental parameters associated with each event
in the trace. The application also has the option to induce
random software faults but we think that in this experiment it
is more important to evaluate the effect of the neutron beam
on the software operation. We added five fields to the *.csv
file, as shown in Table VI, for completeness and to enable
easier utilization of the dataset.

TABLE VI
AUGMENTED FIELDS AND THEIR DESCRIPTION

Augmented Fields Description
clock time Actual time
controllers No. of controllers in the application

software faults Randomly induced simulated faults (TRUE/FALSE)
flux neutron flux data (in neutron/cm2/s)

last neutron count total number of neutrons emitted cumulatively

Every final version of a trace has a total of thirty two
fields and there are a total of 107 traces which have simulated
random software faults turned ON and the remaining 3,322
log files with it turned OFF.

Trace file names have been carefully kept where each file
name is in the following format, crashed.<TIMESTAMP>.
The timestamp descriptor in the file name is the time at which
the crash on the board occurred or when the log file stopped
growing in size.

We gathered from the experiment and data analysis that
the cruise-control application never failed completely under
the neutron beam. The failing of such an application means
that there is no quorum between the instances of the compute
engine. This reflects the reliability of the such an application
under extreme test conditions. On the other hand, there may
be other issues that might have gone unidentified.

VI. CONCLUSION

In this work, we created a dataset for analysis and post
mortem analysis on the performance of real-time embedded
software when the hardware is exposed to ionizing radiation.
The experiment for generation of the dataset was conducted at
LANSCE with a safety-critical, real-time application running
on SoCs.

We also presented two use cases of the dataset. The first use
case was of specification mining from these large scale system
traces, and the second was of runtime monitoring where the
traces can have missing events.

We believe that availability of such vast datasets in the
domain of real-time embedded systems is useful for analyzing
the robustness and reliability of these system in harsh envi-
ronments. These datasets also enable researchers to develop

better algorithms for anomaly detection, as finding benchmark
datasets with real random anomalies is challenging. This
dataset is a great example of data with random faults in the
system.
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