Mining Specifications using Nested Words

Apurva Narayan
University of Waterloo
Waterloo, ON N2L 3Gl
a22naray @uwaterloo.ca

Abstract—Parameter mining of traces identifies formal prop-
erties that describe a program’s dynamic behaviour. These
properties are useful for developers to understand programs,
to identify defects, and, in general, to reason about them. The
dynamic behavior of programs typically follows a distinct pattern
of calls and returns. Prior work uses general logic to identify
properties from a given set of templates. Consequently, either the
properties are inadequate since the logic is not expressive enough,
or the approach fails to scale due to the generality of the logic.
This paper uses nested words and nested word automata that are
especially well suited for describing the dynamic behaviour of a
program. Specifically, these nested words can describe pre/post
conditions and inter-procedural data-flow and have constant
memory requirements.

We propose a framework for mining properties that are in
the form of nested words from system traces. As a part of the
framework, we propose a novel scalable algorithm optimized for
mining nested words. The framework is evaluated on traces from
real world applications.

Index Terms—Specification Mining; Nested Word Automaton;
Visibly Pushdown Automaton

I. INTRODUCTION

Software performance is highly dependent on the quality
of specified specifications. Defining complete and clear spec-
ification is a task which can lead to great benefits, whereas
incomplete specifications can lead to undetected errors and
behavior.

Specifications are given by a set of properties that formally
describe the design behavior. These properties may describe
temporal behavior, arithmetic relationship between design
variables, constraints on inputs and outputs etc. The mined
specifications allow us to better understand the system, verify
its correctness, and manage possible evolutionary changes.

In this paper, we present a new scalable approach to find
recurring patterns in the form of nested words [1] from existing
system traces. Given a trace, we match it to a set of parametric
pattern templates given in the form of nested words. The
matching algorithm is discussed in detail in Subsection IV-B.
We also present a ranking module to heuristically rank the
most interesting properties found in the system traces. In
addition, we present a heuristic that reduces the space and
time complexity of the algorithm. Specification mining en-
ables the system designer to automate the formal verification
process and provide useful information for fault detection and
diagnosis.

With the motivation to address the problem of mining
specifications, we propose a technique to mine instances of
nested word (NW) templates satisfied by a given system’s
trace. NWs [1] are a model for representation of data with both
linear ordering and a hierarchical nested matching of items.

Nirmal Benann
University of Waterloo
Waterloo, ON N2L 3Gl
njbenann @uwaterloo.ca

Sebastian Fischmeister
University of Waterloo
Waterloo, ON N2L 3Gl
sfischme @uwaterloo.ca

A NW consists of a sequence of linearly ordered positions,
augmented with nesting edges connecting calls to returns.
Although the edges do not cross resulting in a properly nested
hierarchical structure, we do allow for some of the edges to
be pending. We used nested word automata (NWA) and their
finite state acceptors for NWs to check for their occurences in
the traces.

It is noteworthy at this point the advantage of using NWA

for mining properties in traces. The next promising alternative
to NWA for mining nested structures are Pushdown Automata
(PDA). The two key advantages of using NWA over PDA
are as follows. Firstly, typical implementation of Context
Free Languages is using PDAs which are not closed under
intersection, complementation, and difference. They cannot
decide inclusion and equivalence, and are not determinizable
(except Deterministic Context Free Languages). On the other
hand NWA overcomes these limitations of PDAs, can have a
finite state acceptor representing the regular language of NWs,
and exhibit all theoretical properties of Regular Languages![1].
Secondly, PDAs require a stack for implementation. Therefore,
in mining applications where the inputs to the automatons
are either not known or are large, the memory requirement
is directly proportional to the length of the input. Whereas, it
is constant in the case NWAs which makes them a promising
alternative in mining algorithms. NWs with their pre-parsed
inputs utilize the best of the two worlds. Motivating the use
of NWA for mining specifications can be seen in numerous
real-world applications such as:
Detect Code Injection Attacks: Code injection is the ex-
ploitation of a computer bug that is caused by processing
invalid data. Such injections are used by attackers to introduce
the code into a vulnerable computer program and change
course of execution. Any such successful code injection in
case of nested or recursive calls would violate the nesting
structure [9]. Popular case of a code injection are Cross-Site
Scripting (XSS) attacks in HTML source [13].

We use a set of simple property patterns for specification
in the form of NWs to synthesize a NWA. The NWA is then
used as a checker to verify whether traces satisfy the corre-
sponding NW. We provide an algorithm for mining instances
of NWs from their templates and also the detailed worst case
complexity analysis of the algorithm. The algorithm requires a
NW template and system traces as input. The algorithm then
uses the distinct events from the traces to replace the event
variables in the NW templates with actual events. The resultant
permutations of the template are NW instances. Intuitively,
traces are processed against the NW instances with the help of

the NWA.. Further, we define confidence and support as metrics
to evaluate the degree to which a NW instance is satisfied
by the traces or, in other words, are interesting and dominant
properties [18]. The algorithm reports only the instances which
satisfy the given threshold values of confidence and support.
Processing all possible instances lead to exponential space and
time complexity as shown later. Hence, we utilize the call
and return structure of the NWs and occurrence of pre-post
conditions in system traces to heuristically reduce the space
and time complexity significantly to obtain the properties.

We also prove that our technique is sound, i.e., a mined
specification reported by our algorithms actually satisfies the
given thresholds of support and confidence on the provided
input traces.

A large segment of software systems, client-server pro-
tocols, XML/HTML tags, embedded software systems have
nesting structure in their system calls and their responses.
We evaluate our technique on real-world datasets that consist
of traces produced by applications during various runs on
Android operating system, QNX real-time operating system,
and HTML sources. Due to constraint on space we present
the results on mining of HTML sources. We report the
performance of our algorithm on real-life traces in terms of
the NW instances reported. We also demonstrate the scalability
and efficiency of our approach by running the implementations
on synthesized traces of different sizes with different values
of parameters such as the number of distinct events, the total
number of events in the traces, and the complexity of the NW
templates. The key contributions of this paper include:

o An efficient technique for extracting properties in the
form of NWs.

o A novel algorithm to mine instances of NWs from given
system traces. To our knowledge, this is the first technique
for mining specifications using NWAs.

« Computational approaches that optimize the extraction of
the specified properties for fragments of NWs.

o An analytic bound on the memory requirements for
mining with an empirical validation corroborating the
correctness.

o A feasibility and viability study using a HTML source
of a commercial website showing the applicability and
scalability of the approach.

II. RELATED WORK

Critical and commonly occurring behavioral patterns are
typically provided to the mining frameworks, which then mine
system specifications of that form. The mining techniques
identify a set of specifications that are satisfied by traces
w.r.t. certain criteria. Comprehensive review of various mining
techniques has been presented in [24].

Many programs lack formal and mined specifications that
are valuable as they can be used for a wide variety of activ-
ities in the software development life cycle (SDLC). These
activities include software testing [6], automated program
verification [16], anomaly detection [4], debugging [10], etc.
Ammons et. al. [20] argued against the adoption of automated

verification techniques are given the complexity in formulating
specifications. Different techniques have been developed for
mining specifications from templates expressed using regular
expressions, LTL [3], timed regular expressions [5], and other
custom formats.

A vast majority of tools for mining of properties infer
properties in the form of state machines. These tools learn
a single complex state machine instantly and extract simpler
properties from it. In [22], a model is inferred representing
interactions among various components of the software. The
tool generates Extended Finite State Machines from the traces
of component interactions. They solve the dual purpose of
modeling both data and control aspects that are useful for
analysis and system verification.

These approaches suffer from two main drawbacks. First,
mining of a single state machine from system traces is a
NP-hard problem [12] . Second, extraction of formula-based
properties from complex state machines still exists.

In another work [8], the authors defined a set of temporal
property patterns based on case study of hundreds of real
property specification. The main idea behind the exercise was
to help designers unfamiliar with formal specifications and
static verification approaches. Another work based on the
intuition that frequently occurring behavior matches temporal
patterns that are likely to be true, is the foundation of Peracotta
[20]

The work by Lo et. al. [21] presents a novel way of mining
temporal rules based on past-time LTL. They show that past-
time LTL can express temporal properties more succintly than
future-time LTL. In [11], authors learn a Moore machine from
a given set of input-output traces. The work is useful for
learning system model for legacy systems. To enhance the
capability of specification mining algorithm, authors in [17]
combined them with invariant mining to improve the quality
of mined specifications. Further strengthening the work of
specification mining combined with invariant mining authors
in [2] introduce an invariant-counter example guided search
for inferring system model. In [23], the authors present a
promising approach using guarded finite state machines. They
address an important challenge of scalability and specificity
of specification mining techniques. Unfortunately, all the tech-
niques mentioned above are unable to handle complex program
behavior involving nested architectures. Our work tries to
address the problem of mining specifications that are more
expressive than regular languages by using NWAs.

Some work has been done in mining correctness of recursive
programs using an interpolant based software model [14].
Their method avoids the expensive construction of an abstract
transformer and use a NWA of the interpolants. Similar
approach using NWA has been used to develop monitors for
synthesizing safety properties [25].

III. BACKGROUND

Generally, regular expressions offer a declarative way to
express the patterns for any system property or specification.

Various system properties and specification such as stack-
inspection, pre-post conditions, and inter-procedural data-flow
are non-regular and hence inexpressible using the classical
specification languages based on temporal logics, automata,
and fixed point calculi. Not only that, most modern software
engineering design methods lead to programs that formu-
late nested words rather than explicit GOTO statement [7].
Therefore, nested words [1] are a promising alternative. They
capture both the linear sequencing of positions and a hier-
archically nested matching of positions. We can generate a
finite-state automata acceptor for nested words [1].

A nested-word automaton is similar to a classical finite-
state word automaton, and reads the input from left to right
according to the linear sequence. However, at a position with
two predecessors, one due to linear sequencing and one due to
a hierarchical nesting edge, the next state depends on states of
the run at both these predecessors. The resulting class of regu-
lar languages of NWs has all appealing theoretical properties
that the class of classical regular word languages enjoys. The
class is closed under operations such as union, intersection,
complementation, concatenation, and Kleene-*. Most of the
decision problems such as membership, emptiness, language
inclusion, and language equivalence are all decidable [1].

In Regular Languages, a sequence of events specifies the
ordering of events but not nesting structure of the calls and
returns or interprocedural data flow. An abstraction of this sort
has been found useful for analysis of certain real time safety
critical applications, security of various web applications etc.
For example, we might want to modify a formal specification
“a is followed by b” to a more precise specification with call
and return, “call a is followed by an internal symbol c and
return b”. We use the formalism of NWs for our purpose as it
allows for defining explicit calls, returns and internal symbols

in the model. We will formally describe our nomenclature.
A. Nested Words

A nested word alphabet is a tuple Y = (3¢, %, %;) that
comprises three disjoint finite alphabets—X. is a finite set of
calls, Y, is a finite set of returns and X; is a finite set of
internal actions. ~

We define nested word automata over X. The nested word
automaton is restricted such that it pushes onto the stack only
when it reads a call, it pops the stack only at return, and does
not use the stack when it reads internal actions. The input
hence controls the operation permissible on the stack.

Definition 1 (Trace and event): The alphabet is a set of
distinct events. A trace is a set of events ordered by their time
of occurrence.

The sequences of events in the trace are ordered by time
stamps. The alphabet of events is defined by the system
generating the traces. The events have associated meaning
pertaining to the functionality of the system. _

Definition 2 (Nested Words): A nested word n over ¥ is a
pair (a1, -, a;,~), where a; € ¥ and ~ is a matching relation
of length [where ¥ = (X, %,., ;).

A relation ~~C —o00,1,2,...,0 x 1,2,...,l,00 of length
I > 0 is a matching relation if the following holds:

A B:A’s
Fig. 1: Finite State Acceptor for NW {a"b" |n > 0}

o if i~ 7, thent < j
e if 97 ~» 7 and 79 ~~ 7, then i1 = i
if 4 ~» 71 and 7 ~> ja, then j; = jo
e if 73 ~~ j; and iy ~» j2, then we have NOT i; < iy <
J1<Jj2
If ¢ ~ 7, i is a call position and j is a return position. All
the rest is an internal position. If i % —oco and j # oo, they
are well-matched, otherwise pending. Here e €~~ is a nesting
edge.

The novel features here with respect to regular words are
the meaning of the atom a,; which represents an event that can
be a call, return, or an internal symbol. It is important to note
that we use NWs, as defined above, to provide specification
templates.

Example: An example of a NW is iciciirri. Here i
is an internal, c is the first call, c is the second call followed
by r, return to the second call and finally r, return to the first
call. Here it can been seen that nesting structure is preserved.

Definition 3 (NW Templates): A NW template is a NW in
which all of the atomic propositions are either event variables
or events representing a call, return, or an internal symbol.

A NW template is a template for the specifications that we
want to mine. We use the term event variable to denote a place
holder for an event. For example, the NW template ({a™.)b")
represents “a is a recursive call which occurs n times followed
by n recursive returns b”, where a and b are event variables
for calls and returns respectively. We use p to denote the
number of event variables present in a NW template, p., p;,
and p, to represent the number of atomic propositions for
calls, internals, and return respectively and p=p. + p; + p;. In
the given example p is 2, where p.=1, p,.=1, and p;=0. The
symbol (represents a call and) represents a return.

Definition 4 (NW Instance): Let IT be a NW template. Then,
m is a NW instance of II if 7 has a NW similar to II in structure
where all the atomic propositions are events (calls, returns, or
internals).

Definition 5 (Binding): Let 3 be an alphabet of calls, returns
and internal events and let V' be a finite set of event variables.
Then, a binding is a function b: V — X

A NW instance corresponds to a NW template and has an
identical NW structure. Applying a binding to the event vari-
ables in a NW template creates a NW instance corresponding
to that binding. The binding is thus a map used to replace
event variables with events from the given alphabet.

Definition 6 (Nested Word Automaton): A nested word
automaton (NWA) A over an alphabet > is a structure
(@, Qin, 6, Qy) consisting of a finite set () of states, a set of
initial states Q;, C @, a set of final states Q5 C @ and a set
of transitions (0., d,., §;) where §. C @ X ¥ X () is a transition
relation for call positions, §; C @ x X x @) is a transition
relation for internal positions, and J, C Q@ X Q X X X Q) is a
transition relation for return positions.

A run p of the automaton A over a nested word
NW=(ay,...,a,v) is a sequence qo, ..., g over () such that
qo € Qin, and for each 1 < ¢ < k. If ¢ is a call position
of v, then (¢;—1,a;,q;) € 0., if i in an internal position,
then (g;—1,a;,q;) € 6; and if ¢ is a return position with call-
predecessor is j, then (gi—1,¢j—1, i, ;) € Oyp.

The automaton A accepts the NW if it has a run qq, ..., g
over the NW such that ¢ € Q. The language L(A) of a
nested word automaton, A is the set of nested words it accepts.
A language L of nested words over X is regular if there exists
a nested word automaton A over ¥ such that L=L(A).

An example of a finite state acceptor for the NW:
{a™b™|n > 0} is shown in Figure 1. A nested word consists of
a sequence of linearly ordered positions, augmented with nest-
ing edges connecting calls to returns. The edges do not cross
creating a properly nested hierarchical structure. This nesting
structure can be uniquely represented by a sequence specifying
the types of positions (calls, returns, and internals). The linear
and hierarchical nature of the automaton is presented in [1].

B. Dominant Properties

The NW instances generated by the binding contain every
permutation of events in the alphabet within the NW template
for internal events, calls, and returns of events. There is thus a
total of 2P possible NW instances. However, these instances
contain both interesting and frequently occurring patterns, as
well as those that might have been present just a hand-full of
times in the trace. We thus use a ranking component to filter
the mined set to contain only the dominant instances.

The idea of mining parameters using NWA is novel and we
do not have a set of commonly occurring properties available.
We propose a set of NW templates which are of interest in
software engineering community for monitoring and analysis.
We express that a binding and its corresponding NW instance
are interesting if the NW instance holds on each trace, thus
100% valid. We use the concepts of support and confidence
from [19].

Definition 7 (Support Potential): The support of a NW
instance 7 on a trace t is the total number of time points
of trace ¢ which could end up in a error state or falsify .

Definition 8 (Support): The support of a NW instance 7 on
a trace t is the total number of time points of trace ¢ which
did not falsify 7, and end up in a accepting state.

Definition 9 (Confidence): The confidence of NW instance
m on a trace ¢ is the ratio of trace support to trace support
potential.

The ranking component we use is a combination of support
and confidence. The effectiveness of selecting a meaningful

subset of specifications depends on picking a good set of
thresholds. Since the total number of mined NW instances
is often very large in complex software systems, we would
ideally keep the confidence value at 100%.

We will examine different threshold values for both support
and confidence and will evaluate the best thresholds for reduc-
ing all feasible properties to just the dominant and interesting
properties.

IV. APPROACH
A. Workflow

Figure 2 provides a high level overview of the technique
we propose for mining nested properties from system traces.

NW Rank
Templates Criteria

Binding
BV oY

Trace 1
Trace 2

NW Instance /~
NWA
Finite State
Acceptor

Dominant

Ranker Properties/Specifications

-TraceN
Fig. 2: Property Mining Workflow

The binding function accepts a set of N traces and a NW
template. We use execution traces collected during system
execution time or source of an application. The event traces
are generated using instrumentation already present in the
system and may include network traffic logs, operating system
logs, program instrumentation logs, etc. The binding function
accepts a set of N logs, where N > 1. From these logs,
the function extracts an alphabet X of unique events, calls
and returns. The NW template is an abstraction of the desired
property, a nested relationship of interest for the system. The
NW template uses a set V' of all event variables (calls, returns,
and internal symbols), where the variables range from 0 to p.
The binding function binds the set V' to the alphabet of events
Y to generate a set of NW instances.

The NWA finite state acceptor evaluates the NW instances
on the same set of N traces. The >” NW instances are
encoded in the p dimensional incidence matrix that is used
by the NWA finite state acceptor to keep track of state, and
evaluation of results. As the NWA evaluates each NW event
on the trace, it updates the success and failure values in the
matrix. When the automaton is finished evaluating the NWs
on all the traces, it passes the results from the matrix to the
ranker. The ranker uses the results matrix generated by the
NWA acceptor to calculate the confidence and support values
for each NW instance. The ranking criteria is the threshold
values for confidence and support that are used to select only
the dominant NW instances.

Let us demonstrate the above workflow through an example.
Consider the NW template (({(a)".c+.()b)™)+, which is a
simplified template for the pattern with n calls followed by one
or more number of internal symbols and then n returns that
are well matched. The ‘.’ is the concatenation operator and the
“+” is the operator for one or more instances of the expression.
The template specifies that some call event a occurs n times

is followed by another log event ¢ for one or more times,
followed by return event b for n times, and this pattern occurs
at least once in the execution trace. The property contains
three event variables a - call and c¢ - internal symbol, and b -
return meaning that the value of p is 3. The binding function
will bind the events in ¥ to the template and generate an
adjacency matrix for the NW instances assuming each event
can be a calls, internal, or a return event.

The NWA iterates over the events in a trace and at each new
event, evaluates the relevant NW instances. Let us assume the
matrix contains an entry where a is bound to an event “send”,
¢ is bound to an internal “message”, and b is bound to an
event “receive”. The NWA reads an event “send” in the trace
at time 0. According to the property, if the next event in the
trace is “receive”, the FSM will enter an error state and will
increase the failure count for this NW instance to 1 in the
matrix. Similarly, if the next event is not “receive”, but an
internal message, the FSM moves to the next state. If the next
event is now “receive” then the automaton will enter a final
state and will increase the success count for the NW instance.

The number of total NW instances that need to be updated
is large and directly proportional to the dimensions of the
template, 3P. It is also a brute-force approach to evaluate
all possible instances where a large chunk of properties turn
out to be irrelevant. Most software systems have procedures/-
functions that are called, followed by their computations, and
then return with an answer. Under normal operation every
function call shall have a return associated with it and may
have numerous internal operations. This implies that frequency
of function calls and return shall be equal. Based on this
notion we develop a heuristic to pre-determine the set of calls,
returns, and internals for a given trace based on the frequency
and desired confidence. All events with equal frequency and
in within the desired confidence level define the alphabet for
calls (3.) and returns(2,), and the remaining events form the
alphabet of internals (X;).

The total number of events in the sets Y., >,, and 3;
are represented by n., n,, and n; respectively. If the atomic
propositions or placeholders in the NW template for calls,
returns, and internals are p., p,, and p; respectively then,
the total permutations that need to be updated is modified to
(3¢)Pe - (5;)Pi - (3,)Pr. This approach takes advantage of the
functional paradigm of software design and the architecture of
the NWs (with calls, internals, and returns) to mine properties
more efficiently with better space and time complexities as
shall be discussed later in Section V.

Once the entire trace has been processed, the ranker will
iterate over the matrix to calculate the confidence and support
values for each NW instance. The ranker will report only the
properties that meet the defined thresholds for these metrics.

B. NWA Mining Algorithm

An intuitive way to evaluate a NWA on a system execution
trace is to recursively evaluate the NWA according to its
semantics at every line of the trace. A high level description
of the steps taken by the proposed algorithm are as follows:

« Representing a Nested Word (NW) Parse the input
Nested Word template and transform it into a finite state
acceptor.

« Representing a trace Parse the input trace into a linear
array representation where each unique event has its
corresponding time and event id, [time, eventid].

o Checking NW instances over traces Iterate over the
trace and process each event by matching them to the
relevant NWA instances. Update the success and reset
for the relevant NW instances at each trace event.

Below, in Algorithm 1, is a detailed description of the above
steps in form of pseudo code for the case where all possible
permutations of NW instances are considered.

Algorithm 1: Nested Word Mining in Traces without
heuristic
Input:
A trace: TR
Unique events: X
A Nested Word: NW property pattern with p event variables
Output:
A set of statistically significant properties in the form of NWs
Method: ProcessTrace
Parse NW property pattern to identify number of calls, returns,
and internals;

Bind each elements of ¥ to p as a call, return, and internal to
generate all possible NW instances;
Create a FSA (Finite State Acceptor) — A for each instance ;

Initialize an incidence matrix of size P instances of NWs ;
Initialize the success and reset counters for each NW instance;
for (each event i in trace TR) do
for (each NW instance with event i) do
Update the state s, of FSA;
Increment successes if the final state s € Qy;
Increment resets if the final state s ¢ Qy;

end

end

for All the mined properties do
Evaluate Support - S ;
Evaluate Confidence - C ;

end

In Algorithm 1 and 2, 3 is the events alphabet and p is the
number of event variables in the NW template. A denotes the
Nested Word Automaton, s denotes the state of the automaton
and, S and C denote the support and confidence metrics of
the NW instances on the given trace.

As mentioned earlier that processing of all possible
NW instances is computationally expensive and hence, pre-
processing of the trace based on a heuristic allows for a
faster approach with less irrelevant instances being mined.
The heuristic component of the algorithm is presented in
Algorithm 2. We only show the modifications to Algorithm 1
as the rest remains the same. The heuristic incorporates the
following pre-processing elements as described next. We input
an additional confidence parameter § which is the threshold
for choosing the most dominant events with equal frequencies
as call/return pairs and the remaining events as internals.
The heuristic is applied before the processTrace method of
Algorithm 1.

Algorithm 2: Heuristic Pseduo-code

Desired Confidence: 6

Heuristic:

1: Calculate the frequency of each unique event;

2: 6 x C'R most frequent events (C'R is total events with equal
frequency) are marked as calls/returns;

3: Remaining events are marked internals;

4: Generate the resultant ., >;, and X,

5: Bind each elements of 3. — p. for calls, ¥, — p, for
returns, and 3; — p; for internals to generate all NW
instances;

C. Nested Word Patterns

The proposed technique relies on mining patterns that
include nesting structure. In order to make use of existing
temporal patterns illustrated by Dwyer et. al. [8], we extend
them by transforming them into NW Property Patterns. Let us
assume we have several call, return and internal events. The
NW property patterns are presented in Table I.

Nested Word
([(a]™-DY[");i n >0
([{a]™.c.Db["); n > 0
[{a]™.[0]™.[e]™.Dd]"); n,m > 0
{a]™. (™ Nd]™)+.DE]™): n,m > 0
({a]".c + .Db]");n >0

TABLE I: NW Property Patterns

Feature
Nested-Call-Response
Nested-Call-Process-Response
Nested-Chained-Call-Response
Dual-Nested-Call-Response
Nested-Call-Processes-Response

The nested patterns presented in Table I have derived their
nomenclature from [8]. The Nested refers to a call-return
structure in the template as that invokes a function (call) which
may or may not be followed by an internal Process. Finally, the
outcome of the function invocation is the Response or return.

V. DISCUSSION

We present the following important characteristics of the
proposed NW property mining technique: soundness, optimal-
ity (in terms of space and execution time), and scalability.

We argue that the technique we proposed and described in
this paper is sound. By sound we mean that a mined specifi-
cation reported by our algorithms actually satisfies the given
thresholds for confidence and support in the provided input
traces. This is the case because our algorithm continuously
keeps track of the success and reset rates for each NW instance
in the results matrix.

The proposed property mining technique requires memory
space for the multidimensional results matrix, the NWA, and
the trace contents. The storage requirements for the matrix are
directly influenced by p and . We want to encode the matrix
to hold the evaluation results of every NW instance generated
by binding the events from X to the p event variables in the
NW template.

By applying the heuristic algorithm, the exponent term is
segregated into three components (calls, returns, and internals)
thereby reducing the space requirements. The storage required
for the FSM is proportional to the number of its states [15].
If n is the depth of the nesting in the NW, then an equivalent
NWA uses at most O(n) space.

The comparison of space and time complexity of the two
algorithms is presented in Table II. The proofs and details of
the analysis have not been included due to space constraint.

Characteristic| Details

Our algorithm continuously keeps track of the
Soundness success and reset rates for each NW instance

in the results matrix.
Complete Our technique examines every NW instance

P that can be affected.
Run Time Re-
. (=-1))
quirement Worst Case: O(p P—1y - L)
Memory Re- | Without Heuristic: O(37), With Heuris-
quirement tic: O(XcPe - B - B,.P7)
Q - 2 <

Scalability Q(L) as L >3, L > p and XP is small for

interesting properties

TABLE II: Characterization of the Algorithms

The storage requirements for PDA based mining with the
trace is equivalent to the length of the trace, O(L). Our mining
approach examines one event from the trace at a time, without
needing to store any past or future events for context. It also
does not perform any changes on the contents of the trace.
Thus the trace is stored only once and never replicated.

The proposed technique is thus scalable with the growing
trace size L and with the growing event alphabet 3. This
is important since we have no control over the events and
traces obtained from real systems. The technique is sensitive
to growing values of p and the depth of the NW n. However,
as we already mentioned, in practice this will not be a concern
since properties remain relatively simple.

We examine the execution time of the main loop in Algo-
rithm 1 for NW templates and present the worst case analysis.

VI. EVALUATION

In this Section, we demonstrate the performance and scal-
ability of our approach using a set of real system traces,
source, and a set of synthetic traces. The implementation is a R
package where the functions are integrated with C++ functions
using ‘Repp’

We developed NW property pattern variants, such as shown
in Table I. By using these NW variants as NW templates,
we mined NW instances from real-world system traces: QNX
tracelogger traces. We used different thresholds for support
and confidence to uncover interesting NW instances. Further,
to demonstrate the performance and scalability of our ap-
proach, we synthesized traces for different configurations w.r.t.
the length of traces, number of variables, nesting depth in a
NW template, and the number of distinct events in traces. For
the experiments, we used a machine with single 8-core Intel
i7-3820 CPU at 3.60 GHz and 32 Gb of RAM.

A. Inferencing HTML Filters

A central concern for a secure web application is an
untrusted user inputs. These lead to cross-site scripting (XSS)
attacks. The result of which for example could be an untrusted
input displayed on the browser. The objective of HTML filters
is to block potentially malicious user HTML code from being
executed on the server. For example, a security sensitive
application might want to discard all documents containing
script nodes which might contain malicious JavaScript code
(this is commonly done in HTML sanitization). Since HTMLS5

allows to define custom tags, the set of possible node names
cannot be known a priori. In this particular setting, an HTML
schema would not be able to characterize such an HTML
filter. Therefore, using a set of HTML code, we can mine
the properties depicted by the well-formed HTML document.
Such as balanced tags (with any level of nesting), presence
script node etc. These properties can be used as HTML filters
to ensure secure web-applications. One can mine properties
from numerous secure web-applications to design a custom
HTML filter.

For the purpose of evaluation, we chose a web service that
is quite often assumed to be secure and is also prone to code
injection attacks-www.twitter.com [26]. Of interest from this
page is the evaluation of nested HTML tags with the following
templates 1) ([(a]™.[)b]™)+ and 2) ([(a]™.c + .[)b]"™)+. The
source file from the twitter news feed contained 8000 events,
with 75 distinct events is used.

All HTML tags are balanced and it allows us to use our
mining technique to generate filters to prevent XSS attacks.
Using a sample source from www.twitter.com and the NW
template ([(a]™.[)b]™)+ the algorithm generates a set of nested
properties for the HTML source provided. This pattern allows
us to model various situations in the HTML source with
no script tag in between. Since most of the code is
generated dynamically, these patterns should remain the same.
For example, in a HTML source from twitter the tag
and which provides a way to add a hook to a part
of a text or a part of a document is nested with depth two at
one instance and depth one at another instance. This property
can act as filter for monitoring the HTML source. Violation
of this property raises a flag for a possibility of incorrect
code or a XSS attack. The algorithm mines this property
with a confidence of 100%. This is just an illustration, but
HTML source code can contain multiple levels of hierarchy
and mining such nested structures with regular languages is not
possible. This illustrates the necessity of a mining algorithm
using NWs to obtain similar properties of varying nesting
depths from traces for post-mortem analysis and developing
monitors for secure web applications.

B. Evaluation using Synthesized Traces

Real system traces are suitable for testing the feasibility
and usefulness of our proposed technique. However, in real
systems, there is little control over the number of distinct
events in the trace and the length of the trace.

We synthesized a set of traces by varying the following
three parameters: the distinct number of events (the size of
the events alphabet X), the total number of events (length L
of the traces), and the number of variables in the NW template
p. We used the NW property pattern ([(a]™.c+.[)b]")+. Below,
we tabulate each setup of our mining algorithm along with the
associated behaviour as shown in Table III.

We compare the performances of Algorithm 1 and Algo-
rithm 2 where the speed up in computation time and space
requirements for both cases is in terms of the number of
automatons that need to be updated at each iteration. We

Execution Time of Mining Algorithm (in seconds)

No. of Trace Events vs Execution Time without heuristic

800

g
8

400

200

767.91

0 25000

50000
No. of Events in Execution Trace

75000

100000

Fig. 3: Varying Total Number of Events without heuristic
Constant Parameters . . .
Setup (Value) Varying Parameter | Behaviour w.r.t Time
1 3 (20), p (3) L Linear
2 L (10000), p (3) x Exponential
3 3 (10), L (10000) p Exponential

TABLE III: Setup and Results
present the comparison between Algorithm 1 and Algorithm 2
for the three setups mentioned in Table IV for the NW template
([{a]™.c+.[)b]™)+. The trend for both algorithms follows the
same pattern as stated in Table III. We compare the timing
between the two algorithms at different parameters keeping
all other conditions the same.

Conditions Time Time
w/o Heuristic | w/ Heuristic
L=100, 000; p,>-fixed 767.91sec 9.84sec
»=40; p, L-fixed 338.61sec 20.69sec
p=3; L,>-fixed 1.77sec 0.14sec

TABLE IV: Comparison between Algorithm 1 and 2

VII. CONCLUSIONS

This paper presented a novel algorithm for mining of NWs
in software systems. We present a detailed complexity analysis
of the algorithm. We presented two sets of experiments to
demonstrate that the algorithm is scalable, robust, and sound.
First, we presented experimental results on synthetically gen-
erated traces to analyze the scalability of the algorithms with
varying total number of unique events, number of variables
in the NW template, and varying total number of events in
the system trace. Secondly, we validate our framework on
industrial strength web applications and mobile framework.

The experimental results confirm that the asymptotic analy-
sis of our algorithm’s complexity. We believe that our frame-
work is generally applicable in case of structured systems
(e.g. html/xml documents, computer programs, client-server
protocols, etc.) and is especially useful for constructing more
advanced analysis tools that require specification mining. In

the future, we propose to improve the framework to perform
better with the addition of timing constraints to the template.
This addition will be useful in real-time safety critical systems,
service oriented architectures, etc.

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

R. Alur and P. Madhusudan. Adding nesting structure to
words. J. ACM, 56(3):16:1-16:43, May 2009.

I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krish-
namurthy. Inferring models of concurrent systems from
logs of their behavior with csight. In Proceedings of the
36th International Conference on Software Engineering,
ICSE 2014, pages 468—479, New York, NY, USA, 2014.
ACM.

M. Bonato, G. Di Guglielmo, M. Fujita, F. Fummi, and
G. Pravadelli. Dynamic Property Mining for Embedded
Software. In Proceedings of the Eighth IEEE/ACM/IFIP
International Conference on Hardware/Software Code-
sign and System Synthesis, pages 187-196. ACM, 2012.
M. Christodorescu, S. Jha, and C. Kruegel. Mining
specifications of malicious behavior. In Proceedings of
the Ist India software engineering conference, pages 5—
14. ACM, 2008.

G. Cutulenco, Y. Joshi, A. Narayan, and S. Fischmeister.
Mining timed regular expressions from system traces.
In Proceedings of the 5th International Workshop on
Software Mining, SoftwareMining 2016, pages 3-10,
New York, NY, USA, 2016. ACM.

V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and
A. Zeller. Generating test cases for specification mining.
In Proceedings of the 19th international symposium on
Software testing and analysis, pages 85-96. ACM, 2010.
E. W. Dijkstra. Letters to the editor: Go to statement
considered harmful. Commun. ACM, 11(3):147-148,
Mar. 1968.

M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns
in Property Specifications for Finite-State Verification. In
Software Engineering, 1999. Proceedings of the 1999 In-
ternational Conference on, pages 411-420. IEEE, 1999.
A. Francillon and C. Castelluccia. Code injection attacks
on harvard-architecture devices. In Proceedings of the
15th ACM Conference on Computer and Communica-
tions Security, CCS 08, pages 15-26, New York, NY,
USA, 2008. ACM.

M. Gabel and Z. Su. Online inference and enforce-
ment of temporal properties. In Proceedings of the
32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pages 15-24. ACM, 2010.

G. Giantamidis and S. Tripakis. Learning Moore
Machines from Input-Output Traces, pages 291-309.
Springer International Publishing, Cham, 2016.

E. M. Gold. Complexity of automaton identification
from given data. Information and control, 37(3):302—
320, 1978.

S. Gupta and B. B. Gupta. Cross-site scripting (xss)
attacks and defense mechanisms: classification and state-

[18]

of-the-art. International Journal of System Assurance
Engineering and Management, 8(1):512-530, 2017.

M. Heizmann, J. Hoenicke, and A. Podelski. Nested
interpolants. SIGPLAN Not., 45(1):471-482, Jan. 2010.
J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduc-
tion to Automata Theory, Languages, and Computation.
Z. Kincaid and A. Podelski. Automated Program Verifi-
cation. In Language and Automata Theory and Applica-
tions: 9th International Conference, LATA 2015, Nice,
France, March 2-6, 2015, Proceedings, volume 8977,
page 25. Springer, 2015.

I. Krka, Y. Brun, and N. Medvidovic. Automatic mining
of specifications from invocation traces and method in-
variants. In Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE 2014, pages 178—189, New York, NY,
USA, 2014. ACM.

T. D. B. Le and D. Lo. Beyond support and confi-
dence: Exploring interestingness measures for rule-based
specification mining. In 2015 IEEE 22nd International
Conference on Software Analysis, Evolution, and Reengi-
neering (SANER), pages 331-340, March 2015.

C. Lemieux, D. Park, and I. Beschastnikh. General
LTL Specification Mining. In Automated Software En-
gineering (ASE), 2015 30th IEEE/ACM International
Conference on, pages 81-92. IEEE, 2015.

D. Lo and S. c. Khoo. Quark: Empirical assessment
of automaton-based specification miners. In 2006 13th
Working Conference on Reverse Engineering, pages 51—
60, Oct 2006.

D. Lo, S.-C. Khoo, and C. Liu. Mining past-time tem-
poral rules from execution traces. In Proceedings of the
2008 International Workshop on Dynamic Analysis: Held
in Conjunction with the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA
2008), WODA °08, pages 50-56, New York, NY, USA,
2008. ACM.

D. Lorenzoli, L. Mariani, and M. Pezze. Automatic
generation of software behavioral models. In Proceed-
ings of the 30th international conference on Software
engineering, pages 501-510. ACM, 2008.

L. Mariani, M. Pezze, and M. Santoro. Gk-tail+ an
efficient approach to learn software models. IEEE Trans-
actions on Software Engineering, PP(99):1-1, 2017.

M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini,
and T. Ratchford. Automated api property inference

techniques. [EEE Trans. Softw. Eng., 39(5):613-637,
May 2013.
G. Rosu, F. Chen, and T. Ball. Runtime verification.

chapter Synthesizing Monitors for Safety Properties: This
Time with Calls and Returns, pages 51-68. Springer-
Verlag, Berlin, Heidelberg, 2008.

Y. Zhang, X. Wang, Q. Luo, and Q. Liu. Cross-site
scripting attacks in social network apis. In Workshop
on WEB 2.0 Security and Privacy (W2SP), 2013.

	Introduction
	Related Work
	Background
	Nested Words
	Dominant Properties

	Approach
	Workflow
	NWA Mining Algorithm
	Nested Word Patterns

	Discussion
	Evaluation
	Inferencing HTML Filters
	Evaluation using Synthesized Traces

	Conclusions

