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ABSTRACT
In this work we propose mTags, an efficient mechanism that
augments microkernel interprocess messages with lightweight
metadata to enable the development of new, system-wide
functionality without requiring modification of the applica-
tion source code. As such it is well suited for systems with a
large legacy code base or third-party applications like phone
and tablet applications.

We explored mTags in a variety of different contexts in local
and distributed system scenarios. For example, we detail use
cases in areas including messaging-induced deadlocks and
mode propagation. To demonstrate that mTags is techni-
cally feasible and practical, we implemented it in a com-
mercial microkernel and executed multiple sets of standard
benchmarks on two different computing architectures. The
results clearly demonstrate that mTags has only negligible
overhead and strong potential for many applications.

1. INTRODUCTION
Software integration poses a challenge for system develop-
ers. Closed-source software makes integration and the de-
velopment of system-wide functionality difficult. Access to
all source code can simplify this effort, but retrofitting a
system-wide feature into a large code base will still be very
time consuming.

In the absence of source code, software integration and system-
wide functionality can still be retrofitted from the operating
system side. For example, tracing, profiling and deadlock
detection are all dynamic functionalities that require run-
time access to a program’s execution flow, but are orthog-
onal to program functionality. Implementing them without
changing their target program’s source code has the benefit
of making them instantly reusable with other programs.

One way to provide dynamic access to a program’s execution
flow is to attach information with programs and propagate
this information as the program communicates with other
system components. Other programs or the operating sys-
tem can then act upon this metadata to integrate the appli-
cations and implement the required functionality. Tracing,
for example, could be performed by attaching a marker to a
program and logging its trajectory as that program commu-
nicates with other system components. This has been done
with great overhead on the system by past work [25].

In this work we propose mTags, an efficient mechanism for
attaching lightweight metadata with threads and propagat-
ing it along with messages in a microkernel OS. mTags en-
ables the development of new, system-wide functionality
without requiring modification of application source code.
The well-defined messaging interface present in microkernels
allows precise tracking of information exchanges between
threads, and serves as a foundation for mTags’ metadata
propagation mechanism.

To evaluate the concept, we implemented a full prototype
of mTags on a commercial microkernel and tested several
use cases ranging from simple tracing to deadlock detection
to mode change propagations. We show that mTags can be
used to detect message-passing–related deadlocks between
threads and to implement new system-wide features through
mode changes in the presence of closed-source applications.
By using microkernels as a base, mTags support transparent
distribution. Our evaluation shows that mTags has only
negligible overhead on system performance, while enabling
the implementation of functionality with a fraction of the
effort necessary otherwise.

The remainder of the paper follows this structure: Section 2
introduces the system model and terms for mTags. Sec-
tion 3 defines measures that can be used to limit tag prop-
agation. Section 4 outlines our implementation using the
QNX Neutrino microkernel system. Section 5 motivates why
our approach is useful by listing different use cases. Sec-
tion 6 describes our experimental method to evaluate the
system. Section 7 discusses the results of the measurements
and evaluation. Section 8 goes over some of the related
work. Section 9 discusses lessons learnt and specific corner
cases. Section 10 describes our future work plans for mTags.
Finally, Section 11 sums up and closes the work.

2. SYSTEM MODEL & TERMINOLOGY
Our approach assumes a microkernel architecture for the op-
erating system similar to QNX [14], Chorus [30], Mach [1],
Singularity [15] and L4 [23]. The microkernel strictly divides
essential and optional services. A service can range from sys-
tem services such as virtual memory, file servers, and device
drivers, to user services like applications, web servers, and
database server. The microkernel itself implements services
such as a messaging layer, low-level hardware access while
other services, for example drivers and managers execute
in user-space. System threads implement microkernel ser-



vices whereas user threads represent all the services in user
space. Services communicate via message passing which the
microkernel provides. A message has a sender, a receiver,
and a payload. The sender creates the message, the micro-
kernel delivers the message to the receiver, and the receiver
processes the message and the payload. The system con-
tains two types of messages: requests and replies. Request
messages initiate communication between two services. Re-
ply messages answer request messages. Modern microker-
nels implement transparent distributed messaging and fur-
ther message types such as pulses and signals for special
purposes. Pulses and signals implement asynchronous mes-
sages.

Our approach assumes multiprogramming and multithread-
ing. The system hosts multiple processes which represent
resource ownership and implement services. Each process
contains multiple threads which are the unit of schedulable
processing. Furthermore, in networks of systems that run
compatible microkernels, messages can transparently pass
through the network from one node to another node.

The key abstraction for our work is the notion of a tag. A
tag is an abstract entity like a label, that users or programs
can attach to threads. We extend the concept of microker-
nel messages to include the propagation of tags. A tagged
message is a message sent from a sender to a receiver with
a payload and a tag. The payload is part of any messaging
framework, the tag is our extension. The receiving thread
will acquire the tags the sender had at the time of transmit-
ting the message, while keeping the tags it had previous to
this message pass. Note that we only tag request messages.
A reply message will not contain or propagate any tags. We
found this propagation mechanic to be intuitive and suffi-
cient for a large variety of use cases. All future messages
transmitted by the receiver will carry its current tags unless
the developer deliberately chooses to change this behaviour.
For example, the developer can manually add or remove tags
to a thread or choose to explicitly send a plain message.

In addition to the request messages, the tagging mechanism
also propagates tags through other IPC mechanisms such as
pulses, signals and shared memory.

Tags can be created at any time throughout a system’s life-
time. Tags that are known at start time may be assigned
by the developer in the boot image for an embedded appli-
cation or at the start time of a process. The main thread
of the child process inherits the tag of the calling thread of
the parent process in the case of a fork() call. Tags can be
dynamically created and deleted, so testers can use a sys-
tem call to set and remove them from processes and threads
while they are running. By using the mTags API, programs
can also create and set tags themselves.

mTags is a general, abstract metadata propagation mech-
anism. In the following, we explain some of the possible
mechanics and semantics mTags can enable through the ex-
ample use case of identifying a message flow in the micro-
kernel. First, we present an abstract notion of how tags are
propagated, and second, we present a more concrete use case
that makes use of mTags in a real scenario.

ta

te

tdtc

tb

Figure 1: Abstract example of tag propagation

Example 1. Tag Propagation: Assume a system with
threads ta to te as shown in Figure 1. A circle represents
a thread, and a line between two threads indicates message
passing with the arrow specifying the direction of the mes-
sage flows. Shaded circles represent the threads with tag τ1.
Initially, thread ta creates the tag τ1.

As soon as ta sends a message to another thread, it will pass
τ1. After receiving a message from ta, the receiving thread’s
tag field will also contain τ1 in addition to its previous tags.
The further propagation of τ1 only occurs by interaction of
threads through message passing. For example in the figure
above τ1 will propagate to tb as a result of a message pass
from ta to tb. Since tb never initiates any communication,
it will not pass τ1 to another thread, even when it receives
messages from te. tc, on the other hand, passes the tag
forward to td with its messages.

Example 2. Tracing Distributed File Writes: Assume a
network with two nodes: a filesystem server and a worksta-
tion. Remember that since we are discussing microkernels,
distributed messaging is transparent to applications, and ev-
ery non-essential service is modelled as its own process con-
taining its own threads, including the filesystems. By tagging
the application threads, we are able to track all interaction
between them and the filesystem on the server.

Application Filesystem

Node BNode A

ta tc

tb

Figure 2: Tracing file writes with tags

Assume, as shown in Figure 2, that the application process
is composed of two threads, ta and tb. Tagging each of those
threads with its own individual tag (τa and τb, represented
by the different striped patterns) will cause those tags to be
passed to the filesystem thread tc whenever one of them com-
municates with it. For example, tag τa or tag τb will prop-
agate to the receiver thread as soon as the thread ta or the
thread tb sends a message to another thread, respectively. In



this example, only thread ta communicates with the filesys-
tem thread tc and therefore only τa is propagated to it. Fig-
ure 2 indicates the propagation by shading filesystem thread
tc with the striped pattern of τa. If both ta and tb were to
communicate with tc, tc would receive both tags, τa and τb,
keeping both simultaneously.

By listing the thread identifiers which contain tags τa and τb
we can identify which threads access files. It is important to
note that, through mTags, this can be done at run time and
without modifying any application or filesystem source code.

3. LIMITING TAG PROPAGATION
During our implementation and testing of mTags, it became
clear that sometimes limiting tag propagation would be of
interest to the developer. Oftentimes tagging a single com-
ponent would result in the eventual tagging of most sys-
tem threads which would then tag the remaining userspace
threads. To resolve this, we provide three concepts to con-
trol the dissemination of tags: time-to-live, tag terminators
and the special treatment of system threads. The time-to-
live concept is similar to network packets in IPv4 [16]. A tag
has a time-to-live and each time the tag gets propagated, its
time-to-live decreases. Once the time-to-live value reaches
zero, the tag will no longer propagate to other threads.
While the time-to-live provides a dynamic containment for
tags, terminators create static boundaries. Tag terminators
on threads filter out tags which will no longer propagate to
and past the current thread. Developers need to set tag
terminators explicitly. Finally, non-system tags can be con-
figured to not spread to system threads and vice-versa.

tb

tc is a system-level thread

td is a terminator for τ1

tf
ttl = 1

tg
ttl = 0

th

tc

td te

ta
ttl = 2

Figure 3: Abstract example of tag termination

To exemplify these mechanics, assume a system with user
threads ta to th as shown in Figure 3. tc is a system-level
thread. Thread ta has the tag τ1 as its tag with the time-
to-live of ttl = 2. According to the propagation limiting
mechanics, the following occurs:

• System-level threads do not receive user tags. tc, the
only system-level thread in the example, will reject τ1
from ta, because τ1 is a tag but not a system-level tag.

• Terminators contain the propagation of tags. td is a
terminator for τ1, therefore td will reject τ1 as it re-
ceives a message from ta. Since td rejects the tag, it
will not pass the tag to other threads such as te.

• The TTL dynamically bounds tag propagation. The
TTL value for τ1 at ta is two. As soon as ta passes τ1
to tf , the TTL value of τ1 at tf will be decremented
to one. As shown in the figure, tf further sends a
message to tg, hence propagating τ1 to tg with the
decreased TTL value of zero. The zero TTL value
restricts tg from further propagating τ1, therefore th
will not receive τ1 with the message from tg.

While it has not come up in our current use-cases of mTags,
it may be of interest to the developer to limit the lifetime of
a tag by real time, as opposed to a number of propagations
or by thread terminator boundaries. We believe that such
a feature would have a straightforward implementation, by
having a tagging module (described further in Section 4)
associate a timer to a tag upon its creation, and handling
the timer event by deleting that tag.

4. IMPLEMENTATION
To be able to evaluate the mTags concept presented in Sec-
tion 2, we implemented the tag passing mechanism on a
modified version of QNX Neutrino, one of the leading com-
mercial real-time operating systems. QNX Neutrino follows
a microkernel design and therefore already implements mes-
sage passing through kernel primitives such as MsgSend(), Ms-

gReceive(), MsgReply(). Because of this, most elements from
the system model presented in Section 2 directly translate
into our implementation.

We implemented tags by adding a bit vector to the thread
control block. Each bit encodes a different tag. Using this
design, if the tag vector is configured to be 32 bits wide, the
developers can assign 32 different tags to a single thread.
The vector size is a tunable variable in our implementation.

In addition to the tag bit vector, the thread control block
also contains a terminator mask for tags. The terminator
mask of a thread controls the further propagation of the tag
from the thread. The thread checks the terminator mask
against the tag bit vector by logical AND operation. If the
respective bit for a particular tag is set in the terminator
mask of a thread than the thread will not propagate the
tag.

We use Neutrino’s message passing routines to propagate
the tag from the source thread to the receiver thread. The
source thread will copy its tag vector to the message imme-
diately in the MsgSend() routine, and, since QNX Neutrino
message passing is synchronous, become send-blocked. The
actual transfer of the active tag does not occur until a receiv-
ing thread receives the message by executing MsgReceive()

routine.

Passing a tag consists of a bitwise OR and updating the tag
vector of the receiver. The overhead added to the message
pass system call is of a few instructions: the OR operation
(between the source’s and the receiver’s tag vector) and the
assignment operation (of the resulting tag vector on the re-
ceiver).

In case of shared memory, the kernel associates the tags of
the creating thread with the shared memory object. The



kernel will pass on the associated tags to threads that use
that memory region when they map it to their address space.

The TTL is an upper bound on how many steps from its
originator thread a tag may be propagated. The tag struc-
ture contains the TTL as a decrementing counter. After the
TTL for a tag is set, each further transfer of that tag decre-
ments the TTL value by one. The transmission of that tag
stops as soon as the TTL value reaches zero. A thread can
deactivate the transfer of a tag by setting its TTL value to
zero.

A global tag list contains all the tags in the system. The
number of entries in the global tag list depends on the max-
imum number of tags supported by the system. Each entry
in the tag list contains the name of the tag, the bit identifier,
and a circular buffer for a thread list, which we will discuss
later. The name of the tag is a user-assigned string. The bit
identifier points to the particular bit in the tag vector that
represents this tag. The global tag list resides in the kernel
space; this is justified since it is the kernel who handles all
tag propagation, the tag list needs to be safeguarded from
user space tampering, and tags may outlive their creating
processes. This does mean that user level applications will
need to retrieve tag list information through a system call.

For every tag, we also maintain a thread list. This list con-
tains all threads that have received the tag since its cre-
ation. Each entry in a thread list holds the thread iden-
tifier, the process identifier, and a timestamp. Whenever
a thread receives a particular tag, it will add itself to that
tag’s thread list. To limit the overhead incurred on the sys-
tem, the thread list is a circular buffer with a configurable
size. In case of list overflow, the system starts overwriting
the old entries in the list.

Our implementation of the mTags mechanism allows the
user to log and timestamp the flow of tags through different
threads in the system. We call this mechanism the lifeline of
the tag [11]. The lifeline mechanism is built on the top of a
tag’s thread list. The presence of a thread in a tag’s thread
list, in addition to the associated timestamps, indicate the
reception of that tag by that thread at that particular time.
The user can access this information through a system call.
Our current implementation registers the local wall time at
the time of propagation, but for the distributed case a logical
clock, vector clock, or matrix clock [7] would be required.

The user can configure the tagging module to enable or dis-
able the lifeline capability. The lifeline mechanism intro-
duces extra overhead such as the memory for the thread list
and execution time for managing the list. The benchmarks
presented in Section 7 show that this overhead is negligible.

The user can use a system call to remove tags from the
system. The call not only removes the tag from the system
but it also scans the tag thread list of the removed tag to
clear the particular bit (pointing to the removed tag) from
the tag vector of all the threads in the list. Furthermore,
a thread can also remove a particular tag from its own tag
vector.

The user can use a system call to remove tags from the

system. The tag removal system call scans the tag thread
list of the removed tag to clear the particular bit (pointing
to the removed tag) from the tag vector of all the threads in
the list. Furthermore, a thread can also remove a particular
tag from its own tag vector.

To use mTags, the developer has two options: a) using com-
mand line tools, which allow the use of tags without the
modification of any source code or b) include the mTags
library in the application, which allows him to use a tagging-
specific API from within the application. Choosing a method
depends on factors such as access to and familiarity with the
target source code, and the granularity with which tag cre-
ation and passing needs to be performed.

The mTags library implements functions such as SetTags-

Field(char *tag), which sets the tag of the calling thread,
GetTagsField(), which returns the tag vector for the calling
thread and LookupTag(char *tag) to do name lookups for tags.
Other functions allow the creation and destruction of tags,
and the listing of threads with a particular tag. These func-
tions are also available via the command line tools.

All these functions use Neutrino’s ThreadCtl() kernel call. It
allows the user to access Neutrino-specific thread settings.
The commands for each of the functions above are defined
and passed to ThreadCtl() as its parameter. ThreadCtl() re-
solves the command and calls the kernel-level functions to
manipulate tags at the kernel level.

To implement distributed tags, we modified Neutrino’s QNET
library, which is used by Neutrino’s network stack (the io-pkt

process). The kernel is responsible for forwarding outgoing
distributed messages to this library, which then performs
all marshalling and network transmission operations. By
adding a tag vector to the header of all network messages,
we were able to pass tags through the network exactly as
we do locally. In the receiving node, the kernel reads the
incoming tag vector from that header and applies it to the
virtual thread that represents the remote sender thread in
the local node. That virtual thread then propagates its tags
exactly as a regular thread would.

Distribution brings with it two problems: 1) dealing with the
limited number of possible tags and 2) maintaining global
tag coherence. An active tag manager component can solve
both these problems, at the expense of performance; tag cre-
ation and deletion would be synchronized across machines,
and the size of tag vectors would be made variable to ac-
commodate the tag creation needs of several applications.
Another solution to this is to allocate a range within the tag
vector to have globally static names and semantics, and use
the rest of the vector for dynamically allocatable, exclusively
local tags. For the sake of simplicity and speed, our current
implementation only supports the latter solution. The ex-
pected network overhead added by mTags is minimal, as one
tag vector per message (not packets, which may be more nu-
merous) is added to transmissions. This is confirmed by the
experiments shown in Section 7.

5. USE CASES
mTags is a versatile mechanism. The developer can use it
in different contexts for different use cases. The following



outlines some of use cases that we have successfully tested
with our prototype implementation. They should convey
the value mTags adds to a system through its applicability
and adaptability.

5.1 Use Case 1: Profiling/Debugging
To aid the system designer in understanding the interaction
between system components, mTags enables comprehensive
tracing of those interactions. If a thread creates a tag, it will
be passed on with each message it sends and, eventually, all
components in the system that it interacts with (directly
or indirectly) will also have received that tag. Additionally,
lifeline implementation offers additional information for pro-
filing. The lifeline for a particular tag shows the complete
flow of the tag through different threads in the system, help-
ing the developer to identify how much time is spent in each
component, the number of involved threads, order of exe-
cution, and the termination of the flow (either expected or
unexpected).

Example 3. Profiling a Media Decoder: To evaluate the
effectiveness of tagging as a profiling tool, we performed the
following experiment: we applied tags to a media decoder
(madplay [34]) to identify the frequency in which it would
read and write its input and output. In our particular ex-
periment, the input file (a large MP3 file) was stored on a
disk local to the machine, and the output (the PCM WAV file
that results from decoding the MP3) was stored in a CIFS
share over the network. While the decoding was in progress,
a tag was applied to madplay; this tag was then propagated
to both devb-eide, Neutrino’s IDE disk driver, whenever it
read its input. The same tag was propagated to fs-cifs, Neu-
trino’s implementation of the CIFS filesystem and io-pkt-v4-
hc, Neutrino’s network stack, when it wrote to the network
share. This tagging of io-pkt-v4-hc happened indirectly, via
fs-cifs, which helps the user understand the hierarchy of the
system.

devb−eide

t=82553815

t=83553662

t=84553509

t=91552438

t=92552285

t=93552132

t=94551979

time (ns)

madplay

fs−cifs

io−pkt

io−usb

Figure 4: Profiling a Media Decoder

Figure 4 shows a plot of these tagging events over time. It
contains the lifeline data for the tag, which was extracted via
the command line utilities. On it the user can see the peri-
odicity of communication between madplay and the different
resource managers. Madplay sends a request to the fs-cifs
resource manager approximately every millisecond. There is

a delay after three of these 1ms periodic cycles where mad-
play reads the file from the disk to fill the input buffer. This
shows how tagging can be useful to profile disk and network
access in this particular case, but the same usage can be ap-
plied in a variety of other interactions.

One unforeseen interaction that tagging brought to light was
between io-pkt and io-usb, which happened as a consequence
of every time madplay wrote to the network share. It is
still unclear why this happened, but it might be because of
the path managing system Neutrino uses. There could be
cases where the developer might like to suppress this last
tagging event; he may use one of the propagation limiting
mechanisms described in Section 3 in those cases.

5.2 Use Case 2: Multi-mode Applications
Applications often have multiple modes of operation, which
are activated depending on their input. In the case of em-
bedded systems, this is strongly related to the state of the
physical environment the device is operating in. A modern
GSM cellphone, for example, is capable of switching from
EDGE to 3G and back depending on service availability.
Applications that are aware of mode changes can take ad-
vantage of this information. For instance, a media streamer
might switch to a lower bitrate on EDGE and a higher one
in 3G.

Since mode changes allow important run time optimization
in the embedded and real-time system domain, several re-
lated publications can be found. Alonso and de la Puente [2]
propose an implementation of mode changes through a man-
ager, which serves as a central “mode server”. Li et al. [21]
present an algorithm for selecting power modes that ac-
counts for component interdependencies. Especially in sched-
uling [29], mode changes and their implementation are well
researched topics.

While mode change mechanisms can be implemented in user
space, any mode change mechanism needs to provide an
infrastructure to coordinate and propagate mode changes
throughout the system. Our approach using tags inherently
provides this mechanism and therefore eliminates the need
for a separate infrastructure. Revisiting the media stream-
ing example, if the developer uses two separate tags for
EDGE and for a 3G connection, then the media streamer
will only need to check the tag to choose the right bitrate.
It will receive the tag from the network stack as it will prop-
agate the appropriate tag depending on the current active
connection.

Additionally, using mTags to implement mode changes has
the benefit that mode tags can propagate even through legacy
systems, closed source, and non-modal software.

1#include < l i b t a g . h>

3 // in main() funct ion :
int result ;

5

char ∗ tag_hipow_name = " HIPOW " ;
7 result = CreateTagsField ( tag_hipow_name ) ;

result = SetTagsField ( tag_hipow_name ) ;

Listing 1: Code for tag creation



1#include < l i b t a g . h>

3 // during i n i t :
int tag_hipow_number = 0 ;

5 char ∗ tag_hipow_name = " HIPOW " ;
tag_hipow_number = LookupTag (

tag_hipow_name ) ;
7

// be fore each send :
9 int curr_tag = 0 ;

curr_tag = GetTagsField ( ) ;
11 tag_hipow_number = LookupTag (

tag_hipow_name ) ;

13 i f ( curr_tag && tag_hipow_number ) {
do_hipow_send ( ) ;

15 DeleteTag ( tag_hipow_name ) ;
} else

17 do_regular_send ( ) ;

Listing 2: Code for tag reception

Example 4. Multi-mode applications: To verify the ef-
fectiveness of using mTags to propagate mode changes, we
modified one of Neutrino’s wireless network drivers to expect
a tag signifying a high power mode change. To perform the
creation and propagation of power mode tags, we modified
Neutrino’s version of the ping utility. By adding the code
shown in Listing 1 to its main() function, all messages origi-
nating from ping will carry the high power tag. The objective
of this is guaranteeing that, whenever a power tag aware net-
work stack is present, ping’s packets will be transmitted at
the highest power possible.

Before actually sending each packet, the driver reads the tags
associated with its thread, in the expectation that whatever
component communicates with it might have sent the high
power tag. This was accomplished by adding the code shown
in Listing 2 to the original source code. After sending high
power packets, the driver deletes the high power tag to clear
it from its own tag vector (and those of any intermediate
network stack threads) so that following packets are not in-
correctly sent as high power.

This complete scenario—including the intermediate compo-
nents that sit between ping and the network driver—is illus-
trated in Figure 5, where the striped pattern represents power
tag awareness.

Network
Stack

Ping Network
Driver

Figure 5: Power mode propagation with tags

Implementing this mechanism through mTags is advanta-
geous in two main ways. First, the modified ping utility can
be used with the original network stack with no problem
whatsoever. The tags will still be propagated, but since the
receiving code will not be there, they will just be ignored.
Second, any components that are present between ping and
the stack did not need to be modified, and, in fact, their
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Figure 6: Deadlock detection and prevention with
mTags

source did not even need to be available to us. Tags are
propagated through them transparently. To further illus-
trate this second point, Table 1 shows the number of lines
of code needed to implement this through a) mTags, b) the
modification of the interfaces from ping all the way down
to the driver (more on this in Section 9) and c) the cre-
ation of a side channel, meaning messages are sent directly
from ping to the network driver using Neutrino’s interpro-
cess communication facilities [33]. It also shows the number
of components affected by the changes; in the case of the
hierarchical interface column, the number varies by network
stack but the number of components will be at least four:
ping, libsocket, io-pkt and the particular network driver in
use.

It is worth noting that, if the system designer decided to
break the component hierarchy and create a side channel
through which ping sent mode-changing messages directly
to the network driver, he would be able to do so. However,
this would not yield functionality equivalent to the one at-
tained through our approach. This is because if, in the fu-
ture, a power tag aware intermediate component was to be
developed, neither our version of ping nor our network driver
would need modification, since mode tags would already flow
through all intermediate components. The new component
would already receive the tag in all messages originating in
ping.

mTags Interfaces Side channel
Lines of code 17 40+ 17
Components 2 4+ 2
Full featured Yes Yes No

Table 1: Evaluation of the different approaches for
implementing the mode change

Under certain circumstances, we can retrofit an existing ap-
plication with modes even without changing a single line of
code. For example, if the modes of operation of the system
are exclusively related to how threads are scheduled, then
we will be able to use tags to attach scheduling-related in-
formation to threads. The OS scheduler can then use the
tags in its short and long-term scheduling decisions.

5.3 Use Case 3: Detecting Message-Passing–
induced Deadlocks



Most microkernel implement synchronous semantics for mes-
sage passing, and this can cause deadlocks. While a process
is waiting for a reply, it is in the reply-blocked state and can-
not receive further incoming messages before its outgoing
message has been replied. If a process in the reply-blocked
stated receives a message as a consequence of its own outgo-
ing message, then this will introduce a circular wait and the
involved processes deadlock. For example, Figure 6(a) shows
a circular wait with three threads. Thread ta sends a mes-
sage to tb, which in turn sends a message to tc, which finally
sends a message to the originating thread ta. This causes a
circular wait and thus ta, tb and tc will deadlock. Any such
circular wait, regardless of the number of involved threads
or the communication pattern, will result in a deadlock.

mTags provides a lightweight method to discover message-
passing-induced circular waits at negligible cost (see Section
7), even in a distributed setting when using synchronous
calls. Figure 6(b) illustrates the principle. The thread ta ini-
tiates the call chain. The initiator creates a globally unique
tag, in our case just DEADLOCK, and applies the tag to it-
self. This tag will identify all threads that are currently
participating in a message flow. As ta communicates with
tb, tb will also acquire the tag DEADLOCK. Upon receiving
the message, the kernel checks for the presence of the tag in
the recipient. If the recipient current has that tag, the kernel
will abort the message pass and return an error; otherwise
the kernel will complete the message delivery. Figure 6(b)
shows this behaviour as tc tries to send a message to ta.
Upon delivery of an error-free reply message at the end of the
interaction, the sending thread will clear its tag. Whereas,
in case of a detected deadlock during message delivery, the
kernel can list each participating thread’s ID, the order in
which they communicated if all interaction happened on the
local machine only, and can start a recovery mechanism at
the originating thread (in our case ta).

Our method works transparently for messaging local or re-
mote threads. Our extension of the network stack permits
propagating tags through the network with QNET. For the
example show in Figure 6(a), this means that if tb would run
on a different machine that ta and tc, mTags will detect the
deadlock caused by the circular wait.

Note that this mechanism does not replace a full deadlock
detection mechanism like [22, 10] or a distributed deadlock
detection mechanism like [6, 20]. However, the method
works well to detect deadlocks caused by message passing
and the reply-blocked state while causing only negligible over-
head in the system (see Section 7).

6. EXPERIMENTAL METHOD
Since the propagation of tags involves adding instructions
to every message pass, it is imperative that the incurred
overhead is minimal. To measure the overhead, we con-
ducted three sets of benchmarks. The first set consists of
OS benchmark programs that measure the performance of
the Neutrino kernel and its closest components including the
C Library, the process manager and the path manager. The
second benchmark is an application-level benchmark based
on the MiBench suite [13], which serves to illustrate the
effects that tagging has on the performance of real world
applications. MiBench has been widely used in academia to

evaluate the performance of processors and other software
systems [4, 17, 31, 32]. The third is a series of executions
of the IOZone [26] benchmark to measure the overhead that
propagating tags over the network adds to QNET.

The OS benchmark consists of 19 individual tests, each fo-
cused on stressing a particular part of the system. These
tests might, for example, stress the creation of semaphores,
writing to the null device or the passing of messages. Most
of these test cases perform system calls which result in mes-
sages passed between the program and the service imple-
mentation. Thus, our extension affects the execution time
of these system calls.

The MiBench suite is a collection of open-source benchmarks
that was designed to mimic the set proposed by the EDN
Embedded Microprocessor Benchmark Consortium [28] with
open-source tools. Its “Consumer” category consists of five
open-source applications: JPEG, MAD, LAME, TIFF and
Lout, of which we used the first four for our experiments.
We selected the consumer category, because it contains the
most elaborate of the benchmarks found in MiBench, and it
involves the most message passing between system compo-
nents which is largely due to its file system operations.

To measure the overhead caused by mTags, we executed all
benchmarks with and without tagging enabled in the kernel,
and also with the extension for lifelines. In every test shown
here, the tag vector width is set to 32-bits, the word size for
the architectures used. We ran the MiBench benchmark on
QNX Neutrino 6.4.2, running on a 1.8GHz Pentium 4 with
1GB of RAM. We executed the OS benchmarks on Neutrino
6.4.1 running on an Atmel AT91SAM9263-EK board, which
contains a 200MHz ARM926EJ-S processor and 64MB of
RAM. This should give us more deterministic results due
to simpler cache and pipeline structures. In the case of
the ARM platform, all code (benchmark and kernel) was
compiled without GCC optimizations to eliminate compiler
interference on the results; indeed, compiler optimizations
made the tagged benchmarks execute faster than their un-
tagged counterparts. The unoptimized numbers shown here
are, therefore, the worst case overhead we observed. We ran
the MiBench benchmark without lifeline support to avoid
modification of its original source code, and also because
the internal benchmarks conducted prior to them showed
no evidence of significant slowdown.

To measure the execution time of each run of the OS bench-
marks, we used the ClockCycles() libc function, which in the
case of the ARM board, returns the value of an emulated
clock with a 3.125MHz resolution. These emulated values
allow performance comparisons despite being of a lower res-
olution than the actual CPU clock. For the MiBench bench-
mark, we used the clock gettime() libc function, which al-
lows measurements as precise as the system’s free running
counter. After each run of each benchmark, we recorded the
execution time in a file for further processing. We analyzed
the data using R 2.10.1.

To evaluate the overhead that distributed tagging incurs
on QNET communication, we executed the IOZone bench-
mark between two Pentium 4 machines, one mounting a re-
mote directory exported by the other through QNET. IO-



Zone is a filesystem benchmark with focus on file I/O op-
erations. These operations include simple reads, random
reads, strides, record rewrites, file rewrites, etc. Every file
operation performed by IOZone in that setup lead to the
propagation of tags between the two participating nodes,
stressing message passing over the network. We collected
statistics on a 10MB file with record sizes ranging from 4
to 8192 bytes resulting in more than 2.6 million individual
measurements.

For MiBench benchmark, we collected 1000 measurements.
For the OS benchmark, we collected between 250 (mmap)
and 1750 (calls) values. We take 95% of the data to remove
outliers due to excessive pipeline stalls, locking, cache and
page misses.

7. RESULTS

MiBench. All programs have an execution time distribu-
tion that differs from the normal distribution. We estab-
lished this using the Shapiro-Wilk test for normality and
visual inspection. Figure 7 shows histograms of the execu-
tion time for the MiBench lame program on the Pentium
platform. The x-axis show the execution time in seconds
and the y-axis show the frequency of a particular execution
time occurring in the sample. The distribution of execution
times can be justified by several timing properties such as
instruction scheduling anomalies [35]. Figure 8 shows the
individual results for the MiBench tiff2rgba program on the
Pentium platform. The x-axis shows the grouped results for
the baseline and for tagging. The y-axis shows the execution
time in seconds. Using visual inspection, both figures con-
firm the results of the Shapiro-Wilk test for normality. We
therefore rely on robust statistics using for example the me-
dian and rank-based testing mechanism in the subsequent
analysis.

Table 2 shows all results for the MiBench benchmark on the
Pentium platform. None of the execution times significantly
differ for any of the benchmark programs. The first column
indicates the name of the benchmark program. The second
column indicates whether the our basic tagging mechanics
are enabled. The third column shows the median of the exe-
cution time. And finally, the last column shows the median
absolute deviation for the runs. We used the Kruskal-Wallis
rank sum test to check for significant slowdown when using
tagging. The analysis showed no significant slowdown for
any of the benchmark programs. The program tiffmedian
has the largest difference in the median, however, it is still
insignificant with a p = 0.0458 given a Bonferroni correction
of seven tests on the data. Even if were significant, it would
only be a negligible slowdown of a factor of 1.005 (0.5%).

System Calls. The distribution of the execution time for
system calls also differs from a normal distribution. Simi-
larly to the MiBench, we confirmed this using a statistical
test and visual inspection. Figure 9 and Figure 10 also con-
firm this. We again use robust statistics instead of average
and mean errors.

Table 3 shows all results of our comparison with the unmod-
ified kernel on the ARM platform. All raw speed measure-

Name Tag Median MAD

1 jpeg N 0.163 0.003
2 Y 0.165 0.001
3 lame N 2.365 0.007
4 Y 2.368 0.009
5 mad N 0.642 0.004
6 Y 0.645 0.006
7 tiff2bw N 0.658 0.012
8 Y 0.656 0.013
9 tiff2rgba N 0.913 0.048

10 Y 0.910 0.044
11 tiffdither N 0.630 0.001
12 Y 0.630 0.001
13 tiffmedian N 0.923 0.013
14 Y 0.918 0.015

Table 2: Performance summary for MiBench
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Figure 7: Density plot of the execution time of the
MiBench lame program.

ments are in CPU clock cycles. The first column lists the
name of the system call tested in this row. The second col-
umn shows the median of the execution times for the base-
line (i.e., the unmodified kernel). The third column shows
the median absolute deviation of the baseline. The next two
pairs of columns provide the same data for the modified ver-
sion of the kernel with tagging and with lifelines. The last
two columns show the ratio between the baseline and the
tagging and the lifeline extension.

Although some results show a statistically significant dif-
ference, the overall differences are negligible and just a few
clock cycles. The function most affected by tagging is ms-

gpass and the results show no increase in the median. The
reason is that (1) the best case, our extension adds eleven
instructions and (2) in the worst case, our extension adds
58 instructions. Given the regular interference from the
computer architecture resulting from pipeline stalls, cache
misses, page alignments, and out-of-order execution, it is
expected that the measurements show nearly identical val-
ues.



Name Baseline Tagging Lifeline Ratio
Median MAD Median MAD Median MAD Tagging Lifeline

1 calls 2106 2972.613 2103 2969.648 2128 3005.230 0.999 1.010
2 channel 90 2.965 89 2.965 86 2.965 0.989 0.956
3 devnull 1072 65.234 1073 60.787 1080 250.559 1.001 1.007
4 devnullr 839 38.548 850 59.304 833 26.687 1.013 0.993
5 kill 80 2.965 80 2.965 76 1.483 1.000 0.950
6 malloc 109 2.965 108 2.965 106 2.965 0.991 0.972
7 msgpass 213 5.930 213 7.413 213 5.930 1.000 1.000
8 mutex 35 1.483 34 1.483 35 1.483 0.971 1.000
9 mutex alloc 159 1.483 158 1.483 155 1.483 0.994 0.975

10 process 39934 169.016 39927 180.877 39991 140.847 1.000 1.001
11 sbrk 4123 54.856 4119 54.856 4124 35.582 0.999 1.000
12 signal 34829 1123.811 34953 1323.962 34735 853.978 1.004 0.997
13 syscall 729 382.511 736 357.307 736 367.685 1.010 1.010
14 thread 5841 40.030 5832 42.995 5867 34.100 0.998 1.004
15 timer 111 2.965 112 4.448 113 4.448 1.009 1.018
16 yield 534 10.378 537 8.896 540 8.896 1.006 1.011

Table 3: Slowdown for system calls in emulated clock ticks.
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Figure 8: Individual results for MiBench tiff2rgba
program.

Distributed Overhead. Since the addition of tags to QNET
represents an extra 32-bits per message on the network, we
expected the overhead to be very low. The results shown in
Table 4 confirm this. The column titled ‘Mean’ shows the
ratio between the results of IOZone over QNET with mTags
enabled and mTags disabled. The column titled ‘SEM‘ de-
scribes the standard error of the mean, and the column ti-
tled ‘CI’ shows the 95% confidence interval. Each row is the
summary of a single record length and subsumes the results
on the individual micro-benchmarks of IOZone like random
read and block rewrite.

The table clearly shows that mTags, even in the distributed
version with our modification of QNET at least for message
sizes between 4 and 8192 bytes causes no significant over-
head.

8. RELATED WORK
The use cases explored in Section 5 demonstrate the versa-
tility of mTags; tags are more than a simple message logging
or a profiling mechanism. Tag creation, deletion and propa-
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Figure 9: Histogram for the calls benchmark pro-
gram.

gation is completely dynamic and distributed. Furthermore,
applications can act upon the presence of a tag at runtime,
not only in after-the-fact trace analysis. It is, therefore, dif-
ficult to compare tagging with related approaches since we
feel not many similar works are as versatile; we will, then,
make a series comparisons by use case, highlighting why tag-
ging generally has a versatility edge.

Asbestos [8] presents the idea of attaching labels to processes
for controlling and tracking information flow. In Asbestos,
each process contains two labels: a clearance label and a
tracking label. The tracking label contains the level of all
the information the process has seen whereas the clearance
label represents the information level the process is allowed
to see. A process can send a message to another process, if
the tracking label of the sender process is less than or equal
to the clearance label of the receiver process. If the receiver
is cleared, its tracking label will be updated to represent the
different level of information the process has viewed. In our
proposed mechanism the propagation of tags could be used
for similar means, by having the kernel stop messages that
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Figure 10: Individual results of the OS benchmark
on the msgpass program.

Reclen Mean SEM CI
4 0.992 0.004 0.008
8 1.001 0.009 0.018

16 1.003 0.008 0.015
32 0.997 0.000 0.001
64 0.980 0.018 0.036

128 0.999 0.000 0.001
256 0.999 0.000 0.000
512 0.990 0.021 0.041

1024 1.027 0.026 0.052
2048 1.018 0.036 0.071
4096 1.030 0.052 0.103
8192 0.979 0.042 0.082

Overall 1.001 0.018 0.035

Table 4: IOZone overhead summary results

broke the clearance relationship. Also, our approach can
easily be used to implement the tracking of information flow
with minimum overhead.

The concept of badges in sel4 [27] allows threads to provide
multiple interfaces to incoming messages through the same
endpoint. Badges propagates with the messages to let the
recipient identify the source of incoming messages. mTags
can be used on a much wider range of applications.

strace [12] is a tool used for profiling system calls made by
a process in Linux. It logs all the system calls made by a
process and the signals it receives. strace is useful for trac-
ing the activities beyond the user space boundary into the
kernel as both levels communicate through signals and sys-
tem calls. Tracing of system calls is supported by mTags
through the logging of interaction between user and system
threads. Our implementation of mTags was done in the ker-
nel, allowing it to trace different kinds of activities initiated
by a process either from the user space or the kernel space.
Furthermore, tagging is not limited to system calls, as it also
profiles the interaction between threads at different system
layers. Furthermore, applications can dynamically act upon
the presence or absence of tags, a feature that is absent from
systems that focus exclusively on tracing.

The Data Tomography [25] system proposes tracking data
flow across multiple layers of abstraction by tagging the data
in the system. The data tomography technique consists of
inserting tags at the application, the network and the in-
struction level. It creates a tag map for each byte in the
physical memory. The tag map of every byte stored in phys-
ical memory either the instruction or the data, points to
some format of the tag. The format can vary from a sim-
ple collection of numbers to any other complex format. In
contrast, our approach is to attach tags to threads rather
than the physical memory in the system. Our mechanism
incurs less overhead than the data tomography by avoiding
the approach of tagging all the physical memory. Overhead
reduction makes our tagging mechanism deployable in a pro-
duction system rather than using it just for instrumenting
purposes.

TaintDroid [9] is an extension to the Android [3] operating
system that uses message-based taint tracking to detect the
leak of sensitive information in mobile devices. While Taint-
Droid’s approach is similar to ours (attaching metadata to
IPC messages), mTags is a more general mechanic aimed at
enabling a wide range of use-cases. Furthermore, because it
is based on a real microkernel, mTags is capable of tracking
interactions between system services and user applications;
the same functionality would require modifications to the
underlying native services in the case of Android. On the
other, TaintDroid’s is capable of tracking taints at the vari-
able level while mTags only tracks them at the thread level.

Different kinds of related work in the past addressed the
issue of dynamically tracing and debugging operating sys-
tems. This includes for example the Linux Trace tool [36],
dynamic probes [24], kernel probes [19] and DTrace [5]. All
of them provide mechanisms for inserting probes, sensors,
and monitors into the system, with the objective of cap-
turing data or the system state for tracing purposes. The
tagging mechanism gives the user the provision of tracing
the system at the granularity of the threads. The user can
utilize the tagging without the deep understanding of the
system and access to the source code. DTrace’s D scripts
are powerful, and may conceivably be used to achieve func-
tionality similar to mTags, but they offer no direct support
for distributed systems.

9. DISCUSSION

Types of Use-Cases. As our investigation of tagging pro-
gressed, and as different use cases were implemented, we
were able to identify different “levels” of mTags integration
in programs. Depending on the use case, the developer’s use
of mTags can range from what we call “application-agnostic”
to“deeply integrated”. We classify these levels of integration
as follows, ranging from least to most integrated:

1. Application Agnostic: when the system designer uses
tags without modifying any source code, and is looking
to identify system-wide interactions with a low level of
detail. An example of this would be tagging a thread
to identify the message chains that go out from it, such
as the example given in Figure 2;

2. Source Code Agnostic: when the system designer tar-



gets specific interactions, but still does so without mod-
ifying source code. The use case in Section 5.3 is an
example of this;

3. Integrated: when tagging is used from within the source
code of an application, but can be removed or turned
off without breaking either the system or the appli-
cation. The use case in Section 5.2 is an example of
this;

4. Deeply Integrated: when mTags is integral to the func-
tionality of the system, and its removal or disabling
would require the reimplementation of at least part of
the application.

Part of our future work is exploring more use cases at these
different levels of integration, and what new interactions are
enabled by different propagation mechanics and by tagging
more elements of the operating system.

Tags vs. Raw Message Logging. Logging of message
passing in microkernels is either standard functionality (as is
the case on Neutrino) or easily implementable. The mTags
mechanism differs from the simple logging of every message
pass in three fundamental ways. First, it allows tags to be
created in a way that they affect only a subset of all mes-
sages, effectively filtering and differentiating the particular
message flow the developer is interested in. For example,
two different tags can be created in either outcome of an
if branch, and therefore differentiate between two types of
messages that would look identical to a raw logger.

Second, tags can be very easily read and acted upon by ap-
plications at run time, which is not the case with an “eagle-
eye” view such as the one provided by the Neutrino message
logger. Without tagging, a thread can only know the sender
of the messages it receives, while mTags enables it to con-
struct a longer history of the message flow that lead to it
and receive tag information from several hops away.

Finally, one can contain the propagation of tags—as dis-
cussed earlier in this section—without affecting the func-
tionality of the system. The same cannot be said if one tries
to limit message passing in any way.

Ease of Implementation. Our implementation of mTags
on the Neutrino operating system is entirely modular and
consists of relatively few lines of code. Its non-invasiveness
and size are very valuable features, since they limit the like-
liness of inserting new bugs into the kernel, and facilitate re-
certification of the mTags-compatible kernel if such a need
arises. We feel these characteristics would carry to other
microkernels as well.

Applicability to Non-Microkernel Systems. Message tag-
ging as a concept is not necessarily tied to microkernel op-
erating systems. Equivalent functionality could conceivably
be implemented in monolithic systems through a couple of
ways. One would be adding tag passing to every method
call during the compilation process: the preprocessor can

perform code insertion before each call, or tags could be han-
dled by modified calling conventions in the compiler itself.
Another way would be through aspect-oriented program-
ming [18], where tagging itself would be an aspect. However,
both of these approaches require access to the source code
that is meant to use tagging.

Kernel Space vs User Space. We believe that mTags is
best transparently implemented in the operating system.
This is why we intercept the message passing functional-
ity of the QNX Neutrino kernel to propagate tags across
address space boundaries (or even network nodes). Normal
POSIX applications that are ignorant of tags will normally
receive and propagate tags.

To expand on the data presented in Section 5.2, we include
here Listing 3. If a simple program that reads data from
the network and writes it to disk is to implement tagging in
user space, then it will have to be programmed as follows:

int main ( ) {
2 initialize_tags ( ) ;

4 send_tag ( filesystem ) ;
file = open ( " filename " ) ;

6

send_tag ( network ) ;
8 socket = create ( ) ;

10 send_tag ( network ) ;
listen ( socket ) ;

12

send_tag ( network ) ;
14 accept ( socket ) ;

16 send_tag ( network ) ;
while ( ! socket . empty ( ) ) {

18 send_tag ( network ) ;
read ( socket ) ;

20

send_tag ( filesystem ) ;
22 write ( file ) ;

24 send_tag ( network ) ;
}

26

send_tag ( network ) ;
28 close ( socket ) ;

30 send_tag ( filesystem ) ;
close ( file ) ;

32 }

Listing 3: Tagging in user space

This implementation assumes the following: (1) the net-
working stack sends tag information to the application be-
fore each of its messages, (2) the filesystem supports tag-
ging passes along tags, and (3) the semantics of the tag vec-
tor are uniform across across all system components. This
implementation of mTags requires the modification of the
source code of all participating components. This way of
implementing tagging also requires careful tracking of every
message pass to avoid bugs that may arise from omission.
Performing all tagging in the kernel as we propose solves
both these problems and is free of assumptions.



The implementation of tagging inside the kernel also allows
us to enforce access control on tags, as it may be useful
depending on the use case.

Security Model. The tagging mechanism provides differ-
ent options to modify the behaviour of the tag propagation.
The user can modify the tag features either through the com-
mand line options or APIs provided by tagging library. The
API calls restricts unauthenticated modification by permit-
ting only the respective threads to change the thread level
features, such as tag terminator. The security model for the
other features, such as TTL can be implemented by only al-
lowing the tag owner to modify such features. In addition to
these restrictions, we can restrict the command line access
based on the current user privileges in the system.

10. FUTURE WORK
mTags has proved to be a promising and versatile mech-
anism, therefore our current plans are to continue to ex-
plore extensions to the current mechanism. We have three
main lines of research we will investigate in the future: tag-
ging more components, extending propagation mechanics
and evaluating implementation on monolithic architectures.

Tagging files, devices, shared memory and possibly other op-
erating system elements, should make mTags more expres-
sive, and allow a whole new class of additional use cases.

Propagation mechanics have been deliberately kept simple,
for performance and usability reasons; however, some use
cases would benefit from different mechanics, such as “prop-
agate on reply” in addition to or in place of propagate-on-
send. We also plan to investigate the passing of data fields
along with tags, to add to the expressiveness of tags. The
main obstacle in this case would be the added overhead of
copying data with every message pass.

Finally, the use of microkernels enable very straightforward
tagging of messages, but we believe that through a mix of
static analysis and dynamic tracking one could achieve simi-
lar if not equivalent functionality on monolithic kernels. The
issues would be defining the edges between taggable entities
and how to track all interaction between them without in-
curring excessive overhead.

11. CONCLUSION
In this paper we introduced the mTags, a mechanism to
augment the messages of microkernel-based operating sys-
tems. We showed that mTags approach is useful in a num-
ber of contexts and situations ranging from simple tracing
to multi-mode applications even in the presence of closed-
source programs.

We presented the basic tag propagation mechanics and mea-
sured their impact on the system using MiBench, a system
benchmark and IOZone for the distributed case. The mea-
surements show that mTags has negligible impact on the
system performance which demonstrates its adoptability for
commercial applications.
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