
46

Mining Timed Regular Specifications from System Traces

APURVA NARAYAN, GRETA CUTULENCO, YOGI JOSHI,

and SEBASTIAN FISCHMEISTER, University of Waterloo

Temporal properties define the order of occurrence and timing constraints on event occurrence. Such specifi-
cations are important for safety-critical real-time systems. We propose a framework for automatically mining
temporal properties that are in the form of timed regular expressions (TREs) from system traces. Using an
abstract structure of the property, the framework constructs a finite state machine to serve as an acceptor. We
analytically derive speedup for the fragment and confirm the speedup using empirical validation with syn-
thetic traces. The framework is evaluated on industrial-strength safety-critical real-time applications using
traces with more than 1 million entries.

CCS Concepts: • Software and its engineering → Software maintenance tools; Dynamic analysis; Formal

software verification;

Additional Key Words and Phrases: Timed regular expressions, timed automata, specification mining, real-
time systems

ACM Reference format:

Apurva Narayan, Greta Cutulenco, Yogi Joshi, and Sebastian Fischmeister. 2018. Mining Timed Regular Spec-
ifications from System Traces. ACM Trans. Embed. Comput. Syst. 17, 2, Article 46 (January 2018), 21 pages.
https://doi.org/10.1145/3147660

1 INTRODUCTION

Temporal behavior of programs is an extensively studied topic (Lamport 1978; Dwyer et al.
1999). Recently, the idea of mining likely temporal properties of programs from system traces
has become popular (Lemieux et al. 2015). Critical and commonly occurring behavioral patterns
are typically provided to the mining frameworks, which then mine system specifications of that
form. The mining techniques identify a set of specifications that are satisfied by traces w.r.t.
certain criteria. Many programs lack formal temporal specifications, and mined specifications
are therefore valuable since they can be used for a wide variety of activities in the software
development life cycle (SDLC). These activities include software testing (Dallmeier et al. 2010),
automated program verification (Kincaid and Podelski 2015), anomaly detection (Christodorescu
et al. 2008), debugging (Gabel and Su 2010), and so forth. Further, mined specifications can assist
automated verification techniques because they provide an easy and user-friendly way to describe
a program’s specifications. As argued by Ammons et al. (2002), automated verification techniques
are unlikely to be widely adopted unless cheaper and easier ways of formulating specifications are
developed. Consequently, specification mining has gained significant attention in recent times.

Authors’ addresses: A. Narayan, G. Cutulenco, Y. Joshi, and S. Fischmeister, Department of Electrical and Computer En-
gineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1 Canada; emails: {a22naray, gcutulen,
y2joshi, sfischme}@uwaterloo.ca.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 ACM 1539-9087/2018/01-ART46 $15.00
https://doi.org/10.1145/3147660

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

https://doi.org/10.1145/3147660
mailto:permissions@acm.org
https://doi.org/10.1145/3147660

46:2 A. Narayan et al.

Different techniques have been developed for mining specifications from templates expressed
using regular expressions, LTL (Bonato et al. 2012), and other custom formats.

There have been both static and dynamic approaches proposed for property mining. Static
property mining (mining properties by exploring design models or implementations) is found to
be effective and accurate but faces challenges in scaling with the program size (Alur et al. 2005;
Ernst 2003). On the other hand, dynamic property mining (infer properties from design execution
traces) approaches guarantee scalability but lack in the quality of mined properties that depend
on various factors such as the observed executions and the test suite used for stimulating the
design (Dallmeier et al. 2012).

There are two main subsets of dynamic property mining approaches: invariant miners (Ernst
et al. 2001, 2007; Boshernitsan et al. 2006; Hangal and Lam 2002; Hangal et al. 2005) and temporal
property miners (Ammons et al. 2002; Lorenzoli et al. 2008; Engler et al. 2001; Yang et al. 2006;
Yang and Evans 2004a).

Of all the available tools, Daikon (Ernst et al. 2007) has proven to be most successful in inferring
the most probable invariants. It has been used widely for debugging, testing, documentation, and
maintainability (Ernst et al. 2007). It allows one to specify variables and program points to be
monitored. In this case, program points are generally all the functions contained in the program.
The variables under monitoring will be checked at every entry and exit of a program point. The
trace files generated by the programs are processed by an inference system that is monitoring
continuously for invariants under consideration (Perkins and Ernst 2004).

There are numerous other tools available for mining invariants. Their usage is restricted to
specific applications. There have been extensions to Daikon (Ernst et al. 2007) for developing
specific packages such as Agitator (Boshernitsan et al. 2006). The other common packages are
DIDUCE (Hangal and Lam 2002) and IODINE (Hangal et al. 2005). DIDUCE is used for identifying
root causes in Java programs, whereas IODINE is used for inferring invariants from hardware
design descriptions. Various other tools can be found (Hastings and Joyce 1992; Savage et al. 1997)
that use dynamic assertion mining and are limited in bug detection.

A vast majority of tools for mining of temporal properties infer properties in the form of state
machines. These tools learn a single complex state machine instantly and extract simpler properties
from it. In Ammons et al. (2002), they learn a state machine that captures both temporal properties
and data dependencies. These find utility in identifying errors and refining specifications. These
also find use in automatic verification tools to find bugs in the program execution. In Lorenzoli
et al. (2008), a model is inferred representing among various components of the software. The
tool generates Extended Finite State Machines from the traces of component interactions. They
solve the dual purpose of modeling both data and control aspects that are useful for analysis and
system verification. They generate the Extended Finite State Machines by combining classical al-
gorithms for generating finite state machines and Daikon. These approaches suffer from one main
drawback. Mining of a single state machine from system traces is an NP-hard problem (Gold 1978).

In another work (Dwyer et al. 1999), the authors defined a set of temporal property patterns
based on case studies of hundreds of real property specifications. The main idea behind the exercise
was to help designers unfamiliar with formal specifications and static verification approaches.

Another work based on the intuition that frequently occurring behavior that matches temporal
patterns are likely to be true is the foundation of Peracotta (Yang and Evans 2004a, 2004b; Yang
et al. 2006). The main motive behind their approach was to achieve scalability to large system
traces, in mining binary specifications, in the form of automata, and postprocessing them using
inference rules to form complex state machines.

Another interesting attempt (Li et al. 2010) has been to make temporal pattern mining suitable
to digital circuits by changing the used timing reference to adjust to the hardware environment.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

Mining Timed Regular Specifications from System Traces 46:3

The basic algorithm is the same as Yang and Evans (2004b), but it tries to mine all the satisfied
patterns from the trace file, while in Yang and Evans (2004b), they mine only the strictest pattern
satisfied by the state machine.

Most of the existing research in the context of mining temporal specifications focuses on the
qualitative notion of time; that is, the specifications describe an ordering of events. For example,
an LTL specification �(request → ♦response) specifies that a request event should always
be eventually followed by a response event. Most state-of-the-art techniques do not take into
account the quantitative notion of time; that is, the actual duration of time between events is
not considered. For safety-critical real-time systems, it is important to develop techniques that
allow mining of specifications that account for the quantitative notion of time, for example,
specifications for interrupt handlers, which for real-time systems must complete their executions
within a set of predefined deadlines. The time constraints are of importance in such a case since
a delayed response to an emitted event may lead to a fault in the system.

With the motivation to address the problem of mining specifications with an explicit notion of
time, we propose a technique to mine instances of timed regular expression (TRE) templates satis-
fied by a given system’s traces. TREs (Asarin et al. 2002) extend regular expressions by providing
additional operators to specify timing constraints between events. By using a set of common
patterns of specifications for LTL and regular expressions, we develop the corresponding patterns
for TREs. Further, we use the method proposed by Asarin et al. (2002) to synthesize a timed au-
tomaton for a given TRE. The timed automaton is then used as a checker to verify whether traces
satisfy the corresponding TRE. This article is a full version of our previous work (Cutulenco et al.
2016) and includes detailed theoretical proofs and real-world examples to illustrate the technique.

We provide two algorithms for mining instances of TREs from their templates and also
detailed worst-case complexity analysis of the two algorithms. Both algorithms require a TRE
template and system traces as input. The algorithms then use the distinct events from the traces
to replace the event variables in the TRE templates with actual events. The resultant permutations
of the template are TRE instances. Intuitively, traces are processed against the TRE instances
with the help of the timed automaton. Further, we use confidence and support as metrics (Lemieux
et al. 2015) to evaluate the degree to which a TRE instance is satisfied by the traces. The algorithms
report only the instances that satisfy the given threshold values of confidence and support.

The first algorithm is designed for TRE templates without a negation operator. The second
algorithm processes TRE templates with a negation operator. We later prove that although both
algorithms’ execution times are exponential in terms of the number of variables in individual
TRE templates, the first algorithm generally runs faster than the second by a certain factor, which
depends on the number of distinct events in a trace and the number of variables in a given TRE
template. We also prove that our technique is sound; that is, a mined specification reported by
our algorithms actually satisfies the given thresholds of support and confidence on the provided
input traces. Also, our technique is complete; that is, our algorithms report all TRE instances that
comply on given traces w.r.t. the thresholds of support and confidence.

We evaluate our technique on real-world datasets that consist of traces produced by the QNX
Neutrino Real-Time Operating System (Krten 1999) during various runs of application software
on different hardware platforms. We also evaluate the algorithms on the controller area network
(CAN) (Davis et al. 2007) traces collected from an automobile during different driving phases. We
report the performance of our algorithms on the real-life traces in terms of the execution time. We
also demonstrate the scalability and efficiency of our approach by running the implementations
on synthesized traces of different sizes with different values of parameters, such as the number
of distinct events, the total number of events in the traces, and the complexity of the TRE
templates.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

46:4 A. Narayan et al.

The key contributions of this article include:

—An efficient technique for extracting temporal properties with time constraints in the form
of TREs from system traces.

—Two novel algorithms to mine instances of TREs from given system traces. To our knowl-
edge, this is the first technique for mining specifications with an explicit notion of timing
constraints.

—Computational approaches that optimize the extraction of the specified properties for frag-
ments of TREs.

—An analytic bound on the speedup of the optimization with an empirical validation corrob-
orating the correctness.

—Detailed proofs for the space and time complexity of the algorithms.
—A feasibility and viability study using traces collected from operating safety-critical real-

time systems showing the applicability and scalability of the approach.

2 BACKGROUND

2.1 Timed Regular Expressions

Regular expressions offer a declarative way to express the patterns for any system property or
specification. Every language defined by a regular expression is also defined by a finite automa-
ton (Hopcroft et al. 2006). There is a way to convert any regular expression into a nondeterministic
automaton, and further to convert from a nondeterministic to a deterministic automaton. We can
thus generate a classical Deterministic Finite Automaton (DFA) for any property expressed as a
regular expression.

Generally, the quantitative value of time, i.e. the “real time”, interval between two events in
a sequence of events, is not considered in classical automata theory. Classical automata theory
is able to describe the qualitative time, i.e. the ordering of events in a sequence of events. The
qualitative notion of time has been found useful for analysis of numerous systems. But, for many
other real-time and safety critical systems, more detailed models are required that include accurate
timing information. For instance, a formal specification of the form “event a is followed by event
b” is modified to a more quantified and precise specification with real-values of time associated
with it as “event a is followed by event b within t time units”. Our work focuses on real-time safety-
critical systems, therefore, we need to develop techniques for mining specification that include
the relevant timing information. We use the formalism of TREs for our purpose as it allows for
defining explicit timing constraints in the model. Formal nomenclature is stated below.

Definition 1 (Trace and Event). The alphabet of events is a finite alphabet of strings. A timed
sequence of events is the trace.

The sequences of events in the trace are ordered by timestamps. The alphabet of events is de-
fined by the system generating the traces. The events have associated meaning pertaining to the
functionality of the system.

Definition 2 (Timed Regular Expression (Asarin et al. 2002)). Timed regular expressions over an
alphabet Σ (also referred to as Σ expressions) are defined using the following families of rules:

—a for every letter a ∈ Σ and the special symbol ϵ are expressions.
—If φ, φ1, and φ2 are Σ-expressions and I is an integer-bound interval, then 〈φ〉I , φ1.φ2, φ1 |φ2,
φ∗, and φ̂ are Σ-expressions.

The novel features are very well explained in (Asarin et al. 2002) as described next. Here the
difference with respect to untimed regular expressions are the meaning of the atom α , which

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

Mining Timed Regular Specifications from System Traces 46:5

represents an arbitrary passage of time, followed by an event α and the 〈ϕ〉I operator, which re-
stricts the metric length of the time-event sequences in [ϕ] to be in the interval I . Here represents
the concatenation operator, ˆ is the negation operator, | is the disjunction or OR operator, and ∗

denotes the Kleene-∗. It is important to note that we use TREs, as defined above (Asarin et al. 2002),
to provide specification templates.

Definition 3 (Event Variables). An event variable is an atomic proposition in a TRE that can take
any event value from the trace alphabet Σ.

Definition 4 (TRE Templates). A TRE template is a TRE in which all of the atomic propositions
are either event variables, events, or time intervals.

A TRE template is a template for the specifications that we want to mine. We use the term
event variable to denote a place holder for an event. For example, the TRE template < 0.1 > [x ,y]
represents “0 is always followed by 1 within the time interval [x,y],” where 0 and 1 are event variables
and where x ≤ y are fixed doubles used in the time interval. We use p to denote the number of
event variables present in a TRE template. In the given example, p is 2. Any expression within <
and > has to be followed by a time interval that is specified within [and]. The values x and y are
separated by ,(comma) the definitions below have been taken and/or modified from (Lemieux et
al. 2015).

Definition 5 (TRE Instance). Let Π be a TRE template. Then, π is a TRE instance of Π if π has a
TRE similar to Π in structure where all the atomic propositions are events.

Definition 6 (Binding (Lemieux et al. 2015)). Let Σ be an alphabet of events and let V be a finite
set of event variables. Then, a binding is a function b : V → Σ.

A TRE instance corresponds to a TRE template and has an identical TRE structure. Applying
a binding to the event variables in a TRE template creates a TRE instance corresponding to that
binding. The bindinд is thus a map used to replace event variables with events from the given
alphabet. We mine all occurrences of TRE instances generated by the binding function on the
alphabet of the input trace.

2.2 Timed Automata

The incentive to use timed automata is their ability to model time dependent behavior and moni-
tor their reachability (Larsen et al. 1997). Timed automata are furnished with clocks, which makes
them optimal for modeling and verification of real-time systems’ behavior (Alur and Dill 1994).
Other models such as finite automata, Petri-nets, and others are in appropriate given their inabil-
ity to express explicit timing constraints. Another attractive feature of timed automaton is their
reachability property where checking reachability in a timed automaton reduces to checking the
reachability of a finite automaton.

Definition 7 (Timed Automata (Asarin et al. 2002)). A timed automaton A is a tuple
〈Q,C,Δ, Σ, s, F 〉,whereQ is a finite set of states,C is a finite set of clocks, Σ is an input (or event) al-
phabet, Δ is a transition relation, s ∈ Q is an initial state, and F ⊂ Q is a set of accepting states. The
transition relation consists of tuples of the form 〈q,ϕ, ρ,a,q′〉,whereq andq′ are states,a ∈ Σ ∪ {ϵ }
is a letter, and ρ ⊆ C and ϕ (the transition guard) are a Boolean combination of formulae of the
form (x ∈ I) for some clock x and some integer-bounded interval I .

A clock valuation is a function v : C → R+, or equivalently, a |C |-dimensional vector over R+.
We denote the set of all clock valuations by H . A configuration of the automaton is hence a pair
(q,v) ∈ Q ×H consisting of a discrete state (sometimes called “location”) and a clock valuation.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

46:6 A. Narayan et al.

Fig. 1. Timed automata from a timed regular expression (Asarin et al. 2002).

Every subset ρ ⊆ C induces a reset function Resetρ : H → H defined for every clock valuation v
and every clock variable x ∈ C as

Resetρv (x) =

{
0, if x ∈ ρ
v (x) if x � ρ. (1)

Resetρ resets all the clocks in ρ to zero and leaves the other clocks unchanged.
It has been proven that every timed regular language defined by a generalized regular expression

can be recognized by a timed automaton (Asarin et al. 2002). We present a few simple examples of
representing TREs using timed automata.

Consider the TRE 〈φ1〉I and its equivalent timed automaton shown in Figure 1. Taken from
(Asarin et al. 2002). Within the rectangle, we have the acceptor for φ1 with no timing constraints.
For the timed operator, a new clock x is introduced and a test x ∈ I has been added to guard every
transition leading to the final state f .

Let us further examine the basic idea behind construction of a timed automaton forφ∗. If the time
interval applies to each φ separately, then the clocks need to be reset at each new iteration of φ.
On the other hand, if the time interval applies to the whole φ∗ expression, we need the values of all
clocks at each new iteration of φ to represent the total time elapsed in the previous iterations. This
is achieved by adding a new clock x , which is never reset to zero and transitions to the initial state
in which all the clocks get the value of x . To avoid confusion between continuous time and discrete
time TRE semantics, it is stated that the language of a TRE is a set of a sequence of timestamped
events.

2.3 Dominant Properties

The TRE instances generated by the binding contain every permutation of events in the alphabet
within the TRE template. There is thus a total of Σp possible TRE instances. Generally, we are
interested in mining all of the valid TRE instances. However, these instances contain both inter-
esting and frequently occurring patterns, as well as those that might have been present just a few
times in the trace. We thus use a ranking component to reduce the mined set to contain only the
dominant instances, or specifications. We consider properties that are both frequently occurring
and interesting as dominant properties.

First, we only consider properties that are valid (Lemieux et al. 2015). We express that a binding
and its corresponding TRE instance are interesting if the TRE instance holds on each trace, and is
thus 100% valid. We also use the concepts of support and confidence from Lemieux et al. (2015).

Definition 8 (Support Potential). The support of a TRE instance π on a trace t is the number of
time points of trace t that falsify π .

Definition 9 (Support). The support of a TRE instance π on a trace t is the number of time points
of trace t that do not falsify π .

Definition 10 (Confidence). The confidence of a TRE instance π on a trace t is the ratio of trace
support to trace support potential.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

Mining Timed Regular Specifications from System Traces 46:7

Fig. 2. Property mining workflow (Cutulenco et al. 2016).

The ranking component we use is a combination of support and confidence. The effectiveness
of selecting a meaningful subset of specifications depends on picking a good set of thresholds.

Since the total number of mined TRE instances is often very large in real systems, we would
ideally keep the confidence value at 100%. However, the motivation to reduce this threshold slightly
is due to the presence of imperfect traces. Traces can be imperfect as a result of dropped events or
execution of faulty programs. In such cases, dominant properties may not be perfectly satisfied in
the collected traces. Reducing the threshold will thus include dominant properties from imperfect
traces.

We will examine different threshold values for both support and confidence and will evaluate
best thresholds for reducing all feasible properties to just the dominant and interesting properties.

3 APPROACH

3.1 Workflow

Figure 2 (Cutulenco et al. 2016) provides a high-level overview of the technique we propose for
mining temporal properties from system traces.

The binding function accepts a set of N traces and a TRE template. We use execution traces
collected during system runtime. The time-event traces are generated using instrumentation al-
ready present in the system and may include network traffic logs, operating system logs, program
instrumentation logs, and so forth. The binding function accepts a set of N logs, where N ≥ 1.
From these logs, the function extracts an alphabet Σ of unique events. The TRE template is an ab-
straction of the desired temporal property, a temporal relationship of interest for the system. The
TRE template uses a set V of event variables, where the variables range from 0 to p. The binding
function binds the set V to the alphabet of events Σ to generate a set of TRE instances.

The timed FSM evaluates the TRE instances on the same set of N traces. The Σp TRE instances
are encoded in the p-dimensional incidence matrix that is used by the timed FSM to keep track
of state, clocks, and evaluation results. As the timed automaton evaluates each TRE instance on
the trace, it updates the success and failure values in the matrix. When the automaton is finished
evaluating the TREs on all the traces, it passes the results matrix to the ranker.

The ranker uses the results matrix generated by the timed FSM to calculate the confidence and
support values for each TRE instance. The rank criteria are the threshold values for confidence and
support that are used to select only the dominant TRE instances. The ranker uses these criteria
to filter out any of the instances with confidence and support values below the specified thresh-
olds. Thus, we are left with only the dominant instances, which are the dominant properties or
specifications for the system being analyzed.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

46:8 A. Narayan et al.

Let us demonstrate the above workflow through an example. Consider the TRE template
(1.<0>[2,5])+, which is a simplified template for the response pattern. The “.” is the concatena-
tion operator and the “+” is the operator for one or more instances of the expression. The template
specifies that some log event 1 is followed by another log event 0 within 2 to 5 time units, and
this pattern occurs at least once in the execution trace. The property contains two event variables
0 and 1, meaning that the value of p is 2. The binding function will bind the events in Σ to the
template and generate an adjacency matrix for the TRE instances.

The timed FSM iterates over the time-event pairs in a trace and at each new event evaluates the
relevant TRE instances. Let’s assume the matrix contains an entry where 0 is bound to an event
“send” and 1 is bound to an event “receive.” The FSM reads in the event “send” in the trace at time
0. According to the property, if the next event in the trace is not “receive,” the FSM will enter an
error state and will increase the failure count for this TRE instance to 1 in the matrix. Similarly,
if the next event is “receive” but the timestamp is 6, the failure count would increase. If the next
event is “receive” and the timestamp is 3, which is within the 2-to-5 interval, then the automaton
will enter a final state and will increase the success count for the TRE instance.

Once the entire trace has been processed, the ranker will iterate over the matrix to calculate the
confidence and support values for each TRE instance. The ranker will report only the properties
that meet the defined thresholds for these metrics.

3.2 TRE Mining Algorithm

An intuitive way to evaluate a TRE on a system execution trace is to recursively evaluate the TRE
according to its semantics at every line of the trace. A high-level description of the steps taken by
the proposed algorithm is as follows:

—Representing a TRE. Parse the input TRE template and transform it into a timed
automaton.

—Representing a trace. Parse the input trace into a linear array representation where each
unique event has its corresponding time and event id, [time, eventid].

—Checking TRE instances over traces. Iterate over the trace and process each time-event
pair by matching them to the relevant TRE instances. Update the success and reset for the
relevant TRE instances at each trace event.

Below, in Algorithm 1, is a detailed description of the above steps in the form of pseudo code.

ALGORITHM 1: Timed Regular Expression Mining without Negation

Require: Given a trace with Σ unique events and a TRE pattern with p event variables
Ensure: Parse TRE and formulate a finite Timed Automaton→ A

1: Initialize an incidence matrix of size Σp

2: Initialize the success and reset counters for all permutations in the matrix
3: for (each unique event i from the trace) do

4: for (each permutation with event i) do

5: Update the automaton state;
6: Update the success if A→ FS;
7: Update the reset if A→ ES;
8: end for

9: end for

10: Evaluate Support - S
11: Evaluate Confidence - C

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

Mining Timed Regular Specifications from System Traces 46:9

Table 1. TRE Property Patterns

Name TRE
Response (̂ (P)∗.(〈P . (̂S)∗.S〉[x ,y]). (̂P)∗)+

Alternating (̂ (P |S)∗.(〈P . (̂P |S)∗.S .̂ (P |S)∗〉[x ,y]))+
MultiEffect (̂ (P |S)∗.(〈P . (̂P |S)∗.S .̂(P)∗〉[x ,y]))+
MultiCause (̂ (P |S)∗.(〈P . (̂S)∗.S . (̂P |S)∗〉[x ,y]))+
EffectFirst (̂ (P)∗.(〈P . (̂P |S)∗.S . (̂P |S)∗〉[x ,y]))+
CauseFirst (̂ (P |S)∗.(〈P . (̂S)∗.S〉[x ,y]. (̂P)∗))+
OneCause (̂ (P)∗.(〈P . (̂P |S)∗.S〉[x ,y]. (̂P)∗))+
OneEffect (̂ (P)∗.(〈P . (̂S)∗.S . (̂P |S)∗〉[x ,y]))+

ALGORITHM 2: Timed Regular Expression Mining with Negation

Require: Given a trace with Σ unique events and a TRE pattern with p event variables
Ensure: Parse TRE and formulate a finite Timed Automaton→ A

1: Initialize an incidence matrix of size Σp

2: Initialize the success and reset counters for all permutations in the matrix
3: for (each unique event i from the trace) do

4: for (each possible permutation) do

5: Update the automaton state;
6: Update the success if A→ FS;
7: Update the reset if A→ ES;
8: end for

9: end for

10: Evaluate Support - S
11: Evaluate Confidence - C

In Algorithm 1, Σ is the events alphabet and p is the number of event variables in the TRE
template without negation. A denotes the timed automaton and FS and ES denote the final and
error states of the timed automaton, respectively. S andC denote the support and confidence metrics
of the TRE instances on the given trace.

In contrast, Algorithm 2 evaluates the TREs with negation and has a loop to iterate over all
possible permutations (see Discussion for an explanation of the differences in runtimes of the
loops).

3.3 Temporal Property Patterns

The proposed technique relies on mining patterns that include timing constraints. Of interest are
the most commonly occurring temporal property patterns, as described in Yang and Evans (2004b).
In order to make use of these patterns, we extend them by transforming them into TRE Property
Patterns. Let us assume we have several causing events P to share one effect event S . The TRE
property patterns are presented in Table 1. The properties impose timing constraints on events by
adding a time interval [x ,y], where x ≤ y are fixed doubles.

4 DISCUSSION

We will examine the following important characteristics of the proposed temporal property mining
technique: soundness, completeness, optimality (in terms of space and runtime), and scalability.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

46:10 A. Narayan et al.

4.1 Sound and Complete

We argue that the technique we proposed and described in this article is sound and complete. By
sound, we mean that a mined specification reported by our algorithms actually satisfies the given
thresholds for confidence and support in the provided input traces. This is the case because our
algorithm continuously keeps track of the success and reset rates for each TRE instance in the
results matrix. The rates are direct results of execution of the acceptor automaton for the TRE
on a trace and are used for calculation of the confidence value for the TRE instance. Given that
the reported rates and the derived confidence value are valid, it follows that the derived support
value is valid as well. Therefore, any mined specification that our algorithms report satisfies the
confidence and support constraints.

By characterizing our technique as complete, we mean that our algorithms report all the mined
specifications that comply with the given thresholds for confidence and support in the provided
input traces. Upon reading a time-event pair from the trace, our technique examines every TRE
instance that can be affected. If the property contains negation, all the TRE instances are exam-
ined at every line of the trace. If the property does not contain negation, all TRE instances that
can be affected by the trace event are examined. Thus, at every line of the trace, all the relevant
TRE instances are evaluated by the timed automaton. Since all the evaluation results are contained
within the matrix, the results for every TRE will be considered when evaluating against the con-
fidence and support thresholds. Therefore, the algorithm will report all the TRE instances, the
mined specifications, that comply with the confidence and support constraints.

4.2 Memory Requirements

The proposed temporal property mining technique requires memory space for the multidimen-
sional results matrix, the timed FSM, and the trace contents.

The storage requirements for the matrix are directly influenced by p and Σ. We want to encode
the matrix to hold the evaluation results of every TRE instance generated by binding the events
from Σ to the p event variables in the TRE template. There are Σp possible TRE instances, and thus
we need O (Σp) space to hold the acceptor results.

The dimensionality of the matrix grows proportionally to p, the number of symbols in the de-
sired property. Complex properties that encode a relationship between a large number of events
will result in higher values of p. Increasing values of p in turn will result in exponential space
growth. However, the majority of properties of interest represent relationships among a few events
only (Yang and Evans 2004b; Dwyer et al. 1999). Therefore, in general, the dimension p of the ma-
trix will remain small. According to the properties listed in Dwyer et al. (1999), the typical property
will be constrained to six events.

The value of Σ, on the other hand, affects the size of each dimension. The number of unique
events Σ in the trace will depend on the complexity of the program or system. However, Σ has
a much smaller effect on the growth of the matrix since it only affects the base number in the
exponential space complexity.

Next, we consider the storage requirements for the timed automaton used to evaluate the TRE.
The storage required for the FSM is proportional to the number of its states (Hopcroft et al. 2006).
If n is the length of the TRE, then an equivalent NFA hasO (n) states and an equivalent DFA has at
most O (Σn) states. Similar to the matrix, complex properties that encode a lot of relationships be-
tween events result in exponential space growth for the FSM. However, the majority of interesting
properties will remain simple (Dwyer et al. 1999).

Lastly, the storage requirements for the trace are equivalent to the length of the trace,O (L). Our
mining approach examines one time-event pair from the trace at a time, without needing to store

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

Mining Timed Regular Specifications from System Traces 46:11

Table 2. Execution Time with Negation

p TRE Template Permutations
1 〈ˆ0〉 (Σ − 1)
2 〈ˆ0.ˆ1〉 (Σ − 1) (Σ − 1) = (Σ − 1)2

3 〈ˆ0.ˆ1.ˆ2〉 (Σ − 1) (Σ − 1) (Σ − 1) = (Σ − 1)3

any past or future events for context. It also does not perform any changes on the contents of the
trace. Thus, the trace is stored only once and never replicated.

The proposed technique is thus scalable with the growing trace size L and with the growing
event alphabet Σ. This is important since we have no control over the events and traces generated
by real systems. The technique is sensitive to growing values of p and the length of the expressions
n. However, as we already mentioned, in practice this will not be a concern since properties remain
relatively simple.

4.2.1 Runtime Requirements. We assess the performance of our temporal property mining tech-
nique in terms of the time required to mine a TRE template on a collected system trace t of length
L. The execution time of the proposed technique differs depending on whether negation is in-
cluded within the expression. We will consider the execution time of the main loop in Algorithm 1
(without negation) and Algorithm 2 (with negation).
TRE Templates with Negation. Let’s first consider the runtime of the loop in Algorithm 2 for
TRE templates with negation. When an event variable in the TRE template is negated, the automa-
ton must evaluate nearly all the TRE instances in the matrix. This is because for any negated event
variable, we must consider the entire event alphabet minus the event bound to the variable. The
satisfiability of any of these TRE instances may be affected. For the analysis, we look at the total
number of distinct event sequences to be evaluated.

Consider TRE template not 0. 0 can be bound to “b,” forming TRE instance not “b.” An event “a”
in the trace will affect the satisfiability of this TRE instance, and thus its automaton is updated.
Similarly, satisfiability will be affected for TRE instances that result from bindings with all other
event symbols other than “a.” On the other hand, if 0 is bound to “a,” forming TRE instance not
“a,” and we see an event “a” in the trace, we do not need to update the automaton for the instance.
Thus, for p = 1, we need to evaluate the automaton for (Σ − 1) permutations.

For the worst-case analysis, we consider TRE templates where all event variables are negated.
At any negated event variable in the template, we will similarly consider (Σ − 1) possibilities.
Table 2 contains the analysis for the first three values of p. The negation in a TRE template is
denoted by ˆ, whereas in the derivation alongside we use ¬ to denote negation to avoid confusion.

In general, for any TRE template, we are sampling p events from an alphabet of size Σ − 1 with
replacement and ordering. This results in (Σ − 1)p possible combinations to be considered in the
loop of Algorithm 2.

The automaton will thus evaluate O ((Σ − 1)p) TRE instances for every time-event pair in the
trace. Given that the length of the trace t is L, the worst-case execution time per trace will be
O ((Σ − 1)p · L).
TRE Templates without Negation. Next we examine the runtime of the main loop in
Algorithm 1 for TRE templates without negation. This case differs in that only the TRE instances
where the bounded event corresponds to that read from the trace needs to be evaluated. We can
thus reduce the previous runtime by evaluating only a subset of all TRE instances that contain the
trace event. Providing a bound on the worst-case execution time relies on an analysis of the subset
of TRE instances that contain the observed event.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

46:12 A. Narayan et al.

Table 3. Execution Time with Negation

p TRE Template Permutations

1 〈 0 〉 a = 1

2 〈 0.1 〉 a ¬ a + ¬ a a
= (1) (Σ − 1) + (Σ − 1) (1) = 2(Σ − 1)

3 〈 0.1.2 〉

a ¬ a ¬ a + ¬ a a ¬ a + ¬ a ¬ a a
= (1) (Σ − 1) (Σ − 2)+
(Σ − 1) (1) (Σ − 2) + (Σ − 1) (Σ − 2) (1)
= 3(Σ − 1) (Σ − 2)

For the worst-case analysis, we consider permutations of p events without repetition and with
ordering. One of the event variables will always be bound to the observed trace event. In Table 3,
we assume that event “a” is observed in the trace and a means that the corresponding event variable
is bound to event “a.” By ¬ a, we mean that an event symbol other than “a” is bound to the event
variable. If ¬ a is used more than once in an event sequence, the chosen events have to be distinct
since the permutations are formulated without replacement. Thus, with each such chosen event,
the total number of available events decreases by 1. Table 3 contains the analysis for the first three
values of p.

In general, for an arbitrary value of p, the runtime is p · (Σ − 1) (Σ − 2) . . . (Σ − p + 1). We can

rewrite this as p · (Σ−1)(Σ−2)...(Σ−p+1)(Σ−p)...(1)
(Σ−p)(Σ−p−1)...(1) . This result can be summarized using the expression

p · (Σ−1)!
(Σ−p)! and the permutation notation p · (Σ−1)P(p−1) .

The automaton will thus evaluate O (p · (Σ−1)P(p−1)) TRE instances for every time-event pair in
the trace. Given that the length of a trace t is L, the worst-case execution time per trace will be
O (p · (Σ−1)P(p−1) · L).

Notice that the approximate relative speedup of Algorithm 1 (without negation) as compared
to Algorithm 2 (with negation) is Σ

p
. This observation will be assessed through the experimental

evaluation in the next section.
Generally, the scalability of property mining techniques is limited. The techniques tend to scale

poorly with the growing size of the input trace L. Our technique is optimal in that respect as for
both algorithms the runtime grows linearly with the increasing size of L. Given that L Σ and
L p, reading each line of the trace at most once is optimal. Finally, as mentioned earlier, since
the majority of interesting properties are not complex, Σp will remain small in practice.

5 EVALUATION

In this section, we demonstrate the performance and scalability of our approach using a set of real
system traces and a set of synthetic traces.

The implementation is done using a combination of R and C++ and is made available as an
R package.1 We use the R package “Rcpp”2 for integration of R and C++ and make use of C++
internally for better performance. Ragel3 is a framework we used to synthesize timed automata
for TREs.

We developed TRE property pattern variants, such as shown in Table 1, of commonly used pat-
terns of QREs (Yang and Evans 2004b). By using these TRE variants as TRE templates, we mined

1https://bitbucket.org/sfischme/tre-mining.
2http://www.rcpp.org/.
3http://www.colm.net/open-source/ragel/.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

https://bitbucket.org/sfischme/tre-mining
http://www.rcpp.org/
http://www.colm.net/open-source/ragel/

Mining Timed Regular Specifications from System Traces 46:13

Fig. 3. Trace snippet from QNX tracelogger.

TRE instances from real-world system traces: QNX tracelogger and CAN communication traces.
We used different thresholds for support and confidence to uncover interesting TRE instances. Fur-
ther, to demonstrate the performance and scalability of our approach, we synthesized traces for dif-
ferent configurations w.r.t. the length of traces, number of variables in a TRE template, and number
of distinct events in traces. For the experiments, we used a single eight-core machine equipped with
the Intel i7-3820 CPU at 3.60GHz and 31.4Gb of RAM. The machine runs Ubuntu 14.04 LTS 64 bit.

5.1 TRE Templates

The following four TRE templates are used for the evaluation of both real and synthetic traces.
These are the first four TRE property patterns listed in Table 1 and parameterized with a time
interval of 0 to 3,000.

T-1 (response): (̂ (P)∗.(〈P . (̂S)∗.S〉[0, 3000]). (̂P)∗)+
T-2 (alternating): (̂ (P |S)∗.(〈P . (̂P |S)∗.S .̂ (P |S)∗〉[0, 3000]))+
T-3 (multieffect): (̂ (P |S)∗.(〈P . (̂P |S)∗.S .̂(P)∗〉[0, 3000]))+
T-4 (multicause): (̂ (P |S)∗.(〈P . (̂S)∗.S . (̂P |S)∗〉[0, 3000]))+

5.2 Performance Evaluation Using Real QNX Traces

The QNX real-time operating system (RTOS) is used in many safety-critical systems, such as med-
ical devices, nuclear monitoring systems, vehicles, and so forth. The QNX RTOS has a very ad-
vanced logging facility, tracelogger. Tracelogger facilitates detailed tracing of the kernel and user
process activity on any system. More specifically, it can log interrupt activity, various states of
processes and threads, communication within the system, kernel calls, custom user events, and
much more. The logged events give a detailed view into the behavior of the system, but due to
the large quantity of the produced information they are often difficult to make use of by develop-
ers and system designers. These traces are thus a perfect resource for dynamic mining of system
properties and specifications.

For the evaluation, we used a set of traces collected from an operational hexacopter loaded
with the QNX RTOS and a user control process. Of interest in this portion of the evaluation are
the optimal thresholds for support and confidence that would produce a minimal dominant set of
specifications that can be assessed by developers or system designers. The trace snippet in Figure 3
shows the sample trace used in our experiments.

Table 4 presents the results of the evaluation. The hexacopter trace used for the evaluation
contained 1 million events, with 205 distinct events. We used the four TRE templates, T-1 to T-4,

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

46:14 A. Narayan et al.

Table 4. Mining TREs on QNX Traces

Support

Confidence
1 0.9 0.8 0.7 0.6

1–1,000 0 194 275 324 363

1,000–5,000 0 155 192 211 219

5,000–10,000 0 91 95 98 100

10,000–50,000 0 39 39 40 40

50,000–80,000 0 15 15 16 16

80,000–300,000 0 3 3 3 3

(a) Results of Mining TRE T-1

Support

Confidence
1 0.9 0.8 0.7 0.6

1–1,000 0 30 36 41 45

1,000–5,000 0 27 32 36 39

5,000–10,000 0 22 25 28 31

10,000–50,000 0 19 19 21 22

50,000–80,000 0 10 10 11 11

80,000–300,000 0 2 2 2 2

(b) Results of Mining TRE T-2

Support

Confidence
1 0.9 0.8 0.7 0.6

1–1,000 0 38 52 67 72

1,000–5,000 0 35 47 60 64

5,000–10,000 0 30 40 50 53

10,000–50,000 0 39 39 40 40

50,000–80,000 0 14 14 16 16

80,000–300,000 0 3 3 3 3

(c) Results of Mining TRE T-3

Support

Confidence
1 0.9 0.8 0.7 0.6

1–1,000 0 30 38 45 49

1,000–5,000 0 27 34 39 41

5,000–10,000 0 22 25 29 31

10,000–50,000 0 19 20 22 22

50,000–80,000 0 10 10 11 11

80,000–300,000 0 2 2 2 2

(d) Results of Mining TRE T-4

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

Mining Timed Regular Specifications from System Traces 46:15

Table 5. Mining TREs on CAN Traces

Support
Confidence

1 0.9 0.8 0.7 0.6

1–1,000 12 398 485 506 510
1,000–5,000 12 331 340 358 362
5,000–10,000 12 130 137 154 156
10,000–50,000 12 39 44 44 44
50,000–80,000 12 15 15 15 15
80,000–150,000 1 1 1 1 1

(a) Results of Mining TRE T-1

Support
Confidence

1 0.9 0.8 0.7 0.6

1–1,000 6 55 102 118 131
1,000–5,000 5 12 15 20 27
5,000–10,000 5 12 15 18 23
10,000–50,000 5 11 14 15 16
50,000–80,000 5 11 11 11 11
80,000–150,000 1 1 1 1 1

(b) Results of Mining TRE T-2

Support
Confidence

1 0.9 0.8 0.7 0.6

1–1,000 5 20 63 74 93
1,000–5,000 5 12 15 18 23
5,000–10,000 5 12 15 18 23
10,000–50,000 5 11 14 15 16
50,000–80,000 5 11 11 11 11
80,000–150,000 1 1 1 1 1

(c) Results of Mining TRE T-3

Support
Confidence

1 0.9 0.8 0.7 0.6

1–1,000 8 85 194 255 288
1,000–5,000 7 41 55 87 96
5,000–10,000 7 34 47 78 87
10,000–50,000 7 34 41 59 63
50,000–80,000 7 30 30 30 30
80,000–150,000 1 1 1 1 1

(d) Results of Mining TRE T-4

for the evaluation. The interval used in the templates is sufficient for most interesting interactions
to complete. The tables report the number of specifications mined by our algorithm given varying
values of support and confidence.

It is evident from the results in Table 5a that TRE T-1, the response property, occurs frequently
in the trace for a large number of events. Due to an abundance of interprocess communication and
system calls within the kernel, this is expected. The other three TREs are more complex and thus
appear to be generally satisfied for a smaller number of event combinations.

To evaluate the interesting properties obtained for TRE T-1, we chose a confidence of 0.9 and
support in the range of 10,000 to 50,000. It is found that that property is related to the interrupt

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

46:16 A. Narayan et al.

handler in the QNX operating system. One of the most dominant properties has event P:INT_ENTR
and S:INT_EXIT. Such a property is also intuitive to the designer as an interrupt enter is followed
by an interrupt exit during normal execution of the system.

The results show that higher-threshold values for support and confidence result in fewer speci-
fications being reported. Let’s assume that a developer or engineer would be able to assess around
30 specifications per property; more than that would be abundant. Based on the results in Table 4,
the support threshold should be kept between 10,000 and 50,000 and the confidence threshold
should be kept at 0.8 or higher.

5.3 Performance Evaluation Using Real CAN Traces

CAN bus is the primary communication medium over which the electrical control units (ECUs)
within a vehicle exchange commands and information. Each message on the network can be dis-
tinguished by an associated ID, which is unique per message type. So, for instance, messages that
contain the vehicle speed will have a unique and unchanging message ID. Messages transmitted on
the network also have an associated timestamp. The actual contents of each message are encoded
in a manufacturer-specific way. Our interest lies in the time and ID of transmitted messages, and
not in the exact content of the message. We treat each message ID as an event occurring in the
system.

For the evaluation, we collected a set of traces of CAN network activity produced from an idling
vehicle with the engine on. Of interest in this portion of the evaluation are the optimal thresholds
for support and confidence that would produce a minimal dominant set of specifications that can
be assessed by system designers.

Table 5 presents the results of the evaluation. The trace used for the evaluation contained 140,000
events, with 43 distinct events. We used the four TRE templates, T-1 to T-4, for the evaluation.
The interval used in the templates is equivalent to that used previously in the evaluation of QNX
traces. The tables report the number of specifications mined by our algorithm given varying values
of support and confidence.

It is evident from the results in Table 5a that TRE T-1, the response property, occurs infrequently
in the trace for a large number of events. This result resembles what we got using the QNX traces.
The other three TREs are more complex and thus appear to be generally satisfied for a smaller
number of event combinations.

The results show that higher-threshold values for support and confidence result in fewer spec-
ifications being reported. Let’s again assume that an engineer would be able to assess around 30
specifications per property. Based on the results in Table 5, the support threshold should be kept
between 10,000 and 50,000 and the confidence threshold should be kept at 0.9 or higher.

The thresholds required for both QNX and CAN traces are very similar. The number of mined
specifications appears to be very sensitive to the size of the time interval in the TREs. This is
evident from Table 6, where the interval in TRE T-1 was set to [0, 6,500] and the property was
mined on the CAN trace. Comparing Table 6 to Table 5a makes it clear that many more properties
are mined when the time interval is increased. Therefore, the interval size is the primary reason
for the similarity between the derived threshold values.

Based on the shown results, we should also note that the TREs are satisfied infrequently for
a lot more event combinations in CAN traces than in QNX traces. This is likely a consequence
of a smaller event alphabet. CAN traces have a less versatile mix of events than QNX traces, and
thus a larger number of CAN events may appear to satisfy any particular property. However,
the support threshold can be used to remove the effects of alphabet size variation, since only the
interesting properties will be satisfied frequently in the traces.

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

Mining Timed Regular Specifications from System Traces 46:17

Table 6. Mining TRE T-1 with Interval [0, 6,500]

on CAN Traces

Support

Confidence
1 0.9 0.8 0.7 0.6

1–1,000 27 596 694 696 696

1,000–5,000 27 518 548 548 548

5,000–10,000 27 479 508 508 508

10,000–50,000 27 343 357 357 357

50,000–80,000 27 100 100 100 100

80,000–150,000 1 1 1 1 1

5.4 Performance Evaluation Using Synthesized Traces

Real system traces are suitable for testing the feasibility and usefulness of our proposed technique.
However, they cannot be easily used to demonstrate some important performance and scalability
properties of the approach. For instance, in real systems, we have little control over the number
of distinct events used in the traces and thus cannot control the alphabet size. We also have little
control of the exact length of the traces in real systems.

We synthesized a set of traces by varying the following three parameters: the distinct number
of events (the size of the event alphabet Σ), the total number of events (length L of the traces), and
the number of variables in TRE templates (p event variables). We used the TRE property patterns
listed in Table 1. Below we will describe each setup for evaluating the performance of our mining
algorithm, as well as present the associated results.
Setup and Results: We performed the experiment under three different setups. In each of the
setups, the value of one of the tree parameters was varied. The values of others were kept constant.
We executed each experiment 10 times.
Setup 1: In this first setup, we varied the total number of events in the traces. The number of
distinct events was set to four, and the number of variables in TRE templates was set to two. The
total number of events in the traces was varied exponentially.

The results are shown in Figure 4. The x-axis represents the total number of events in the traces,
and the y-axis represents the average execution time of our mining algorithm. Note that the mea-
surement of the execution time includes only the processing of trace events (within the main loop
of Algorithm 1). The measurement does not include the initialization of the algorithm, the over-
head of which is constant.

As shown in Figure 4, the execution of our mining algorithms grows linearly w.r.t. the total
number of events in the trace. For example, the average execution time is 170 milliseconds for
processing 0.1 million events.
Setup 2: In this setup, we varied the number of distinct events. There were 10,000 events in total in
each trace, and the number of variables in TRE templates was set to two. As shown in Figure 5, the
x-axis represents the number of distinct events in the traces, and the y-axis represents the average
execution time of our mining algorithm. The figure shows that the execution time increases expo-
nentially with the growing number of distinct events. The average execution time for processing
a trace of 10,000 events with 25 distinct events is 594 milliseconds.
Setup 3: Lastly, in this setup, we varied the number of event variables in the TRE templates. The
total number of events in the traces was set to 10,000, and the number of distinct events was set to

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

46:18 A. Narayan et al.

Fig. 4. Varying total number of events.

Fig. 5. Varying number of distinct events.

10. For this setup, the four TRE templates used for setup 1 and 2 were varied to include different
numbers of event variables. For the sake of brevity, we do not list these TRE templates.

Figure 6 shows the variation in the average execution time w.r.t. the number of variables in the
TRE templates. It is evident that the average execution time grows exponentially. The average time
for processing a trace of 10,000 events with 10 distinct events and a TRE template containing four
variables is 4,156 milliseconds.

5.5 Comparing Algorithm Performance

Next, we compared the performance of Algorithm 1 and Algorithm 2, where Algorithm 2 considers
TRE templates with negation and Algorithm 1 considers TRE templates without negation. The TRE

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

Mining Timed Regular Specifications from System Traces 46:19

Fig. 6. Varying Number of Variables in TRE Templates.

Table 7. Comparing Algorithm 1 and Algorithm 2

TRE Templates for Algorithm 1 TRE Templates for Algorithm 2

(〈P .Q .R〉[1, 5000]) (〈P .∧ Q∗.Q .∧ R∗.R〉[1, 5000])

Table 8. Comparing Execution Time of Mining Different Classes of TRE Templates

Time without Negation

(in Seconds)

Time with Negation

(in Seconds)

Synthetic Traces 9.50 111.82

Table 9. Results for Real System Traces: QNX and CAN

Real System

Time without Negation

(in Seconds)

Time with Negation

(in Seconds)
CAN 1.03 21.83
QNX 34.38 3,498.37

templates listed in Table 7 were provided as input to the two algorithms when using synthetically
generated traces.

For evaluation of real system traces, we used the TRE patterns T-1, T-2, T-3, and T-4.
Table 9 shows the results of the algorithm comparison on real traces generated from a QNX

system. The trace used for the evaluation contained 1 million events, with 205 distinct events. It is
evident from the figure that mining properties with negation takes approximately 100 times longer
than mining properties without negation. This corresponds to the expected speedup of Σ

p
(see the

Discussion section), which in this case is 205
2 .

Table 9 also shows the results of the algorithm comparison on real traces generated from
a CAN network. The trace used for the evaluation contained 142,866 events, with 43 distinct
events. Again, Table 9 clearly demonstrates that mining properties with negation takes longer than

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

46:20 A. Narayan et al.

mining properties without negation, in this case 21.5 times longer. This corresponds to the ex-
pected speedup of 43

2 .
Lastly, Table 8 shows the results of the comparison on a synthesized trace. The size of the trace

used for this experiment was 50,000 events, with 30 distinct events. It is evident from Table 8 that
mining properties with negation takes approximately 12 times longer than mining properties with-
out negation. This result also closely approaches the expected speedup of Σ

p
(see the Discussion

section), which in this case is 30
2 .

6 CONCLUSION

This article presented two novel algorithms for mining of TREs with and without negation in
embedded system traces. We presented a detailed complexity analysis of both the algorithms. We
presented two sets of experiments to demonstrate that the algorithm is scalable, robust, sound, and
complete. First, we presented experimental results on synthetically generated traces to analyze the
scalability of the algorithms with an increase of variables in the TRE template, varying the total
number of unique events and varying the total number of events in the system trace. Second, we
validate our framework on industrial-strength safety-critical real-time applications traces.

The experimental results confirm the asymptotic analysis of our algorithm’s complexity. We
believe that our framework is generally applicable and is especially useful for constructing more
advanced analysis tools that require TRE specification mining. In the future, we propose to im-
prove the framework to perform better on TREs with negation and gain considerable speedup as
compared to TREs without negation.

REFERENCES

Rajeev Alur, Pavol Černỳ, Parthasarathy Madhusudan, and Wonhong Nam. 2005. Synthesis of interface specifications for
Java classes. ACM SIGPLAN Notices 40, 1 (2005), 98–109.

Rajeev Alur and David L. Dill. 1994. A theory of timed automata. Theoretical Computer Science 126, 2 (1994), 183–235.
Glenn Ammons, Rastislav Bodík, and James R. Larus. 2002. Mining specifications. ACM Sigplan Notices 37, 1 (2002), 4–16.
Eugene Asarin, Paul Caspi, and Oded Maler. 2002. Timed regular expressions. Journal of the ACM 49, 2 (2002), 172–206.
Marco Bonato, Giuseppe Di Guglielmo, Masahiro Fujita, Franco Fummi, and Graziano Pravadelli. 2012. Dynamic property

mining for embedded software. In Proceedings of the 8th IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis. ACM, New York, 187–196. 100104.
Marat Boshernitsan, Roongko Doong, and Alberto Savoia. 2006. From daikon to agitator: Lessons and challenges in building

a commercial tool for developer testing. In Proceedings of the 2006 International Symposium on Software Testing and

Analysis. ACM, New York, 169–180. 594061.
Mihai Christodorescu, Somesh Jha, and Christopher Kruegel. 2008. Mining specifications of malicious behavior. In Proceed-

ings of the 1st India Software Engineering Conference. ACM, New York, 5–14.
Greta Cutulenco, Yogi Joshi, Apurva Narayan, and Sebastian Fischmeister. 2016. Mining timed regular expressions from

system traces. In Proceedings of the 5th International Workshop on Software Mining. 3–10. DOI:http://dx.doi.org/10.1145/
2975961.2975962

Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Gordon Fraser, Sebastian Hack, and Andreas Zeller. 2012. Automat-
ically generating test cases for specification mining. IEEE Transactions on Software Engineering 38, 2 (2012), 243–257.

Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and Andreas Zeller. 2010. Generating test cases for
specification mining. In Proceedings of the 19th International Symposium on Software Testing and Analysis. ACM, New
York, 85–96. 594101.

Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. 2007. Controller area network (CAN) schedulabil-
ity analysis: Refuted, revisited and revised. Real-Time Systems 35, 3 (2007), 239–272. DOI:http://dx.doi.org/10.1007/
s11241-007-9012-7

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. 1999. Patterns in property specifications for finite-state
verification. In Proceedings of the 1999 International Conference on Software Engineering. IEEE, 411–420.

Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. 2001. Bugs as deviant behavior: A general
approach to inferring errors in systems code. SIGOPS Operating Systems Review 35, Article 5 (Oct. 2001), 16 pages.
DOI:http://dx.doi.org/10.1145/502059.502041

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

http://dx.doi.org/10.1145/2975961.2975962
http://dx.doi.org/10.1007/s11241-007-9012-7
http://dx.doi.org/10.1145/502059.502041

Mining Timed Regular Specifications from System Traces 46:21

Michael D. Ernst. 2003. Static and dynamic analysis: Synergy and duality. In ICSE Workshop on Dynamic Analysis

(WODA’03). IEEE Computer Society, 24–27.
Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001. Dynamically discovering likely program

invariants to support program evolution. IEEE Transactions on Software Engineering 27, 2 (2001), 99–123.
Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao.

2007. The daikon system for dynamic detection of likely invariants. Science of Computer Programming 69, 1 (2007),
35–45.

Mark Gabel and Zhendong Su. 2010. Online inference and enforcement of temporal properties. In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering-Volume 1. ACM, New York, 15–24.
E. Mark Gold. 1978. Complexity of automaton identification from given data. Information and Control 37, 3 (1978), 302–320.
Sudheendra Hangal, Naveen Chandra, Sridhar Narayanan, and Sandeep Chakravorty. 2005. IODINE: A tool to automatically

infer dynamic invariants for hardware designs. In Proceedings of the 42nd Annual Design Automation Conference. ACM,
New York, 775–778. 477050.

Sudheendra Hangal and Monica S. Lam. 2002. Tracking down software bugs using automatic anomaly detection. In Pro-

ceedings of the 24th International Conference on Software Engineering. ACM, New York, 291–301. 592020.
Reed Hastings and Bob Joyce. 1992. Purify: Fast detection of memory leaks and access errors. In Proceedings of the Winter

1992 Usenix Conference. USENIX, San Francisco, CA, 125–136.
John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2006. Introduction to Automata Theory, Languages, and Compu-

tation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
Zachary Kincaid and Andreas Podelski. 2015. Automated program verification. In Proceedings of Language and Automata

Theory and Applications: 9th International Conference, (LATA’15). Vol. 8977. Springer, Nice, France, 25.
Rob Krten. 1999. Getting Started with QNX Neutrino 2: A Guide for Realtime Programmers. PARSE Software Devices, Ottawa,

Canada.
Leslie Lamport. 1978. Time, clocks, and the ordering of events in a distributed system. Communications of the ACM 21, 7

(1978), 558–565.
Kim G. Larsen, Paul Pettersson, and Wang Yi. 1997. UPPAAL in a Nutshell. In International Journal on Software Tools for

Technology Transfer (STTT’97) 1, 1 (1997), 134–152.
Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. 2015. General LTL specification mining. In 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE’15). ACM, New York, 81–92.
Wenchao Li, Alessandro Forin, and Sanjit A. Seshia. 2010. Scalable specification mining for verification and diagnosis. In

Proceedings of the 47th Design Automation Conference. ACM, New York, 755–760. ACM Order No.: 4770101.
Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. 2008. Automatic generation of software behavioral models. In

Proceedings of the 30th International Conference on Software Engineering. ACM, New York, 501–510. 529080.
Jeff H. Perkins and Michael D. Ernst. 2004. Efficient incremental algorithms for dynamic detection of likely invariants. In

ACM SIGSOFT Software Engineering Notes. ACM, New York, 23–32.
Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson. 1997. Eraser: A dynamic data

race detector for multithreaded programs. ACM Transactions on Computer Systems (TOCS) 15, 4 (1997), 391–411.
Jinlin Yang and David Evans. 2004a. Automatically inferring temporal properties for program evolution. In 15th Interna-

tional Symposium on Software Reliability Engineering, 2004 (ISSRE’04). IEEE, 340–351.
Jinlin Yang and David Evans. 2004b. Dynamically inferring temporal properties. In Proceedings of the 5th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE’04). ACM, New York, 23–28. DOI:
http://dx.doi.org/10.1145/996821.996832

Jinlin Yang, David Evans, Deepali Bhardwaj, Thirumalesh Bhat, and Manuvir Das. 2006. Perracotta: Mining temporal API
rules from imperfect traces. In Proceedings of the 28th International Conference on Software Engineering. ACM, New York,
282–291. 592060.

Received July 2017; revised September 2017; accepted September 2017

ACM Transactions on Embedded Computing Systems, Vol. 17, No. 2, Article 46. Publication date: January 2018.

http://dx.doi.org/10.1145/996821.996832

