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ABSTRACT

Dynamic behavior of a program can be assessed through
examination of events emitted by the program during exe-
cution. Temporal properties define the order of occurrence
and timing constraints on event occurrence. Such specifica-
tions are important for safety-critical real-time systems for
which a delayed response to an emitted event may lead to
a fault in the system. Since temporal properties are rarely
specified for programs and due to the complexity of the for-
malisms, it is desirable to suggest properties by extracting
them from traces of program execution for testing, verifica-
tion, anomaly detection, and debugging purposes.

We propose a framework for automatically mining proper-
ties that are in the form of timed regular expressions (TREs)
from system traces. Using an abstract structure of the prop-
erty, the framework constructs a finite state machine to serve
as an acceptor. As part of the framework, we propose two
novel algorithms optimized for mining general TREs and a
fragment without negation. The framework is evaluated on
industrial strength safety-critical real-time applications (a
deployed autonomous hexacopter system and a commercial
vehicle in operation) using traces with more than 1 Million
entries. Our framework is open source and available online:
https://bitbucket.org/sfischme/tre-mining
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1. INTRODUCTION

Temporal behavior of programs is an extensively studied
topic [20, 10]. Recently, the idea of mining likely tempo-
ral properties of programs from system traces has become
popular [22]. Critical and commonly occurring behavioral
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patterns are typically provided to the mining frameworks,
which then mine system specifications of that form. The
mining techniques identify a set of specifications that are sat-
isfied by traces w.r.t. certain criteria. Many programs lack
formal temporal specifications, and mined specifications are
therefore valuable since they can be used for a wide variety
of activities in the software development life cycle (SDLC).
These activities include software testing [9], automated pro-
gram verification [19], anomaly detection [7], etc. Further,
mined specifications can assist automated verification tech-
niques because they provide an easy and user-friendly way to
describe a programs’ specifications. As argued by Ammons
et. al. [4], automated verification techniques are unlikely to
be widely adopted unless cheaper and easier ways of formu-
lating specifications are developed. Consequently, specifica-
tion mining has gained significant attention in recent times.
Different techniques have been developed for mining specifi-
cations from templates expressed using regular expressions,
LTL [5], and other custom formats.

There have been both static and dynamic approaches pro-
posed for property mining. Static property mining is found
to be effective and accurate but faces challenge in scaling
with the program size [2, 12]. On the other hand, dynamic
property mining approaches guarantee scalability but lack
in the quality of mined properties which depend on various
factors such as the observed executions and the test suite
used for stimulating the design [8].

There are two main subsets of dynamic property mining
approaches: invariant miners [13, 14, 6, 17] and temporal
property miners [4, 24, 11, 27, 25]. Of all the available tools,
Daikon [14] has proven to be most successful in inferring
the most probable invariants. It has been used widely for
debugging, testing, documentation and maintainability [14].

A vast majority of tools for mining of temporal proper-
ties infer properties in the form of state machines. These
tools learn a single complex state machine instantly and ex-
tract simpler properties from it. In [4] they learn a state
machine which captures both temporal properties and data
dependencies.These find utility in identifying errors and re-
fining specifications. These also find use in automatic verifi-
cation tools to find bugs in the program execution. In [24] a
model is inferred representing among various components of
the software. The tool generates Extended Finite State Ma-
chines from the traces of component interactions. They solve
the dual purpose of modeling both data and control aspects
which are useful for analysis and system verification. They
generate the Extended Finite State Machines by combining
classical algorithms for generating finite state machines and
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Daikon. These approaches suffer from two main drawbacks.
First, mining of a single state machine from system traces
is a NP-hard problem [16]. Second, extraction of formula-
based properties from complex state machines still exists.

In another work [10], the authors defined a set of temporal
property patterns based on case study of hundreds of real
property specification. The main idea behind the exercise
was to help designers unfamiliar with formal specifications
and static verification approaches.

Another work based on the intuition that frequently oc-
curring behavior that matches temporal patterns are likely
to be true is the foundation of Peracotta [26, 27, 25]. The
main motive behind their approach was to achieve scalabil-
ity to large system traces, in mining binary specifications,
in the form of automata, and post-processing them using
inference rules to form complex state machines.

Another interesting attempt [23] has been to make tem-
poral pattern mining suitable to digital circuits by changing
the used timing reference to adjust to the hardware envi-
ronment. The basic algorithm is same as [26] but it tries
to mine all the satisfied pattern from the trace file, while
in [26] they mine only the strictest pattern satisfied by the
state machine.

Most of the existing research in context of mining tempo-
ral specifications focuses on the qualitative notion of time,
i.e. the specifications describe an ordering of events. For ex-
ample, a LTL specification O(request — Qresponse) speci-
fies that a request event should always be eventually followed
by a response event. Most state-of-the-art techniques do not
take into account the quantitative notion of time, i.e. the ac-
tual duration of time between events is not considered. For
safety-critical real-time systems, it is important to develop
techniques that allow mining of specifications that account
for the quantitative notion of time. For example, specifi-
cations for interrupt handlers, which for real-time systems
must complete their executions within a set of predefined
deadlines. The time constraints are of importance in such a
case since a delayed response to an emitted event may lead
to a fault in the system.

With the motivation to address the problem of mining
specifications with an explicit notion of time, we propose
a technique to mine instances of timed regular expression
(TRE) templates satisfied by a given system’s traces. TREs
[15] extend regular expressions by providing additional oper-
ators to specify timing constraints between events. By using
a set of common patterns of specifications for LTL and reg-
ular expressions, we develop the corresponding patterns for
TREs. Further, we use the method proposed by Asarin et
al. [15] to synthesize a timed automaton for a given TRE.
The timed automaton is then used as a checker to verify
whether traces satisfy the corresponding TRE.

We provide two algorithms for mining instances of TREs
from their templates. Both algorithms require a TRE tem-
plate and system traces as input. The algorithms then use
the distinct events from the traces to replace the event vari-
ables in the TRE templates with actual events. The resul-
tant permutations of the template are TRE instances. Intu-
itively, traces are processed against the TRE instances with
the help of the timed automaton. Further, we define confi-
dence and support as metrics to evaluate the degree to which
a TRE instance is satisfied by the traces. The algorithms
report only the instances which satisfy the given threshold
values of confidence and support.

The first algorithm is designed for TRE templates with-
out a negation operator. The second algorithm processes
TRE templates with a negation operator. The execution
times of both the algorithms’ are exponential in terms of
the number of variables in individual TRE templates, the
first algorithm generally runs faster than the second by a
certain factor, which depends upon the number of distinct
events in a trace and the number of variables in a given TRE
template. Our technique is sound, i.e., a mined specifica-
tion reported by our algorithms actually satisfies the given
thresholds of support and confidence on the provided input
traces. Also, our technique is complete, i.e., our algorithms
report all TRE instances which comply on given traces w.r.t.
the thresholds of support and confidence.

We evaluate our technique on real-world datasets that
consist of traces produced by the QNX Neutrino Real-time
Operating System [1] during various runs of application soft-
ware on different hardware platforms. We report the per-
formance of our algorithms on the real-life traces in terms
of the execution time. We also demonstrate the scalability
and efficiency of our approach by running the implementa-
tions on synthesized traces of different sizes with different
values of parameters such as the number of distinct events,
the total number of events in the traces, and the complexity
of the TRE templates.

The key contributions of this paper include:

e An efficient technique for extracting temporal proper-
ties with time constraints in the form of Timed Regular
Expressions (TREs),

e Two novel algorithms to mine instances of TREs from
given system traces. To our knowledge, this is the first
technique for mining specifications with an explicit no-
tion of timing constraints.

Computational approaches that optimize the extrac-
tion of the specified properties for fragments of TREs.

An analytic bound on the speedup of the optimization
with an empirical validation corroborating the correct-
ness.

A feasibility and viability study using traces collected
from operating safety-critical real-time systems show-
ing the applicability and scalability of the approach.

2. BACKGROUND

2.1 Timed Regular Expressions

Regular expressions offer a declarative way to express the
patterns for any system property or specification. Every
language defined by a regular expression is also defined by a
finite automaton [18]. There is a way to convert any regular
expression into a non-deterministic automaton, and further
to convert from a non-deterministic to a deterministic au-
tomaton. We can thus generate a classical Deterministic
Finite Automaton (DFA) for any property expressed as a
regular expression.

Classical automata theory handles only the gualitative no-
tion of time, i.e. a sequence of events specifies the ordering of
events but not the time between occurrence of these events
in terms of “real time”. An abstraction of this sort has been
found useful for analysis of certain systems, whereas many
other real time safety critical application domains require



more detailed models which include accurate timing infor-
mation. For example, we might want to modify a formal
specification “a s followed by b” to a more precise speci-
fication with timing constraints “a is followed by b within
x seconds”. Since our focus lies on real-time safety-critical
systems, we need to develop techniques for mining specifica-
tions that include the relevant timing information. We use
the formalism of Timed Regular Expressions (TREs) for our
purpose as it allows for defining explicit timing constraints
in the model. We will formally describe our nomenclature.

DEFINITION 1 (TRACE AND EVENT). The alphabet of e-

vents is a finite alphabet of strings. A timed sequence of
events is the trace.
The sequences of events in the trace are ordered by time
stamps. The alphabet of events is defined by the system
generating the traces. The events have associated meaning
pertaining to the functionality of the system.

DEFINITION 2 (TIMED REGULAR EXPRESSION). Time-
d regular expressions (TREs) over an alphabet ¥ (also re-
ferred to as X expressions) are defined using the following
families of rules:

e a for every letter a € ¥ and the special symbol € are
exTpressions,

o If v, p1 and @2 are Y-expressions and I is an integer
bound interval then (o)1, Y192, 1 V w2 and ©* are
Yi-expressions.

The novel features here with respect to untimed regular ex-
pressions are the meaning of the atom « which represents
an arbitrary passage of time followed by an event o and the
<¢>r operator which restricts the metric length of the time-
event sequences in [¢] to be in the interval I. It is important
to note that we use TREs, as defined above, to provide spec-
ification templates.

DEFINITION 3 (TRE TEMPLATES). A TRE template is
a TRE in which all of the atomic propositions are either
event variables, events, or time intervals.

A TRE template is a template for the specifications that we
want to mine. We use the term event variable to denote a
place holder for an event. For example, the TRE template
(0.1) [z, y] represents “0 is always followed by 1 within the
time interval [z,y]”, where 0 and 1 are event variables and
where x < y are fixed doubles used in the time interval. We
use p to denote the number of event variables present in a
TRE template. In the given example p is 2.

DEFINITION 4  (TRE INSTANCE). LetII be a TRE tem-
plate. Then, 7 is a TRE instance of II if m has a TRE sim-
ilar to 11 in structure where all the atomic propositions are
events.

DEFINITION 5  (BINDING). Let X be an alphabet of even-
ts and let V be a finite set of event variables. Then, a binding
is a function b: V — X

A TRE instance corresponds to a TRE template and has an
identical TRE structure. Applying a binding to the event
variables in a TRE template creates a TRE instance corre-
sponding to that binding. The binding is thus a map used to
replace event variables with events from the given alphabet.

Figure 1: Timed Automata from a Timed Regular
Expression

2.2 Timed Automata

Timed automata [3] have been investigated quite rigor-
ously in the recent past. The main motivation for using
timed automata is their suitability for modeling time de-
pendent behavior, and the ability to monitor their reacha-
bility [21].

DEFINITION 6  (TIMED AUTOMATA [15]). A timed aut-
omaton A is a tuple (Q,C,A, X, s, F) where Q is a finite
set of states, C is a finite set of clocks, ¥ is an input (or
event) alphabet, A is a transition relation, s € Q an initial
state and F C Q a set of accepting states. The transition
relation consists of tuples of the form {(q, ¢, p,a,q’) where q
and ¢’ are states, a € L U {e} is a letter, p C C and ¢ (the
transition guard) is a boolean combination of formulae of
the form (xz € I) for some clock x and some integer-bounded
interval I.

A clock valuation is a function v: C — R, or equivalently
a |C|-dimensional vector over RT. We denote the set of all
clock valuations by H . A configuration of the automaton
is hence a pair (¢,v) € @ x H consisting of a discrete state
(sometimes called “location”) and a clock valuation. Every
subset p C C induces a reset function Reset, : H — H
defined for every clock valuation v and every clock variable
xeC as

0, ifxep
v(z) ifxép

Reset, resets all the clocks in p to zero and leaves the other
clocks unchanged.

It has been proven that every timed regular language de-
fined by a generalized regular expression can be recognized
by a timed automaton [15]. We present a few simple exam-
ples of representing TREs using timed automata.

Consider the TRE (p1)r and its equivalent timed automa-
ton shown in Figure 1. Within the rectangle, we have the
acceptor for ¢1 with no timing constraints. For the timed
operator, a new clock z is introduced and a test x € I has
been added to guard every transition leading to the final
state f.

Let us further examine the basic idea behind construction
of a timed automaton for ¢*. If the time interval applies to
each ¢ separately, then the clocks need to be reset at each
new iteration of ¢. On the other hand, if the time interval
applies to the whole ¢ expression, we need the values of
all clocks at each new iteration of ¢ to represent the total
time elapsed in the previous iterations. This is achieved
by adding a new clock x which is never reset to zero and
transitions to the initial state in which all the clocks get the
value of z.

Resetpv(x) = { (1)

2.3 Dominant Properties

The TRE instances generated by the binding contain ev-
ery permutation of events in the alphabet within the TRE



template. There is thus a total of ¥* possible TRE instances.
Generally, we are interested in mining all of the valid TRE
instances. However, these instances contain both interest-
ing and frequently occurring patterns, as well as those that
might have been present just a handful of times in the trace.
We thus use a ranking component to reduce the mined set
to contain only the dominant instances, or specifications.

First, we will only consider properties that are valid [22].
We express that a binding and its corresponding TRE in-
stance are interesting if the TRE instance holds on each
trace, thus 100% valid. We also use the concepts of support
and confidence from [22].

DEFINITION 7  (SUPPORT POTENTIAL). The support of
a TRE instance ™ on a trace t is the number of time points
of trace t which could falsify m.

DEFINITION 8  (SUPPORT). The support of a TRE in-
stance ™ on a trace t is the number of time points of trace t
which could falsify w, but do not falsify .

DEFINITION 9  (CONFIDENCE). The confidence of TRE

instance ™ on a trace t is the ratio of trace support to trace
support potential.
The ranking component we use is a combination of support
and confidence. The effectiveness of selecting a meaningful
subset of specifications depends on picking a good set of
thresholds.

Since the total number of mined TRE instances is often
very large in real systems, we would ideally keep the confi-
dence value at 100%. However, the motivation to reduce this
threshold slightly is due to the presence of imperfect traces.
Traces can be imperfect as a result of dropped events or
execution of faulty programs. In such cases, dominant prop-
erties may not be perfectly satisfied in the collected traces.
Reducing the threshold will thus include dominant proper-
ties from imperfect traces.

We will examine different threshold values for both sup-
port and confidence and will evaluate best thresholds for
reducing all feasible properties to just the dominant and in-
teresting properties.

3. APPROACH
3.1 Workflow

Figure 2 provides a high level overview of the technique we
propose for mining temporal properties from system traces.

TRE
Binding
bV -x Dominant
Properties / Specifications

Figure 2: Property Mining Workflow

Trace 1
Trace 2
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Timed FSM |l Ranker

The binding function accepts a set of N traces and a TRE
template. We use execution traces collected during system
runtime. The time-event traces are generated using instru-
mentation already present in the system and may include
network traffic logs, operating system logs, program instru-
mentation logs, etc. The binding function accepts a set of

N logs, where N > 1. From these logs, the function extracts
an alphabet ¥ of unique events. The TRE template is an
abstraction of the desired temporal property, a temporal re-
lationship of interest for the system. The TRE template
uses a set V of event variables, where the variables range
from O to p. The binding function binds the set V' to the
alphabet of events ¥ to generate a set of TRE instances.

The timed FSM evaluates the TRE instances on the same
set of N traces. The X? TRE instances are encoded into
a p dimensional incidence matrix that is used by the timed
FSM to keep track of state, clocks, and evaluation results.
As the timed automaton evaluates each TRE instance on the
trace, it updates the success and failure values in the matrix.
When the automaton is finished evaluating the TREs on all
the traces, it passes the results matrix to the ranker.

The ranker uses the results matrix generated by the timed
FSM to calculate the confidence and support values for each
TRE instance. The rank criteria are the threshold values for
confidence and support that are used to select only the dom-
inant TRE instances. The ranker uses these criteria to filter
out any of the instances with confidence and support values
below the specified thresholds. Thus, we are left with only
the dominant instances, which are the dominant properties
or specifications for the system being analyzed.

3.2 TRE Mining Algorithm

An intuitive way to evaluate a TRE on a system execution
trace is to recursively evaluate the TRE according to its
semantics at every line of the trace. A high level description
of the steps taken by the proposed algorithm are as follows:

o Representing a TRE Parse the input TRE template
and transform it into a timed automaton.

e Representing a trace Parse the input trace into a
linear array representation where each unique event
has its corresponding time and event id, [time, even-
tid].

e Checking TRE instances over traces Iterate over
the trace and process each time event pair by matching
them to the relevant TRE instances. Update the suc-
cess and reset for the relevant TRE instances at each
trace event.

Algorithm 1 Timed Regular Expression Mining without
Negation

Require: Given a trace with ¥ unique events and a TRE
pattern with p event variables
Ensure: Parse TRE and formulate a finite Timed Automa-
ton — A
1: Initialize an incidence matrix of size XP

2: Initialize the success and reset counters for all permuta-
tions in the matrix

3: for (each unique event ¢ from the trace) do

4: for (each permutation with event ¢) do

5: Update the automaton state;

6: Update the success if A — FS;

7 Update the reset if A — ES;

8: end for

9: end for

10: Evaluate Support - S

11: Evaluate Confidence - C




Algorithm 1, is a detailed description of the above steps
in form of pseudo code. In Algorithm 1, ¥ is the events
alphabet and p is the number of event variables in the TRE
template without negation. A denotes the timed automaton
and F'S and ES denote the final and error states of the
timed automaton respectively. S and C denote the support
and confidence metrics of the TRE instances on the given
trace.

In contrast, Algorithm 2 evaluates the TREs with nega-
tion and has a loop to iterate over all possible permutations
(see the Discussion for an explanation of the differences in
run times of the loops).

Algorithm 2 Timed Regular Expression Mining with Nega-
tion

Require: Given a trace with ¥ unique events and a TRE
pattern with p event variables
Ensure: Parse TRE and formulate a finite Timed Automa-
ton — A
1: Initialize an incidence matrix of size >*
: Initialize the success and reset counters for all permuta-
tions in the matrix
: for (each unique event ¢ from the trace) do
for (each possible permutation) do
Update the automaton state;
Update the success if A — FS;
Update the reset if A — ES;
end for
end for
: Evaluate Support - S
: Evaluate Confidence - C

[\

T A

—_

3.3 Temporal Property Patterns

The proposed technique relies on mining patterns that in-
clude timing constraints. Of interest are the most commonly
occurring temporal property patterns, as described in [26].
In order to make use of these patterns, we extend them by
transforming them into TRE Property Patterns.Let us as-
sume we have several causing events P to share one effect
event S. Examples of the TRE property patterns are pre-
sented in Table 1. The properties impose timing constraints
on events by adding a time interval [z,y], where z < y are
fixed doubles.

Table 1: TRE Property Patterns
Name TRE
Response (= PT; (P; [=S]"; S{, ) [=P]")"
Alternating | [—P, S]"; (P; [=P, S]"; S; [=P, 5] (z, y))"

4. DISCUSSION

We examine the following important characteristics of the
proposed temporal property mining technique: soundness,
completeness, optimality (in terms of space and runtime),
and scalability. We argue that the technique we proposed
and described in this paper is sound and complete.

By sound we mean that a mined specification reported by
our algorithms actually satisfies the given thresholds for con-
fidence and support in the provided input traces. By char-
acterizing our technique as complete we mean that our algo-
rithms report all the mined specifications that comply with
the given thresholds for confidence and support in the pro-
vided input traces. The proposed temporal property mining

technique requires memory space for the multidimensional
results matrix, the timed FSM, and the trace contents. The
storage requirements for the matrix are directly influenced
by p and 3. We encode the matrix to hold the evaluation re-
sults of every TRE instance generated by binding the events
from 3 to the p event variables in the TRE template. There
are XP possible TRE instances, thus we need O(X?) space
to hold the acceptor results.

Table 2: Characterization of the Algorithms
Character-

o Details
istic
Our algorithm continuously keeps track of
Soundness the success and reset rates for each TRE
instance in the results matrix.
Our technique examines every TRE
Complete instance that can be affected in both cases
with and without negation.
Run Time With Negation - O((Z — 1)17 . L)7
Requirement Without Negation - O(p - (E_l)P(p_l) - L)
Memory
Requirement o(r)
Scalability O(L) as L > %, L > p and X is small for
interesting properties

The storage required for the FSM is proportional to the
number of its states [18]. If n is the length of the TRE, then
an equivalent NFA has O(n) states and an equivalent DFA
has at most O(X™) states. Similar to the matrix, complex
properties that encode a lot of relationships between events
result in exponential space growth for the FSM. However,
majority of interesting properties will remain simple [10].
Lastly, the storage requirements for the trace are equivalent
to the length of the trace, O(L).

The value of X, on the other hand, affects the size of each
dimension but has a much smaller effect on the growth of
the matrix since it only affects the base number in the expo-
nential space complexity. In general, for any TRE template,
we are sampling p events from an alphabet of size ¥ —1 with
replacement and ordering. This results in (X — 1)? possible
combinations to be considered in the loop of Algorithm 2.
The automaton will thus evaluate O((£—1)?) TRE instances
for every time-event pair in the trace. Given that the length
of the trace t is L, the worst case execution time per trace
will be O((X — 1)P - L).

In Algorithm 1 for TRE templates without negation. This
case differs in that only the TRE instances where the bound
ed event corresponds to that read from the trace needs to
be evaluated. The automaton evaluates O(p - E~HP(, 1))
TRE instances for every time-event pair in the trace. Given
that the length of a trace ¢ is L, the worst case execution
time per trace will be O(p - <271)P(p,1) - L).

Notice that the approximate relative speedup of Algo-
rithm 1 (without negation) as compared to Algorithm 2
(with negation) is %. This observation will be assessed
through the experimental evaluation in the next section. Fi-
nally, as mentioned earlier, since the majority of interesting
properties are not complex, ¥¥ will remain small in practice.

We do not include the proofs for various characteristics in
the paper due to space constraints.

S.  PERFORMANCE EVALUATION

In this Section, we demonstrate the performance and scal-
ability of our approach using a set of real system traces and
a set of synthetic traces.



The implementation is done using a combination of R and
C++ and is made available as a R package *. We use the R
package ‘Repp’? for integration of R and C++ and make use
of C++ internally for better performance. Ragel® is a frame-
work we used to synthesize Timed Automata for TREs.

We developed TRE property pattern variants, such as
shown in Table 1, of commonly used patterns of QREs [26].
By using these TRE variants as TRE templates, we mined
TRE instances from a real-world system traces: QNX tracel-
ogger. We used different thresholds for support and confi-
dence to uncover interesting TRE instances. Further, to
demonstrate the performance and scalability of our ap-
proach, we synthesized traces for different configurations
w.r.t. the length of traces, number of variables in a TRE
template, and the number of distinct events in traces.
For the experiments, we used a single eight core machine
equipped with the Intel i7-3820 CPU at 3.60 GHz and 31.4
Gb of RAM. The machine runs Ubuntu 14.04 LTS 64 bit.

5.1 TRE Templates

The following four TRE templates are used for the evalua-
tion of both real and synthetic traces. These are the first four
TRE property patterns listed in Table 1 and parametrized
with a time interval of 0 to 3,000.

T-1(response): ("P)*.(((P.(~S)*.S)[0,3000]).("P)*
T-2(alternating): (“P,S)*.(((P.("P,S)*.S)[0,3000]).("P, S)*

5.2 Evaluation using Real QNX Traces

The QNX real time operating system (RTOS) is used in
many safety critical systems, such as medical devices, nu-
clear monitoring systems, vehicles, etc. The QNX RTOS
has a very advanced logging facility, tracelogger. Tracelog-
ger facilitates detailed tracing of the kernel and user process
activity on any system. More specifically, it can log interrupt
activity, various states of processes and threads, communi-
cation within the system, kernel calls, custom user events,
and much more. The logged events give a detailed view into
the behavior of the system, but due to the large quantity of
the produced information are often difficult to make use of
by developers and system designers. These traces are thus
a perfect resource for dynamic mining of system properties
and specifications.

For the evaluation we used a set of traces collected from
an operational hexacopter loaded with the QNX RTOS and
a user control process. Of interest in this portion of the eval-
uation are the optimal thresholds for support and confidence
that would produce a minimal dominant set of specifications
that can be assessed by developers or system designers.

Table 3 presents the results of the evaluation. The hex-
acopter trace used for the evaluation contained 1 million
events, with 205 distinct events. We used two TRE tem-
plates, T-1 and T-2, for the evaluation. The interval used in
the templates is sufficient for most interesting interactions
to complete. The tables report the number of specifications
mined by our algorithm given varying values of support and
confidence.

It is evident from the results in Table 3a that TRE T-1,
the response property, occurs infrequently in the trace for
a large number of events. Due to an abundance of inter-

"https://bitbucket.org/sfischme/tre-mining
2http://www.rcpp.org/
3http://www.colm.net/open-source/ragel /

process communication and system calls within the kernel,
this is expected.

The results show that higher threshold values for support
and confidence result in less specifications being reported.
Let’s assume that a developer or engineer would be able to
assess around 30 specifications per property, more than that
would be abundant. Based on the results in Table 3, the
support threshold should be kept between 10,000 to 50,000
and the confidence threshold should be kept at 0.8 or higher.

Table 3: Mining TREs on QNX Traces
(a) Results of Mining TRE T-1

Support Confidence 09| 08|07/ 06
T- 1,000 194 [ 275 | 324 | 363
1,000 - 5,000 155 | 192 | 211 | 219
5,000 - 10,000 100

10,000 - 50,000
50,000 - 80,000
80,000 - 300,000

39 39 40 40
15 15 16 16
3 3 3 3
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Ne
=
©
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©
[0¢]

(b) Results of Mining TRE T-2

Support Confidence 09| os!lor!os
1- 1,000 30 36 41 45
1,000 - 5,000 27 32 36 39
5,000 - 10,000

10,000 - 50,000
50,000 - 80,000
80,000 - 300,000

Based on the shown results, we should also note that the
TREs are satisfied frequently in QNX traces. This is likely
a consequence of a large event alphabet. QNX traces have
a large versatile mix of events, thus a smaller number of
QNX events may appear to satisfy any particular property.
However, the support threshold can be used to remove the
effects of alphabet size variation, since only the interesting
properties will be satisfied frequently in the traces.

5.3 [Evaluation using Synthesized Traces

Real system traces are suitable for testing the feasibility
and usefulness of our proposed technique. However, they
cannot be easily used to demonstrate some important per-
formance and scalability properties of the approach.

We synthesized a set of traces by varying the following

three parameters: the distinct number of events (the size of
the events alphabet ), the total number of events (length L
of the traces), and the number of variables in TRE templates
(p event variables). We used the TRE property patterns
listed in Table 1. Below we will describe each setup for
evaluating the performance of our mining algorithm, as well
as will present the associated results.
Setup and Results: We performed the experiment under
three different setups. In each of the setups, the value of
one of the three parameters was varied. The values of others
were kept constant. We executed each experiment 10 times.
Setup 1: In this first setup, we varied the total number of
events in the traces. The number of distinct events was set
to 4, and the number of variables in TRE templates was set
to 2. The total number of events in the traces were varied
exponentially.

The results are shown in Figure 3. The x axis represents
the total number of events in the traces, and the y axis rep-
resents the average execution time of our mining algorithm.
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Note that the measurement of the execution time includes
only the processing of trace events (within the main loop of
Algorithm 1). The measurement does not include the initial-
ization of the algorithm, the overhead of which is constant.

As shown in Figure 3, the execution of our mining algo-
rithms grows linearly w.r.t. the total number of events in
the trace. For example, the average execution time is 170
milliseconds for processing 0.1 million events.

Setup 2: In this setup, we varied the number of distinct
events. There were 10,000 events in total in each trace,
and the number of variables in TRE templates was set to
2. As shown in Figure 4, the x axis represents the number
of distinct events in the traces, and the y axis represents
the average execution time of our mining algorithm. The
figure shows that the execution time increases exponentially
with the growing number of distinct events. The average
execution time for processing a trace of 10,000 events with
25 distinct events is 594 milliseconds.

Setup 3: Lastly, in this setup, we varied the number of
event variables in the TRE templates. The total number
of events in the traces was set to 10,000, and the number
of distinct events was set to 10. For this setup, the four
TRE templates used for setup 1 and 2 were varied to include
different numbers of event variables. For the sake of brevity,
we do not list these TRE templates.

Figure 5 shows the variation in the average execution time
w.r.t. the number of variables in the TRE templates. It is
evident that the average execution time grows exponentially.
The average time for processing a trace of 10,000 events with
10 distinct events and a TRE template containing 4 variables
is 4156 milliseconds.

5.4 Comparing Algorithm Performance

Next, we compared the performance of Algorithm 1 and
Algorithm 2, where Algorithm 2 considers TRE templates
with negation and Algorithm 1 considers TRE templates
without negation. The TRE templates listed in Table 4
were provided as input to the two algorithms when using
synthetically generated traces.

Table 4: Comparing Algorithm 1 and Algorithm 2
[ TRE Templates for Algorithm 1 | TRE Templates for Algorithm 2 |
[ ((P.Q.R)[1,5000]) [ ((P."Q*.Q."R™.R)[1,5000]) |

No. of Trace Events vs Execution Time ==—=1
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For evaluation of real system traces we used the TRE
patterns T-1 and T-2.

The trace from QNX used for the evaluation contained 1
million events, with 205 distinct events. It took 3498.37sec
and 34.38sec for TREs with and without negation respec-
tively. It is evident from the figure that mining properties
with negation takes approximately 100 times longer than
mining properties without negation. This corresponds to the
expected speedup of % (see the Discussion section), which
in this case is %

Lastly, the synthesized traces took 111.82sec and 9.50sec
for TREs with and without negation respectively. The size
of the trace used for this experiment was 50,000 events, with
30 distinct events. It is evident from the figure that min-
ing properties with negation takes approximately 12 times
longer than mining properties without negation. This result

also closely approaches the expected speedup of %, which in

this case is 3—20.

6. CONCLUSION

This paper presented two novel algorithms for mining of
TREs with and without negation in embedded system traces.
We presented a detailed complexity analysis of both the al-
gorithms. We presented two sets of experiments to demon-
strate that the algorithm is scalable, robust, sound and com-
plete. First, we presented experimental results on syntheti-



cally generated traces to analyze the scalability of the algo-
rithms with increase of variables in the TRE template, vary-
ing total number of unique events and varying total num-
ber of events in the system trace. Secondly, we validate our
framework on industrial strength safety-critical real-time ap-
plications traces.

The experimental results confirm the asymptotic analysis
of our algorithm’s complexity. We believe that our frame-
work is generally applicable and is especially useful for con-
structing more advanced analysis tools that require TRE
specification mining. In future, we propose to improve the
framework to perform better on TREs with negation and
gain considerable speedup as compared to TREs without
negation.
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