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Abstract—Software specifications are useful for software vali-
dation, model checking, runtime verification, debugging, monitor-
ing, etc. In context of safety-critical real-time systems, temporal
properties play an important role. However, temporal properties
are rarely present due to the complexity and evolutionary nature
of software systems.

We propose Timed Regular Expression Mining (TREM) a
hosted tool for specification mining using timed regular ex-
pressions (TREs). It is designed for easy and robust mining of
dominant temporal properties. TREM uses an abstract structure
of the property; the framework constructs a finite state machine
to serve as an acceptor. TREM is scalable, easy to access/use,
and platform independent specification mining framework. The
tool is tested on industrial strength software system traces such
as the QNX real-time operating system using traces with more
than 1.5 Million entries. The tool demonstration video can be
accessed here: youtu.be/cSd_aj3_LH8

Index Terms—Specification Mining, Timed Regular Expres-
sions, Real-time systems

I. INTRODUCTION

Temporal behavior of programs is an extensively studied
topic [1], [2]. Recently, the idea of mining likely temporal
properties of programs from system traces has become pop-
ular [1]. Many programs lack formal temporal specifications,
and mined specifications are therefore valuable since they can
be used for a wide variety of activities in the software develop-
ment life cycle (SDLC) [3]. These activities include software
testing [4], automated program verification [5], anomaly de-
tection [6], debugging [7], etc.

Critical and commonly occurring behavioral patterns are
typically provided to the mining frameworks, which then mine
system specifications of that form. The mining techniques
identify a set of specifications that are satisfied by traces w.r.t.
certain criteria. Further, mined specifications can assist auto-
mated verification techniques because they provide an easy
and user-friendly way to describe a programs’ specifications.

II. RELATED WORK

Specification mining has gained significant attention in
recent times. Different techniques have been developed for
mining specifications from templates expressed using regular
expressions, LTL [8], STL [9], and other custom formats.
There are numerous temporal property mining tools [10],

[11], [12], [13], [14], [15], [16]. As argued by Ammons et.
al. [10], automated verification techniques are unlikely to be
widely adopted unless cheaper and easier ways of formulating
specifications are developed.

A vast majority of tools for mining of temporal properties
infer properties in the form of state machines. These tools
learn a single complex state machine instantly and extract
simpler properties from it. In [10] they learn a state machine
which captures both temporal properties and data depen-
dencies. These find utility in identifying errors and refining
specifications. These also find use in automatic verification
tools to find bugs in the program execution.

These approaches suffer from one main drawbacks. Mining
of a single state machine from system traces is a NP-hard
problem [17].

Another work based on the intuition that frequently occur-
ring behavior that matches temporal patterns are likely to be
true is the foundation of Peracotta [18], [12], [13].

Specifications refer to properties of systems, for example, a
specification of a typical smart phone might be ’within 5 sec-
onds of pushing the power button the screen should turn on’.
Such specifications find applications in various domains, for
example, anomaly detection in networks [19], specification-
based testing in software development, and formal verification
in hardware [20]. The work on timed regular expression (TRE)
mining by Cutulenco et. al. [21] is the backbone of this tool.
The work is similar to other temporal mining frameworks such
as MONTRE [22].

This paper presents TREM a hosted specification mining
platform designed for easy and robust mining of temporal
properties. The automatic generation of properties is useful for
finding missing program specifications, debugging during the
software development life-cycle, exploration/understanding of
legacy or undocumented software, and anomaly detection.

Section III discusses the design and work-flow of TREM.
Section IV provides an overview of the implied methodology
of TREM through an industrial strength case study. Finally,
Section V concludes the paper by evaluating TREM.

https://youtu.be/cSd_aj3_LH8


III. WORKFLOW AND DESIGN

A. Overview of the Specification Mining Process Used

TREM mines specifications of systems by analyzing the
sequence of events emitted by the system. These sequences
of events are called Traces. Traces must take the form of an
event series with time stamps. The alphabet of a trace is the
set of all events that the trace contains.

Definition 1 (Trace, Event, and Alphabet): An event is a
string. A trace is a sequence of events with a time stamp for
each event. The alphabet of a trace is the set of all events in
the trace.

For example, a trace of a smart phone may look like
the trace displayed in Table I. In this case, the alphabet
is Power_Button, Graphics_Loaded, Screen_On.
The elements of the alphabet are referred to as events.

TABLE I
SAMPLE TRACE

Time (seconds) Event
0 Power_Button
2 Graphics_Loaded
3 Screen_On

Specifications are mined using behavioural pattern tem-
plates. TREM uses Timed Regular Expressions (TREs) [23]
to encode specifications and Timed Regular Expression Tem-
plate (TRET) to encode behavioural patterns. Both TREs and
TRETs are defined below.

Definition 2 (Timed Regular Expression): Timed regular
expressions (TREs) over an alphabet Σ (also referred to as Σ
expressions) are defined using the following families of rules:

• a for every event a ∈ Σ and the special symbol ε are
expressions.

• If ϕ, ϕ1 and ϕ2 are Σ-expressions and I is an integer
bound interval then 〈ϕ〉I , ϕ1 . ϕ2, ϕ1|ϕ2, ϕ∗, and ϕ̂ are
Σ-expressions.

Here . represents the concatenation operator,ˆ is the negation
operator, | is the disjunction or OR operator, and ∗ denotes
the Kleene-∗. These operators only allow for specifications
on the order of occurrence of events without considering the
time at which these events occur. The 〈φ〉I operator allows for
the creation of temporal properties; this operator restricts the
metric length of the time-event sequences in [φ] to be in the
interval I . It is important to note that we use TREs, as defined
above, to provide specifications.

Definition 3 (Event Variables): An event variable is an
atomic proposition in a TRET that can take any event value
from the trace alphabet Σ.

Definition 4 (TRE Template (TRET)): A TRE template is a
TRE in which all of the atomic propositions are either event
variables or events.

We use the term event variable to denote a placeholder
for an event. For example, the TRE template < 0.1 > [x, y]
represents “0 is always followed by 1 within the time interval
[x,y]”, where 0 and 1 are event variables and where x ≤ y
are fixed doubles used in the time interval. We use p to denote

the number of event variables present in a TRE template. In
the given example p is 2. Any expression within < and > has
to be followed by a time interval that is specified within [ and
]. The values x and y are separated by ,(comma).

Definition 5 (Binding): Let Σ be an alphabet of events and
let V be a finite set of event variables. Then, a binding is a
function b : V → Σ

A TRE instance corresponds to a TRE template with an
identical structure. Applying a binding to the event variables
in a TRE template creates a TRE instance corresponding to
that binding. The binding is thus a map used to replace
event variables with events from the given alphabet. We mine
all occurrences of TRE instances generated by the binding
function on the alphabet of the input trace.

The mining framework TREM uses timed automaton for
mining properties. Timed automata [24] have been investigated
quite rigorously in the recent past. The main motivation
for using timed automata is their suitability for modeling
time dependent behavior, and the ability to monitor their
reachability [25]. Timed automata are equipped with clocks,
making them perfect for modelling and verification of real-
time systems’ behavior [24]. Classical models like finite
automata, Petri-nets, etc., are not suitable since they cannot
express such explicit timing constraints naturally present in
real-life systems. Another important property of the timed
automata is that the reachability properties are decidable [24],
even though the timed automata have an infinite number
of configurations. The main idea behind this result is the
construction of a region-automaton, which finitely abstracts the
behavior of timed automata in a way that checking reachability
in a timed automaton reduces to checking reachability in a
finite automaton. More details on the implementation can be
found in [21].

The TRE instances generated by the binding contain every
permutation of events in the alphabet within the TRET. There
is thus a total of Σp possible TRE instances. Generally, we are
interested in mining all of the valid TRE instances. However,
these instances contain both interesting and frequently occur-
ring patterns, as well as those that might have been present just
a few times in the trace. We thus use a ranking component to
reduce the mined set to contain only the dominant instances or
specifications. We consider properties that are both frequently
occurring and interesting as dominant properties. We use the
concepts of support and confidence from [1][26] for finding
dominant properties.

Definition 6 (Support): The support of a TRE instance π on
a trace t is the number of time points of trace t which do not
falsify π.

Definition 7 (Confidence): The confidence of TRE instance
π on a trace t is the ratio of trace support to trace number of
total instances.

The ranking component we use is a combination of support
and confidence. The effectiveness of selecting a meaningful
subset of specifications depends on picking a good set of
thresholds.



Since the total number of mined TRE instances is often very
large in real systems, we would ideally keep the confidence
value at 100%. However, the motivation to reduce this thresh-
old slightly is due to the presence of imperfect traces. Traces
can be imperfect as a result of dropped events or execution
of faulty programs. In such cases, dominant properties may
not be perfectly satisfied in the collected traces. Reducing the
threshold will thus include dominant properties from imperfect
traces.

Fig. 1. TRE Mining workflow [21]

Figure 1 provides a high level overview of the technique
we use for mining temporal properties from system traces.

The binding function accepts a set of N traces and a TRE
template. We use execution traces collected during system run
time. The time-event traces are generated using instrumenta-
tion already present in the system and may include network
traffic logs, operating system logs, program instrumentation
logs, etc. The binding function accepts a set of N logs, where
N ≥ 1. From these logs, the function extracts an alphabet Σ
of unique events. The TRE template is an abstraction of the
desired temporal property, a temporal relationship of interest
for the system. The TRE template uses a set V of event
variables, where the variables range from 0 to p. The binding
function binds the set V to the alphabet of events Σ to generate
a set of TRE instances.

The timed FSM evaluates the TRE instances on the same
set of N traces. The Σp TRE instances are encoded in the p
dimensional incidence matrix that is used by the timed FSM
to keep track of state, clocks, and evaluation results. As the
timed automaton evaluates each TRE instance on the trace, it
updates the success and failure values in a matrix. When the
automaton is finished evaluating the TREs on all the traces, it
passes the results matrix to the ranker.

The ranker uses the results matrix generated by the timed
FSM to calculate the confidence and support values for each
TRE instance. The rank criteria are the threshold values
for confidence and support that are used to select only the
dominant TRE instances. The ranker uses these criteria to filter
out any of the instances with confidence and support values
below the specified thresholds. Thus, we are left with only
the dominant instances, which are the dominant properties or
specifications for the system being analyzed.

Let us demonstrate the above work-flow through an ex-
ample. Consider the TRE template (<1.0>[2,5])+, which is
a simplified template for the response pattern. The ‘.’ is the
concatenation operator and the ‘+’ is the operator for one or
more instances of the expression. The template specifies that

some log event 1 is followed by another log event 0 within
2 to 5 time units, and this pattern occurs at least once in the
execution trace. The property contains two event variables 0
and 1, meaning that the value of p is 2. The binding function
will bind the events in Σ to the template and generate an
adjacency matrix for the TRE instances.

The timed finite state machine (FSM) iterates over the time
event pairs in a trace and at each new event evaluates the
relevant TRE instances. Lets assume the matrix contains an
entry where 0 is bound to an event “send" and 1 is bound to
an event “receive". The FSM reads in the event “send" in the
trace at time 0. According to the property, if the next event
in the trace is not “receive", the FSM will enter an error state
and will increase the failure count for this TRE instance to 1
in the matrix. Similarly, if the next event is “receive", but the
time stamp is 6, the failure count would increase. If the next
event is “receive" and the time stamp is 3, which is within the
2 to 5 interval, then the automaton will enter a final state and
will increase the success count for the TRE instance.

Once the entire trace has been processed, the ranker will
iterate over the matrix to calculate the confidence and support
values for each TRE instance. The ranker will report only the
properties that meet the defined thresholds for these metrics.

B. Interface Design Overview

TREM is a web application. The front end is responsible for
providing an interface to work with TREs, set up experiments,
view documentation, and display results.

The back end is responsible for specification mining and
trace storage. This allows the front end to be light and delegate
the computationally intensive processes to the server (Figure
2).

Fig. 2. Overview of interface

C. Frontend Design

The front end of TREM provides multiple ways to create
TRETs, select or upload traces, and display results (Figure 3).

To create a TRET we provide 3 options:
• Visual TRET creation using Blockly: We use Google’s

library Blockly to create a visual interface to enter
TRETs. There is a Blockly block equivalent for every
rule in the syntax required to write TRET’s. Therefore,
the Blockly interface has the full expressive power over

https://developers.google.com/blockly/


Fig. 3. Overview of front end interface

TRETs. Figure 4 shows a sample Blockly expression. It
is read from top to bottom, for example in Figure 4, the
equivalent TRET is <0.1>[0,3].

Fig. 4. Simple Blockly expression for a TRE

• Pre-defined TRETs: There is also a list of commonly
used pre-defined TRETs based on [2] with accompanying
documentation. Figure 5 shows a sample pre-defined
TRET with its explanation.

Fig. 5. Pre-defined TRET with its explanation

• Direct TRET Creation: Finally, there is also a field which
allows the user to directly enter their own TRETs.

Blockly TRET models may be converted to and from text
TRETs. This is encouraged to make the user comfortable with

the syntax of TRETs over time.
There are three ways to provide the traces for evaluation to

the tool as outlined below:
• Database Connection: The tool provides option to connect

any Postgres database. A list of traces are shown for
each database connected to TREM, any number of these
may be selected. Each comes with the option to limit the
length of the traces.

• Custom Trace: A field is provided into which a short
custom trace may be written. A pattern is mined on all
the selected traces and the custom trace if present.

• CSV File: Traces can also be uploaded in a csv file
format.

The results are displayed in three different ways for ease of
visualization and understanding of the end user (Figure 6).

• Histogram: For immediate visual feedback, a histogram is
generated that displays the event combinations resulting
in the largest success values. The histogram displays the
event combination, success and reset values.

• Tables: There are 2 tables displayed per trace, the first ta-
ble is the equivalent of the histogram. It displays the event
combination, success and reset values in the decreasing
order of successes. The second table displays all event
combinations that have sufficient support and confidence
values when compared to the respective threshold values.

• CSV file: Finally, a CSV file is generated with the entire
set of results. The results take the form of matrices.
The first one contains the success values, the second
one contains the reset values, and a list of the event
combinations that passed the support and confidence
threshold.

D. Interface Backend Description

The back end is made up of a demo_database, connections
to external databases, and the interface with the TRE mining
framework.

During execution, the relevant traces are loaded, the TRET
is parsed, and the traces are then mined by the TRE mining
framework [21]. The results are processed and returned to the
graphical user interface.

IV. INDUSTRIAL CASE STUDY

A. Performance Evaluation using Real QNX Traces

The QNX real time operating system (RTOS) is used in
many safety critical systems, such as medical devices, nuclear
monitoring systems, vehicles, etc. The QNX RTOS has a very
advanced logging facility, tracelogger. Tracelogger facilitates
detailed tracing of the kernel and user process activity on
any system. More specifically, it can log interrupt activity,
various states of processes and threads, communication within
the system, kernel calls, custom user events, and much more.
The logged events give a detailed view into the behavior of
the system, but due to the large quantity of the produced
information are often difficult to make use of by developers
and system designers. These traces are thus a perfect resource
for dynamic mining of system properties and specifications.



Fig. 6. TRE mining results of QNX trace from hexacopter using the alternating TRET

For the evaluation, we used a set of traces collected from an
operational hexacopter loaded with the QNX Neutrino 6.4 and
a user control process. The vehicle is a commercially avail-
able gyro-stabilized Mikrokopter hexacopter equipped with 6
electric motors and a 6200 mAh lithium polymer battery. The
hexacopter can be seen in Figure 7. The trace length for our
expriments have 1.6 million event entries.

Fig. 7. The hexacopter in flight

The trace is uploaded into a database and then connected to
TREM via the ’Connect Database’ option. For evaluation we
use the pre-defined TRET, the “alternating" pattern [2] as it is
quite common in real-time embedded systems. The intuition
for using an alternating pattern arises from the fact that a vast
majority of tasks in real-time systems are periodic.

One can either select from our pop-up screen or customize
it as per the system under consideration either in text or
Blockly interface. For example, the time constraint for each
system would be unique and depend on the time units of
the system trace. In our case, we modify the time constraint
from [0, 1000] to [0, 4000] since that is a desirable value for
inter-event time lapse for QNX traces from hexacopter. The
histogram view of the results is presented in Figure 6. The
results presented here are for support = 1 and confidence =
0.9. These parameters can be changed to refine the results for
better understanding of the system under evaluation.

B. Result Analysis

The properties mined by TREM under specified thresholds
for support and confidence are analyzed for understanding the
system. The CSV file contains all the mined specification that
take the form of the alternating pattern. Our goal is to identify

dominant and interesting properties of the system. Therefore,
we sort the TRE instances that obey the thresholds of support
and confidence based on their frequency of occurrence in the
system trace.

In Figure 6, the mined properties from the hexacopter trace
are evaluated, each bar represents a unique instance of a
TRE. In this case, the most dominant property is where, the
placeholder 0 is associated with the event APS_NAME and the
placeholder 1 is associated with APS_NEW_BUDGET. These
events are associated with QNX and ensure that there is suf-
ficient memory available all the time for the application. The
event APS_NAME creates a new partition to ensure sufficient
memory is available. The event APS_NEW_BUDGET is emitted
automatically when the adaptive partitioning scheduler clears
a critical budget as part of handling a bankruptcy situation.
The timing constraint ensure the timely response to a memory
request, which is extremely critical in real-time systems. This
is just one of the dominant properties and is very important
as it ensures that in a safety critical real-time application such
as a hexacopter, there is always sufficient memory available.

The significance of such properties is better understood
in case of system failure. If the system prohibits memory
provisioning for the application, it may lead to catastrophic
consequences. For example, in case of hexacopter, the auto-
pilot module tries to obtain direction information from gy-
roscope to send a control signal to the elevation controller.
The inertial measurement unit (IMU) requires memory to store
and process this information in real-time. For a faulty system
(the fault can be in IMU or memory management system), it
is predicted that TREM results would reveal that either the
property described above is completely missing or has more
resets. This indicates that the system is trying to clear memory
but unable to do so. Not only does this allow us to monitor
anomalous behavior of the system, but also helps in post-
mortem analysis.

V. DISCUSSIONS AND CONCLUSIONS

A. Evaluation and Scalability

TREM’s server side is written in python using the micro-
web framework Flask [27]. TREM delegates all of the memory
and processor intensive tasks such as trace storage and mining
to the server.

TREM requires minimal resources on the client device.
This allows TREM to scale to handle large system traces.
We have tested the framework on industrial strength system



traces from QNX, Controller Area Network (CAN) bus, and
Robotics Operating System (ROS) messages of length more
than 2 million event entries.

The space and time complexity of our framework depends
on the complexity of the TRET. It is exponential w.r.t the
number of variables or placeholders in the TRET whereas
linear w.r.t to the length of the trace. Generally, most prop-
erties in systems are simple with only 2 or 3 variables. The
detailed derivation of the space and time requirements of our
framework has been presented in [21].

B. Conclusion

Since TREM is a web app, the client is platform indepen-
dent and lightweight. This allows it to be run on most modern
terminal devices with a web browser. TREM is containerized
through Docker, and can be deployed on most existing servers.

TREM allows for fast iteration of specification mining
patterns or TRETs due to the following:

• Processor intensive tasks are done on the server
• Traces may be shortened quickly and easily to allow for

testing
• Short custom traces may be entered to quickly test

different variants of your TRETs
TREM provisions for mining of TRETs combined with the
visual interface and a visual summary of results. This enables
learning and rapid development of specifications for complex
software, embedded software, legacy systems, and evolution
of software systems.
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