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Abstract—Many researchers have studied the behaviour of
successful developers while debugging desktop software. In
this paper, we investigate the embedded-software debugging by
intermediate programmers through an exploratory study. The
bugs are semantic low-level errors, and the participants are
students who completed a real-time operating systems course in
addition to five other programming courses. We compare between
the behaviour involved in successful debugging attempts versus
unsuccessful ones. We describe some characteristics of smooth
and successful debugging behaviour.

I. INTRODUCTION

Embedded systems represent 98% of all computers
(DARPA, 2000). An embedded system must accurately fulfill
its functional requirements in addition to strict timing and re-
liability constraints. Examples of embedded systems are high-
performance networks and robotic controllers. More applica-
tions of embedded systems are safety critical. They include the
new generation of airplanes and spacecraft avionics, and the
braking controller in automobiles. The correctness of these
systems depends, not only on the results they produce, but
also on the time at which these results are produced [1].
The verification process of such systems is complicated, and
consequently many testing techniques and tools exist to ensure
system’s accuracy. That intensifies the necessity of enhancing
developer’s debugging skills.

As an essential part of software-system development, de-
bugging is a difficult and expensive task. A study in 2002
has revealed that software engineers spend an average of
70%-80% of their time testing and debugging [2]. We can
define debugging roughly as the process of error detection
and maintenance of functional correctness. For desktop appli-
cations, many researchers conducted experiments to determine
the behaviour which promotes successful bug repair and time
management.

In this paper, we focus on the characteristics of successful
debugging of embedded software. Debugging of embedded
software is challenging due to (1) hardware interaction, e.g.,
loading code to the target board, (2) use of low-level language
semantics, e.g., memory management in C, and (3) the need
to respect the system’s timing requirements. We believe the
enhancement of the developers’ debugging skills makes the
current research work in the embedded-systems domain more
promising and beneficial for the industrial market. That re-
search work includes testing of embedded automotive commu-

nication systems [3], time-aware instrumentation of embedded
software [4], [5], and debugging of concurrent systems [6].

In this paper, we present an exploratory study, in which
14 intermediate-level programmers debug semantic errors of
embedded software. In the study, we use seven distinct bugs
classified into two categories: incorrect hardware configuration
and memory leaks. We explore the debugging behaviour of
the participants and provide comparisons between successful
and unsuccessful attempts. Moreover, we introduce the activity
visitation pattern: a graphical representation for the debugging
behaviour.

II. RELATED WORK

Many program-comprehension studies, since the 1970s,
have inspected software debugging techniques of developers.
As one of the first, Gould examined the behaviour of ex-
perienced programmers while debugging non-syntactic errors
in FORTRAN programs [7]. One goal of such studies is
understanding the activities associated with the debugging and
testing processes [8], [9], [10], [11]. For instance, Murphy et
al. [10] presented a qualitative analysis of debugging strate-
gies of novice Java programmers. The authors stated twelve
categories of debugging strategies used by the subjects and dis-
cussed their effectiveness, e.g., tracing, pattern matching, and
using resources. Another objective is the identification of the
difficulties faced by the developers during software-change or
maintenance tasks. Examples of debugging challenges include
bug localization [11], understanding unfamiliar code [11], and
gaining a broad understanding of the system [12]. Moreover,
there exists a wide range of empirical and exploratory studies
that examined the debugging techniques of different experi-
ence levels of programmers, and also, compared successful to
unsuccessful behaviour [13], [14], [15], [16]. Lastly, implica-
tions for teaching and evaluation of the existing development
tools based on the studies’ insights are presented in [13],
[12], [17], [10], and [14]. To our knowledge, this paper is
the first work to address embedded-software debugging, which
includes low-level programming and hardware interaction.

III. METHODOLOGY

A. Participants

The study’s participants are intermediate-level developers.
Each of them met the following criteria:
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• They have completed a Real-time Operating Systems
course in the previous year in addition to five differ-
ent programming courses throughout their undergraduate
studies.

• In the Real-time Operating Systems course, they imple-
mented a real-time operating system (RTOS) on a Janus
MCF5307 ColdFire Board similar to the study’s platform.
They also have worked on the same RTOS in another
course.

• They have had an average of four co-operative work terms
(about 2400 working hours in total).

Participants meeting these criteria have sound knowledge of
the board and the type of program they are going to de-
bug. Hence, these participants have intermediate programming
skills for embedded-software development. We scheduled each
participant in a separate two-hour time slot.

B. System

The participants attempted to fix bugs contained within a
small real-time operating system (RTOS) implemented on a
Janus MCF5307 based microcontroller board. The RTOS is in
C language; it consists of 23 C files and 15 header files. In
total, it has 3085 lines of code (LOC). That RTOS is similar
to the one they have implemented in the previous year. So
the participants in our study are familiar with such low-level
software and have reasonable experience with the RTOS.

The RTOS supports a basic multiprogramming environment
with five priority levels and preemption. It also supports
simple memory management, inter-process communication,
basic timing services, an I/O system console, and debug-
ging support. The RTOS contains a fully integrated timer,
a dual UART (universal asynchronous receiver/transmitter),
and several other peripheral interface devices. The RTOS and
the application processes use up to one megabyte of RAM.
Software development for the RTOS is supported by gcc and
the ColdFire/68K cross-compiler. During the study sessions,
we provided the participants with the RTOS documents and
the Janus MCF5307 ColdFire Board manual.

C. Bugs

This study includes seven semantic bugs categorized into
incorrect-hardware-configuration bugs and memory leaks.
Misconfiguration and memory errors constitute a notable share
of the root causes of software bugs [18], [19]. Each bug is
provided with a report that states the buggy behaviour of the
system. The participant examines only one bug at a time.

The first bug category is incorrect hardware configuration.
Bug-1 report states the following: ”Interaction with the OS
does not result in understandable messages; corrupted text
appears on the screen.” Bug-1 is an incorrect assignment
of the serial port baud rate (Line 54 in Listing 1). Thus,
the system shows corrupted text on the screen when com-
municating. Bug-2 has an incorrect value of timer’s match
register. This causes the timer interval to be three times
slower than intended. Bug-7 causes the board to reset about
six seconds after launching the OS because the function

resetWatchdog() resets the Watchdog timer to a wrong value.

50 i n t in i tUARTIProc ( ) {
51 . . .
52 /∗ S e t t h e baud r a t e ( 1 9 2 0 0 ) ∗ /
53 SERIAL1 UBG1 = 0x00 ;
54 SERIAL1 UBG2 = 0x49 ;
55 /∗ S e t c l o c k mode ∗ /
56 SERIAL1 UCSR = 0xDD;
57 . . .
58 }

Listing 1. Bug-1 code

The second-category bugs contain memory leaks. In Bug-3,
the OS stops responding shortly after launching one of the
user processes because it fails to release messages that it
receives. This causes the OS to run out of user memory
after two iterations of the process. Listing 2 shows the
code portion of Bug-3. Two statements are missing: re-
lease memory block(pMsgDelay) directly after Line 110, and
release memory block(pMsgIn) directly before Line 115. In
Bug-4, there is a missing function call in an interrupt process
to release messages that it prints to the terminal. This causes
the OS to run out of user memory after some interaction. A
similar problem occurs in Bug-5; the Wallclock process fails to
release the delay messages. As a result, the OS stops respond-
ing some time after launching the Wallclock process. In Bug-6,
although the proper release memory block() calls exist in the
OS, no memory is actually freed since the boundary checks
of the user memory address range are incorrect.

100 void ProcC ( ) {
101 . . .
102 whi le ( 1 ) {
103 . . .
104 i f ( ( pMsgIn−>pData ) [ 0 ] == 0) {
105 pMsgOut = reques t memory b lock ( ) ;
106 . . .
107 send message ( PID , pMsgOut ) ;
108 whi le ( 1 ) {
109 pMsgDelay = r e c e i v e m e s s a g e ( ) ;
110 i f ( pMsgDelay−>msg type == wakeup ) {
111 break ;
112 } e l s e { . . . }
113 }
114 }
115 r e l e a s e p r o c e s s o r ( ) ;
116 }
117 }

Listing 2. Bug-3 code

D. Data Collection
Our exploratory study involved three methods for data

collection:
1) We video-recorded the computer screen during the study

sessions using CamStudio [20]. Three observers coded
the videos using the CowLog software [21] to mine
the videos and extract information revealing the de-
bugging behaviour. For each bug per participant, the
video-mining process resulted in time-stamped files that
show (1) the examined bug, (2) the activity, e.g., code



browsing and editing, (3) the code module, and (4) the
debugging technique such as tracing and adding print
statements.

2) Each time a participant compiles the system, the system
is copied to a .try folder. The .try folders are used later
to view the edits made in every compilation try.

3) Each participant filled out a pre-session and a post-
session form in addition to a post-bug form for each
bug he examined.

IV. RESULTS AND DISCUSSION

This section lists our observations based on the collected
data. These observations (1) highlight the debugging activities
used by the developers to fix the low-level bugs, and (2)
compare between the successful debugging attempts versus the
unsuccessful ones. Table I presents a summary for the seven
bugs in the study.

Definitions. The total examining time of a bug is considered
to be the whole time spent by the participant to investigate
that bug (including all debugging activities). The total editing
time refers to the entire time spent editing the program, which
includes insertion, modification, and deletion of code lines. We
define the time spent to locate a bug as the time elapsed before
the first edit to the right function. Additionally, we define the
time to fix a bug as the difference between the total examining
time and the time to locate the bug, which is calculated only
for bugs that have been fixed. Finally, we consider a bug is
located if the participant edited the right function.

Observation 1. Locating the bug is harder than fixing it. In
93.75% of the post-bug forms filled out by the participants,
they considered the difficulty of locating the bug to be higher
than or equal to the difficulty of fixing the bug (30 out of 32).
In all but one cases, the time spent to locate the bug is higher
than the time spent to fix it. In total, the participants located
only 63.82% of the bugs (30 out of 47).

Observation 2. We investigated the activity visitation pat-
tern, which shows the frequency of transition from each
activity to another while examining a bug. The activities are
code browsing, code editing, document reading, compiling,
and testing. Figure 1(a) shows the activity visitation pattern
of the successful debugging attempts, i.e., the cases where the
participants successfully fixed the bug. Figure 1(b) presents
the pattern of the unsuccessful attempts where the participant
failed to fix the bug. Every node represents a debugging
activity. We calculated the average value of the number of
transitions between each two activities, and accordingly, set the
thickness of the transitions. Thus, the thickness of a transition
represents the frequency of switching from the activity of the
source node to that of the destination node.

In general, the unsuccessful attempts have a higher number
of transitions than the successful ones. The average number
of transitions between activities are 43.11 and 26.97 in the
unsuccessful and successful attempts consequently. We believe
that the high number of transitions in the unsuccessful attempts
conveys the indecisive behaviour of the participants which can
be a reason for failing to fix the bugs.

Figure 1(a) demonstrates the path of code browsing fol-
lowed by code editing then compiling and finally testing. This
sequence repeats until the bug is fixed. Although that path
exists in Figure 1(b), many other transitions interpose it. We
believe that the mentioned path supports a smooth and suc-
cessful debugging process. In Figure 1(a), the transition from
the code browsing activity to the testing one is frequent. This
may convey the attempts of the participants to comprehend
the program based on its output.
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(a) Successful attempts.
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(b) Unsuccessful attempts.

Fig. 1. Activity visitation patterns

Observation 3. Successful debugging behaviour considers
alternatives, which means considering that a bug can have
multiple causes. In Bug-3, two lines of code are missing,
although, many participants inserted only one line. Eleven
participants examined this bug and 10 located it. However,
only three participants successfully fixed it.

Observation 4. Successful debugging behaviour implies
editing only one function in a compilation try. This is equiv-
alent to avoiding multiple edits behaviour. The absence of
multiple edits in all tries correlates with low total editing time,
low time to locate bug, and low total examining time. However,
the presence of multiple edits in any try does not necessarily
correlate with high total editing time, high time to locate bug,
etc. The multiple edits behaviour was avoided in 61.11% of
the successful debugging attempts (11 out of 18).



TABLE I
BUG SUMMARY

ID Name Category Examined By Located By Fixed By Average Examining Time
1 Incorrect Baud Rate Incorrect HW Config. 14 36% 21% 46 min
2 Incorrect Timer Register Value Incorrect HW Config. 7 43% 14% 30 min
3 Memory Leak in User Process C Memory Leak 11 91% 36% 37 min
4 Memory Leak in UART Memory Leak 6 67% 50% 23 min
5 Memory Leak in Wallclock Memory Leak 4 100% 100% 15 min
6 Incorrect Memory Boundary check Memory Leak 3 33% 33% 26 min
7 Incorrect Watchdog Value Incorrect HW Config. 2 100% 100% 17 min

Observation 5. Successful debugging behaviour requires
running the first compilation try without any changes to the
program to investigate the behaviour of the buggy system.
88.88% of the successful attempts maintained this behaviour
(16 out of 18). 86.66% of the located-bug cases maintained
this behaviour (26 out of 30). 75% of the participants who
edited the program before the first compilation try failed to
fix the bug (6 out of 8).

Observation 6. Successful debugging behaviour maintains
a smooth approach to locating and fixing bugs with almost no
retesting for a previously tested function. That is equivalent
to avoiding ping-pong behaviour. It means, according to the
editing location, moving far from the bug after approaching it
at least twice. Figure 2 shows an example of the ping-pong
behaviour in Participant-7 debugging session of Bug-3. The
x-axis represents the number of the compilation try. The y-
axis represents the location in the program that the participant
edited in each try. There are four editing categories:

1) The participant edits the right function which contains
the bug. That means the participant located the bug.

2) In the right file which includes the bug, the participant
edits any function except the right one.

3) The participant edits somewhere other than the file
containing the bug.

4) The participant compiles the system without making any
modifications.

Figure 2 shows a non-smooth debugging process. The partici-
pant made no code changes in the first compilation try. In the
second try, the participant edited a function somewhere other
than the right file. Then, he modified the right function in the
third and the fourth tries, which means he located the bug;
but in the fifth and the sixth tries, he again edited a function
far from the bug location. He switched between editing the
right function and editing somewhere else four more times. It
looks like random edits in different functions, files, and code
modules. The absence of the ping-pong behaviour correlates
with low time spent to locate bug and low total examining
time, but the presence of the ping-pong behaviour does not
necessarily correlate with high time spent to locate bug or
high total examining time. 88.88% of the successful debugging
attempts did not include the ping-pong behaviour (16 out of
18). Also, 80% of the located bug cases did not include the
ping-pong behaviour (24 out of 30), and 75% of the ping-pong
behaviour cases are unfixed (6 out of 8).

Consecutive Compilation Tries
1 2 3 4 5 6 7 8 9 10 11 12 13

NoEdit

SomewhereElse
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Fig. 2. Example of the ping-pong behaviour (Participant-7, Bug-3)

V. THREATS TO VALIDITY

Video Coding. The process of analyzing the videos is chal-
lenging due to the difficulty of categorizing human behaviour.
Three observers coded the videos such that the videos of
six participants were coded by two observers in conjunction.
To validate the information extracted from the videos, we
calculated the inter-rater reliability value using Fleiss’ kappa
method for categorical ratings. It is equal to 0.74 which
indicates substantial agreement among the three observers.

Learning Effect. The bugs’ identifiers did not introduce
biased results. While the bugs are numbered in the same
order, the participants were free to choose the bugs to inspect.
They examined different sets of bugs (e.g., one participant
examined bugs 1, 3, 5 and 6; another one examined bugs 1, 2,
3 and 4). We found no correlation between the examining time
and the bug identifier. Also, there is no correlation between
the examining time and the order in which each participant
examined the bugs.

Bug Localization. We consider a bug is located if the
participant edited the right function, but in some cases, he
might not recognize that he located it (e.g., inserting a print
statement). Since we can not read the participant’s mind,
we had to set such an assumption to provide an accurate
measurement for locating bugs. On the other hand, it is a
reasonable assumption since all the bug-containing functions
are short; they have an average of 37 LOC.

VI. CONCLUSION

In this paper, we presented the first exploratory study of the
debugging behaviour of embedded-software developers. We
also demonstrated the use of the activity visitation pattern.
In general, debugging is a complex and time-consuming task
especially for embedded software. Understanding the debug-
ging behaviour of developers should be achieved before the
creation of aiding tools. This work provided results that can
guide future researchers on automated debugging tools for the
embedded domain.
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