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Abstract. In recent years, a lot of effort has been expended in deter-
mining if SAT solver performance is predictable. However, the work in
this area invariably focuses on individual machines, and often on indi-
vidual solvers. It is unclear whether predictions made on a specific solver
and machine are accurate when translated to other solvers and hard-
ware. In this work we consider five state-of-the-art solvers, 26 machines
and 143 feature instances selected from the 2011 to 2014 SAT competi-
tions. Using combinations of solvers, machines and instances we present
four results: First, we show that UNSAT instances are more predictable
than corresponding SAT instances. Second, we show that the number of
cores in a machine has more impact on performance than L2 cache size.
Third, we show that instances with fewer reused clauses are more CPU
bound than those where clause reuse is high. Finally, we make accurate
predictions of solution time for each of the instances considered across a
diverse set of machines.

1 Introduction

Despite the focus, within the SAT community, on determining the predictability
of SAT instances, there are few works concerning the effectiveness of predictions
made on one machine when executing instances on a second machine. This has
led to two problems. First, any tools that make predictions of solver performance
can only make them based on instances that have been solved on the same ma-
chine the predictions are to be valid on. Secondarily, it is virtually impossible
to compare results of past publications in this field without first repeating the
experiments on the same hardware. Cross machine models will enable practi-
tioners to make predictions of solver performance on new hardware without first
having to run known benchmarks, reducing overall effort. Additionally, if it is
possible to determine an “absolute” solution time for an instance — regardless
of hardware used — it will be possible to combine benchmarking data from mul-
tiple sources. This will allow larger, more comprehensive studies of SAT solver
performance to be undertaken without duplication of effort.

2 Experimental setup

The experiments included here were run on the Datamill [1] platform. Datamill is
designed to run sets of experiments on a heterogeneous set of hardware, and op-
tionally varies system level properties on execution. All machines on the Datamill



platform run Gentoo Linux with kernel version 3.3.8, and GCC 4.5.3. A full list-
ing of the machines used is available in Appendix A.

Due to memory constraints within the different machines, and timing con-
straints for data gathering, it was not possible for every machine, instance, solver
combination to complete successfully. To mitigate any bias this may cause in our
analysis, we limit ourselves to the set of machines, instances and solvers such
that every machine solved every instance in the set on at least one solver. This
reduced the number of trials (individual combinations of solvers, machines and
instances) available for analysis from 15 588 to 13 648. The number of machines
reduced to 21 while the number of instances remained unchanged.

For each machine-based parameter px and instance i, we used a standard
linear regression with Equation 1 to calculate the adjusted R2 value ri,px

for
all trials t using the instance i. As such, the value ri,px

expresses the amount of
variability in solution time of instance i accounted for by factor px. The adjusted
R2 metric ranges from zero to one, with one being a perfect model and zero
indicating that the provided model does not explain the response variable (time).
For brevity, the remainder of this document will use the notation time ∼ p in
place of Equation 1.

timet ∼ β0 + β1px,t + εt (1)

We then consider different instance based characteristics cy to determine
whether classes of instances (identified as having similar cy values for specified
values of y) are more or less reliant on different machine parameters.

In total, we considered 34 instance characteristics and 7 machine parame-
ters. While not all of them were found to be significant, those that were are
discussed in this work. The machine parameters considered were: CPU speed,
CPU architecture, CPU manufacturer, CPU cores, FSB speed, RAM size and
L2 cache size. In the future, we intend to increase this set of features, particu-
larly concerning cache sizes and RAM speeds. However, this information is not
available for the machines at this time. Modern CPU’s express their FSB speed
in GT/i whereas older CPUs utilise MHz. GT/i is considered a more accurate
measurement, which describes not only the clock speed of the bus but the data
width. As such, we converted all measurements of FSB speed to GT/i. We in-
cluded CPU Model to determine if CPUs from different models/manufacturers
with similar specifications perform differently. A reason for this could be cache
replacement policies and implementation specific timing characteristics, such as
the proportion of integer vs floating point cores within the CPU. The data in this
paper is available online [2].The instance characteristics considered are listed in
Appendix B.

The five solvers considered were MiniSAT 2.0 [3], Glucose 3.0 [4], Lingeling
[5], Plingeling [6] and SWDiA5BY 2.3. These were the silver and gold medal
winners of the 2013/2014 SAT competitions for the application category. While
PeneLoPe was also a medal winner, it was excluded as it did not compile on the
target environment.



We randomly selected instances from the 2011 to 2014 SAT competitions
for these experiments. They were selected using a stratified random sampling
technique to ensure that we included a diverse set of instances in the sample.
The stratified sample considered values of Q, |Co|, |V |, |Cl|, CVR and solution
time. At most three instances were selected for each range of the measured
property.

Each pair of instance and solver was then run on each of the 26 machines.
Each trial was allowed a maximum of two hours for completion and trials were
executed in batches. Each batch contained no more than 18 trials to keep the
batch time (including installation, setup, solving and collection) under two days,
which is a requirement of DataMill. Each machine ran 40 batches, the order of
trials was randomized prior to batching, as such each batch for each machine
contained the same instances, additionally machines ran batches in a random
order.

Prior to running the experiment, we expected that memory size, CPU clock
speed and cache size were going to be significant contributing factors. However,
as shown in [7] memory layout as well as other factors can have a significant
impact on any execution times, including that of a SAT solver. It was for this
reason we decided to utilise DataMill [1].

Due to the heterogeneous nature of the hardware used, it was not possible to
run all solvers on all machines. We found that the ARMV7 machines (machines
22-25 in Appendix A) were only able to run Lingeling. All the other solvers
(including pLingeling) failed to compile due to a floating point library not being
present in the ARM version of the operating system. Each machine was dedicated
to running only the experiment given and is not virtualised or shared in any way.

To remove the possibility that these timing differences were the result of
randomness in the solver, we pre-simplified the instances then turned off sim-
plification on the solvers. This is to resolve the known issue that clause (and
variable) ordering has an effect on solution time [8]. In addition to this we set
a fixed random seed for all the solvers on all machines (with the exception of
pLingeling that did not support this option). In doing so, we ensure that a single
instance/solver pair should have identical performance on an identically specified
machine.

The complete set of all combinations of solvers, workers and instances would
have created approximately 18 500 trials. Unfortunately even with the time-
outs and batching we imposed, DataMill was unable to complete all of these
trials within the required time frame. As such we are limited to analysing those
results which were gathered, approximately 15 500 of them. Within these results
approximately 1 600 were unable to run due to a lack of support in the ARM
kernel, as mentioned previously. Leaving a total of 13 825 instances available for
analysis. The majority of our analysis looks at aggregate results, either across
the instances, solvers or workers. We only analysed the complete set of workers
and instances, by which we mean that every worker in our final dataset solved
every instance at least once. We chose to do this to ensure that no bias has
been introduced by certain combinations of workers/instances not completing.



To accomplish this we used an implementation of maximal biclique enumeration
algorithm from Alexe et al [9] where the workers are one half of the graph and
the instances are the other. The resulting clique included 13 648 trials. Unless
otherwise stated this is the set used in all results presented. Similarly, unless
otherwise stated, time refers to the wall clock time.

3 Results

The following sections detail the results mentioned above. In each of the four
sections we discuss a single result, providing evidence and levels of confidence of
it, and discuss the consequences of that result.

3.1 UNSAT instance performance is more predictable than SAT

When analysing the set of all trials, regardless of solver, a clear trend can be
observed regarding the predictability of instances. For all machine parameters
considered, UNSAT instances were consistently more predictable than SAT in-
stances. For example, using the model time ∼ CPUSpeed the maximum R2 for
UNSAT instances is 0.65, whereas the maximum R2 for SAT instances is 0.64.
While, in this case, the maximum R2 does not differ significantly, 17.4% of the 69
UNSAT instances had an R2 > 0.5 and 55.0% had an R2 > 0.3. This is compared
with SAT instances, where only 4.0% of the 74 SAT instances had an R2 > 0.5
and 24.3% had an R2 > 0.3.

Previous results [10] have shown that UNSAT instances have more pre-
dictable performance, when considering different instances on the same hard-
ware. However, our result focuses on the predictability of the performance of
individual UNSAT instances across a diverse set of hardware.

The same trend, of UNSAT instances having a higher R2 score, can be ob-
served for FSB speed, RAM size, L2 size and number of CPU cores. Though it
should be mentioned that SAT instances achieved a marginally higher maximum
R2 for L2 size (0.14) compared to UNSAT instances (0.13). However, fewer SAT
instances achieved an R2 > 0.05 than UNSAT.

Further results in Section 3.4 support the result that UNSAT instance per-
formance is more predictable than SAT instance performance. To demonstrate
this, we test the following hypothesis, where S is the set of solvers described in
Section 2:

H1s,0 : p(error(UNSATs) < 0.2) ≤ p(error(SATs) < 0.2), ∀s ∈ S
H1s,a : p(error(UNSATs) < 0.2) > p(error(SATs) < 0.2), ∀s ∈ S

The function p returns the probability that the predictions for the set of
instances provided will be accurate to with 20% of the solution time of each
instance. We then utilise a binomial probability test to determine whether the
probability of an accurate prediction is higher for UNSAT instances than SAT,
for each solver.



We performed the hypothesis test with a significance level of 0.05, as such we
accept the null hypothesis in the cases where the p-value > 0.05. Table 1 shows
the results of this hypothesis test. Each row in the table presents the result of
the hypothesis test for a single solver, along with the probabilities of accurate
predictions for the SAT and UNSAT instances on that solver, and finally whether
we accept or reject the null hypothesis. For MiniSAT, Lingeling and pLingeling,
UNSAT instances are more predictable than SAT instances, with a p-value low
enough that we reject the null hypothesis. However, in the cases of Glucose and
SWDiA5BY, the results suggest that SAT instances are more predictable than
UNSAT. It is unclear why Glucose and SWDiA5BY should show a different
result than the other solvers and requires further experimentation at a later
date.

Solver p(error(UNSAT ) < 0.2) p(error(SAT ) < 0.2) p-value Reject NULL

Minisat 47.3% 41.0% 0.001 REJECT
Glucose 49.6% 50.5% 0.674 ACCEPT
Lingeling 56.4% 52.6% 0.022 REJECT
pLingeling 46.3% 41.7% 0.011 REJECT
SWDiA5BY 47.1% 50.6% 0.95 ACCEPT

Table 1: Shows the probability that a prediction error for an instance using the
model time CPUSpeed will be less than 20% of that instances execution time.
The p-value column shows the significance level of the test.

3.2 Number of cores is more important than L2 cache size

The second result from this experiment was that we found the number of CPU
cores in a machine is more significant when determining performance than L2
cache size, for both SAT and UNSAT instances. This was an unexpected result,
as the majority of solvers tested were sequential, as such, multi core architectures
should not impact their performance.

The maximum R2 for the model time ∼ L2 was 0.14, compared with the
maximum R2 for the model time ∼ CPUCores which was 0.57.

To confirm the result that the number of cores is more important in deter-
mining solver performance than L2 cache size, we test the following hypothesis.
S is the set of solvers described in Section 2 and the function p returns the
probability that the provided machine parameters R2 will exceed 0.1:

H20,s : p(L2s > 0.1) ≤ p(CPUCoress > 0.1), ∀s ∈ S
H2a,s : p(L2s > 0.1) > p(CPUCoress > 0.1), ∀s ∈ S



Table 2 shows, for each solver, the probability that the value of R2 will
exceed 0.1 for the model time ∼ L2. The probability that the value of R2 will
exceed 0.1 for the model time ∼ CPUCores. The p-value for the hypothesis test
and whether we reject or accept the null hypothesis. In every case, the solver’s
performance is impacted significantly more by the number of CPU cores than
the L2 cache size.

Solver p(L2 > 0.1) p(CPUCores > 0.1) p-value Reject NULL

MiniSAT 12.6% 94.4% <0.001 REJECT
Glucose 12.6% 96.5% <0.001 REJECT
Lingeling 3.5% 35.0% <0.001 REJECT
pLingeling 65.0% 95.0% <0.001 REJECT
SWDiA5BY 18.9% 98.6% <0.001 REJECT

Table 2: The results of the hypothesis test H2, showing the probability that
the R2 for the models time ∼ L2 > 0.1 and time ∼ CPUCores, as well as the
p-value for the hypothesis test that CPUCores > L2

One possible explanation for this result is the overall trend between both
CPU speed and number of cores, and RAM size and number of cores. However,
there are several machines that do not follow this trend (E.g., machines number
3,7 and 20). Another possible explanation for this result is that L2 cache size is
not representative of the overall impact of cache size on solver performance. The
L1 cache and lowest level cache (which in some cases will be L2) are potentially
more significant than L2 cache size alone. The reason for excluding the L1 and
“lowest level” cache sizes is that, at present, we do not have that data for all
machines considered. This will be included in future versions of this work. A
third possible explanation for the performance increase is that overhead in the
operating system takes place on one core, while the solving of the SAT problem
takes place, uninterrupted, on another. Table 3 shows the average execution time
for instances solved on machines with different numbers of cores. The second,
third columns and fourth columns show average execution times for all solvers,
sequential and parallel solvers respectively. The small decrease of the average
solution time for parallel solvers between four and eight cores would suggest
that pLingeling (the only parallel solver considered) is either unable to utilise
eight cores to their fullest potential, or some other parameter of the machine
with eight cores is reducing performance enough to mask any improvement the
additional cores provide.



Average solution time (s)
#Cores All solvers Sequential solvers Parallel solvers

1 2 528(1.0x) 2 521(1.0x) 2 557(1.0x)
2 1 766(1.4x) 1 780(1.4x) 1 712(1.5x)
4 1 246(2.0x) 1 368(1.8x) 579(4.4x)
8 735(3.4x) 773(3.3x) 581(4.4x)

Table 3: Number of cores and the associated average execution time in seconds,
the bracketed number is the speedup relative to single core performance.

3.3 A negative correlation exists between clause reuse and the
impact of CPU speed on solver performance

In this section we use the term “clause reuse” to indicate sets of clauses with
the same variables with different polarity. For example, in the DIMACS below
clause c1 is said to be reused two times (in clauses c2 and c4). Clause c3 is seen
only once (clause reuse of 0).

c1: 1 2 3 0
c2: -1 2 3 0
c3: 1 3 -4 0
c4: 1 -2 3 0

The terms max(reuse) and mean(reuse) refer to the maximum and average
times any single clause is reused. Figures 1a and 1b show, for SAT and UNSAT
instances respectively, the correlation between the average clause reuse for for-
mula (on the x-axis) and the average R2 of the model time ∼ CPUSpeed for
those instances (on the y-axis). Each data point represents a 0.1 range of the
average clause reuse.

Figures 1a and 1b show a negative correlation between the average clause
reuse and the impact of CPUSpeed as a predictor of time. This negative corre-
lation indicates that instances, where individual clauses contain unique sets of
variables, are more CPU bound than those which have a small set of variables
that are repeatedly assigned different values in clauses.

To confirm this result, we test the following two hypothesis, where S is the
set of solvers described in Section 2:

H30,s : p(time(il, s)) ≤ p(time(ih, s)), ∀s ∈ S, Mean.Reused(il) < Mean.Reused(ih)

H3a,s : p(time(il, s)) > p(time(ih, s)), ∀s ∈ S, Mean.Reused(il) < Mean.Reused(ih)

Function p returns the predictability of the execution time of a solver on a
particular instance across all considered hardware. ih and il refer to randomly
selected instances with higher, and lower average clause reuse respectively.

For this experiment, we randomly selected 500 pairs of instances and checked
whether the instance with the lower mean(reused) value was more CPU bound
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Fig. 1: Figures showing the clause reuse against average R2 for SAT and UNSAT
instances, the line represents the moving average over a window of seven data
points.

than the instance with the higher mean(reused). Table 4 shows the probability
that for any randomly selected pair of instances (where the mean(reused) differ)
the alternate hypothesis holds true. It also shows the significance level of the
test, and whether we accept or reject the null hypothesis.

For all solvers, with the exception of MiniSAT, we reject the null hypoth-
esis. This confirms the visual result presented in Figures 1a and 1b, the more
frequently a clause is reused, the less significant CPU speed is in determining
execution time. This suggests that any model that accurately explains the perfor-
mance of a single instance across diverse hardware will not only need to consider
the specification of the hardware, but also characteristics of the instance. It is
not clear why MiniSAT does not exhibit the same pattern as the other solvers
considered, this is a subject we are considering for future work.

3.4 Predicting performance

Using a standard linear regression with Equation 2 we can predict the solution
time of individual instances on specific solvers for previously untested hard-
ware, based on their performance on our test machines. This model results in an
R2 > 0.73 for 80% of the instances considered, across all solvers. The ⊕ notation
here denotes that not only were each of the individual factors considered but all
interaction terms of the three factors as well.

timeis ∼ CPUSpeed⊕ CPUCores⊕RAM (2)



Solver % H3a holds p-value Reject NULL

MiniSAT 50.0% 0.954 ACCEPT
Glucose 61.0% 0.001 REJECT
Lingeling 63.4% 0.001 REJECT
pLingeling 63.6% 0.001 REJECT
SWDiA5BY 63.4% 0.001 REJECT

Table 4: Shows the results of the hypothesis test H3. For each solver the % of
randomly selected pairs of instances where H3a holds is given, along with the
p-value of the hypothesis test.

A preliminary analysis of the R2 for this model shows that Lingeling was the
most predictable solver, where 80% of instances had an R2 > 0.87. SWDiA5BY
and MiniSAT were the least predictable solvers, where in both cases 80% of
instances had an R2 > 0.80. This indicates that Lingeling’s performance is less
determined by factors not included in our model, such as RAM speed and cache
sizes. Conversely, the performance of MiniSAT and SWDiA5BY may be effected
by these absent parameters.

To test these results, we performed a k-fold cross validation with k = 5. For
each instance and solver combination, we randomly partitioned the machines
into five equal partitions. Four of these are used as a training set to predict the
execution time of the machines from the one remaining partition. We repeated
the analysis using the same partitioning five times, using a different partition as
the test partition each time. We repeated this entire process ten times for each
solver, with different randomly created partitions to mitigate the issue of different
prediction error depending on which machines were assigned to the training
and test sets. Table 5 shows the predictability of the five considered solvers
according to their median absolute error, maximum error and 80% confidence
level. This data confirms that predictions made for the Lingeling solver are most
accurate, and that predictions made by MiniSAT are least accurate. However,
SWDiA5BY predictions were relatively accurate, while pLingeling predictions
were significantly less accurate.

This is indicated by the increased median error and 80% confidence level.
The difference between MiniSAT and pLingeling in this case is small, fifteen
seconds for the median error and 88 seconds for the 80% confidence level. One
possible explanation is that machines were assigned to folds randomly, as such
it is possible that the assignment for the MiniSAT instances was less predictive
than the one used for pLingeling.

Due to the random sampling performed, results vary on depending on which
machines are assigned to each fold for the cross-validation. Had we set k = 21 this
would not have been the case. However, one of our goals is to find a small subset
of machines that can be used to predict solution times across a wide range of
hardware, as such we were interested in minimising the training set. Figures 2a



Solver Median error (s) Maximum error (s) 80% error (s)

MiniSAT 104 163894 1087
Glucose 53 1939631 665
Lingeling 46 1218864 555
pLingeling 89 2116591 999
SWDiA5BY 50 111689 641

Table 5: The predictability of different solvers, showing median, maximum and
the 80% confidence level of predictions, for each of the considered solvers.

and 2b show the results of the cross validated predictions for Lingeling and
MiniSAT respectively. These solvers are highlighted as they were the most and
least predictable solvers respectively.
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(b) For MiniSAT.

Fig. 2: Figures showing the predicted solution times against actual solution times
for the Lingeling and MiniSAT solvers for a single repetition of the k-fold cross
validation. Approximately 5% of the outlier data points are omitted from these
plots to improve interpretability. The different colours represent the individual
folds. The black line represents perfect predictions.

Unfortunately, no obvious trend exists between the quality of the predictions,
and any of the 34 considered instance characteristics. However, there does exist
a trend between the quality of the predictions, and the average execution time
for the instances. Figure 3 shows the trend of decreasing accuracy against aver-
age execution time. It also shows that the variability of the predictions increases



as execution time increases. The most likely explanation for this is the num-
ber of timeouts affecting both the average execution time and the accuracy of
predictions. The more timeouts per instance, the less accurate the predictions.
Approximately 14% of instances in this dataset timeout, of those instances, 42%
were on UNSAT instances and 58% were on SAT instances. Considering the
UNSAT instances show more accurate predictions over the increasing range of
execution time and have fewer timeouts, when compared to SAT instances, this
would support our conjecture.
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Fig. 3: The correlation between the 80% confidence level for predictions, and the
average solution time of the instances. The lines represent the moving average
over a window of five data, each data point represents a 10 second time interval.



4 Related Work

The related work falls into two categories. First, there is significant work on pre-
dicting SAT solver performance on sets of instances, on fixed hardware. Second,
there has been significant work outside of the SAT community in the prediction
of program execution time on diverse hardware.

In 2010, Kadioglu et al presented a method for instance specific algorithm
configuration (ISAC) [11]. This work, which encompasses algorithm selection
and tuning, focused on characteristics of the input instance to tune the selected
algorithm and thus increase performance. They utilise g-means to cluster the
instances, working on the premise that instances that are clustered together will
behave similarly when solving.

In 2012, Malitsky and Sellmann presented the idea of using ISAC for the
construction of portfolio based SAT solvers [12]. They compare this performance
against that of portfolio based solvers, such as SATzilla [13], and show that, in
many cases, ISAC outperforms them.

In 2012, an update on SATzilla was published [13] which presented the utili-
sation of cost-sensitive classification models. In this version of SATzilla, feature
computation is limited to 90 CPU seconds. This is a particularly interesting
technique when considering community-based algorithms such as CNM [14], as
the execution time of these algorithms can be prohibitively high, when compared
to a relatively low execution times of a solver on certain types of instance.

In 2004, Marin and Mellor-Crummey presented a work on predicting parallel
application performance across different architectures using parametrised mod-
els [15]. In this work, the authors utilise instrumented code to predict execution
times, considering factors such as the execution count of individual sequential
sections of code and memory latency on the target architecture. This technique
requires measuring specific hardware factors (such as the cost of an L1 cache
miss) at execution times to enable accurate predictions.

In 2005, Yang et al presented a work on the prediction of parallel applica-
tion performance using partial execution [16]. This technique utilises observation
based techniques and as such has no need to consider features of the platform,
such as CPU speed, memory size, etc. The advantage of this technique is that
it can be highly accurate for certain types of program, it is unclear whether
SAT solvers fall into this category. However, one drawback is, that for each new
platform, a representative set of sample applications must be ran for the predic-
tions to be accurate. This makes the technique more valid for large-scale parallel
computing clusters that utilise multiple instances of similarly specified hardware.

In 2006, Hoste et al presented a work on predicting application performance
based on program simplicity [17]. This work utilises the SPEC CPU2000 [18]
results on 36 machines to determine if a correlation exists between the proposed
simplicity metrics and the speedup rates published in SPEC CPU 2000. Their
results show an improved worst-case and average correlation coefficient when
compared to current practice.

In 2006, Lee and Brooks presented a work on predicting application perfor-
mance on the Turandot simulator [19]. They consider 12 architectural parameters



including the number of general purpose registers, sizes of L1 and L2 cache, and
memory and L2 latency. The use of a simulator allowed high levels of control on
features such as pipeline depth and memory latency in cycles. They found that
application specific models were most predictive of performance prediction.

5 Conclusion

In this work, we have explored the relationship between different classes of in-
stances, and their solution times on differently specified machines and solvers.
We have shown that the solution time for a specific instance varies greatly across
different machines, in ways that are not completely predictable when considering
characteristics such as CPU speed, RAM size and cache size. We have further
shown that the impact of each of these factors on the solution time of an instance
depends on the structure of the instance. In some cases, this structure is charac-
terised by graph theoretical concepts, and others use SAT specific concepts such
as the clause-variable ratio.

We have presented a model that can predict the solution time of SAT in-
stances across a diverse set of hardware with relatively high accuracy. We have
also identified that, of the observed solvers, Lingeling has the most predictable
performance and UNSAT instances are generally more predictable than SAT
instances. In addition to the results presented here, we have found strong cor-
relations between the predictability of instance performance and max(reused),
max(clause), mean(clause), max(var) as well as others. These results are omitted
from this work for the sake of brevity.

While we have not been able to produce a model that completely explains
the variability in solution time when varying the machines, we have been able
to explain a large amount of it. The remaining variability is likely to be in the
factors that were only partially available in our dataset (e.g. cache sizes, RAM
speeds, etc). However, we also speculate that cache replacement policies will be
a determining factor in solution times of specific instances.

6 Future Work

The next steps for this work are to find more details on the machines used. As
previously mentioned, it was not possible to gather all levels of cache size for
all machines. Similarly RAM channels and speeds were missing in some cases.
We hope this will partially solve the issue of un-defined variation. However, if
this does not complete the model we are planning on exploring the relationship
between cache replacement policies and performance. We feel this may be what is
missing when we compare machines with different specifications, which perform
similarly — for example, the Pentium M and Pentium D machines as described
above.

While it was important to perform a fair random assignment for the k-fold
cross validation, we also intend to perform a “cherry-picked” version where we
select individual machines based on their parameters as the training set. In



doing so, we hope to maximise the quality of our predictions while minimising
our training set.

In this work, we chose to perform the analysis with a standard linear regres-
sion, and it has provided some strong results. However, it is not the only analysis
technique suitable for this area. Random forests [20], non-linear regression and
Bayesian inference are examples of techniques that have been used with varying
levels of success to predict the solution time of sets of instances on fixed hard-
ware. While we are focusing on predicting the solution times on heterogeneous
hardware from known solution times, these techniques could also apply.

Finally, we are looking into tuning SAT solvers based on the hardware that
is being used to solve an instance. It has already been established that some
solvers perform better on different hardware, and different classes of instance.
While there has been significant work in selecting/tuning an algorithm based
on instance characteristics [11, 12, 21, 22], there has been relatively little work in
selecting/tuning an algorithm based on the hardware being used.
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Appendix A

A list of all machines used in the various experiments in this paper.

Number CPU Cores CPU speed Cache (L1 i/d + L2 + L3) RAM amt RAM speed

1 Intel Core i7 i686 4 3400 32/32 + 256 + 8192 8266580 0
2 Intel Pentium M i686 1 1695 0/0 + 256 + 0 902287 0
3 Intel Pentium 4 i686 2 2992 0/16 + 2048 + 0 894177 533
4 VIA Nano X2 i686 2 1733 128/128 + 2048 + 0 1814036 1066
5 Intel Pentium 4 i686 2 3200 0/0 + 512 + 0 1000263 0
6 Intel Pentium 4 i686 1 1595 0/0 + 256 + 0 254781 0
7 Intel Pentium 4 i686 2 2998 0/16 + 1024 + 0 893347 0
8 Intel Pentium 4 i686 1 1595 0/0 + 256 + 0 514119 133
9 Intel Pentium 4 i686 2 2992 0/0 + 1024 + 0 894269 0
10 Intel Pentium 4 i686 2 3200 0/0 + 512 + 0 1000540 0
11 Intel Pentium 4 i686 2 2793 64/64 + 2048 + 0 902461 0
12 Intel Pentium 4 i686 2 1614 0/0 + 256 + 0 894269 0
13 Intel Pentium 4 i686 2 1600 0/0 + 256 + 0 242851 0
14 Intel Pentium 4 i686 2 3198 0/0 + 512 + 0 894269 0
15 AMD Athlon XP i686 1 1111 64/64 + 256 + 0 514199 0
16 Intel Pentium D i686 2 2993 0/0 + 1024 + 0 2076180 0
17 Intel Pentium 4 i686 2 3200 0/16 + 512 +0 894269 0
18 Intel Pentium 4 i686 2 3192 0/0 + 512 + 0 505661 0
19 Intel Xeon x86 64 2 3000 0/0 + 4098 + 0 2831155 0
20 Intel Pentium 4 i686 2 3200 0/0 + 512 + 0 2076180 0
21 Intel Core i7 x86 64 8 3401 128/128 + 1024 + 0 8095006 0
22 ARM Rev 10 armv71 4 1988 0/0 + 1024 + 0 896563 0
23 ARM Rev 10 armv71 4 1988 0/0 + 1024 + 0 896563 0
24 ARM Rev 10 armv71 4 1988 0/0 + 1024 + 0 896563 0
25 ARM Rev 10 armv71 4 1988 0/0 + 1024 + 0 896563 0
26 Intel Core i5 x86 64 4 3291 128/128 + 1024 + 0 8095006 0
27 Intel Core i7 64 4 3400 32/32 + 256 + 8192 8388608 0
28 AMD Athlon 1 757 64/64 + 256 + 0 773079 0

List of machine specifications used for the varied parameters trial. Machines
2-28 were ran through the DataMill platform (0’s indicate we were unable to
determine the value of this property for a specific machine)



Appendix B

The full description of all features considered in this paper.

Variable Name Definition

vars The number of variables in the formula
weight The difference in the number of true/false literals.
CO The set of communities
Q The quality (Q) of the community structure
max(var) The maximum number of times a variable appears
mean(var) The average number of times a variable appears
min(com) The size of the smallest community
mean(com) The average community size
max(com) The size of the largest community
sd(com) The standard deviation of the community sizes
min(inter) The minimum number of inter-community edges from a single community
max(inter) The maximum number of inter-community edges from a single community
mean(inter) The average number of inter-community edges from a single community
sd(inter) The standard deviation of the number of inter-community edges from a single community
min(intra) The minimum number of intra-community edges in a single community
max(intra) The maximum number of intra-community edges in a single community
mean(intra) The average number of intra-community edges in a single community
sd(intra) The standard deviation number of intra-community edges in a single community
edgeratio The overall ratio of inter/intra community edges
max(edgeratio) The maximum ratio of inter/intra community edges for a single community
min(edgeratio) The minimum ratio of inter/intra community edges for a single community
mean(edgeratio) The average ratio of inter/intra community edges for a single community
sd(edgeratio) The standard deviation ratio of inter/intra community edges for a single community
UE The set of unique edges in the graph
TE The set of all edges (counting degrees) in the graph
CL The set of all clauses
V UC The set of clauses using distinct variables
max(clause) The length of the longest clause
mean(clause) The average clause length
max(reused) The maximum times a clause with the same variables is reused
min(reused) The minimum times a clause with the same variables is reused
mean(reused) The average times a clause with the same variables is reused
CVR The ratio of clauses to variables
TVR The ratio of total clauses to clauses using unique sets of variables

Table 6: Description of all instance characteristics used
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(b) For pLingeling
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SWDiA5BY predicted against actual solution time
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(c) For SWDiA5BY

Fig. 4: Figures showing the predicted solution times against actual solution times
for the Glucose, pLingeling and SWDiA5BY solvers for a single repetition of the
k-fold cross validation. Approximately 5% of the outlier data points are omitted
from these plots to improve interpretability. The different colours represent the
individual folds. The black line represents perfect predictions.


