Real-Time Embedded Software Group

RiTHM: A Tool for Enabling Time-triggered
Runtime Verification for C Programs

User’s Guide

Electrical and Computer Engineering Department,
University of Waterloo, January 2013

Table of Contents

List of Tables iii
List of Figures v
1 RiTHM Overview 3
1.1 Time-triggered Monitor 4
1.2 Verification Engine oo 4
2 Getting Started 5
2.1 Pre-requisites 5
2.2 Installation 7
3 Repository Structure 9
4 Running RiTHM 11
4.1 Running RiTHM via GUI 11

i

List of Tables

il

v

List of Figures

vi

About This Guide

This guide is intended for software developers that wish to use RiTHM to verify
their systems at runtime. RiTHM is a tool chain that automates the process of run-
time verification of projects written in C by leveraging time-triggered monitoring to
observe the system’s runtime behavior, and the GPU many-core technology to verify
the runtime behavior. The rest of the guide provides (1) an overview of RiTHM, (2)
the installation procedure, (3) RiITHM’s directory structure, (4) RITHM’s system
requirements and limitations, and (5) how to use RiITHM along with an example.

CHAPTER 1

RiTHM Overview

In a computing system, correctness refers to the assertion that the system satisfies
its specification at all times. Achieving system correctness is a major problem for
todays large software systems. Verification and testing are arguably the two most
common approaches to ensure program correctness. However, verification may suffer
from the state explosion problem, and testing may not be able to cover all possible
execution scenarios of the system. These limitations argue for runtime verification
where it inspects a program’s runtime behavior to verify a set of properties at run
time. Runtime verification frameworks mainly consist of two major components,
the monitor which extracts information from the program at run time, and the
verification engine which verifies a set of properties at run time with respect to the
information provided by the monitor.

Most monitoring approaches in runtime verification are event-triggered. In these
approaches, the occurrence of an event of interest triggers the monitor to extract in-
formation and subsequently call the verification engine for property evaluation. This
technique leads to defects such as unpredictable monitoring overhead and potentially
bursts of monitoring invocation at run time. Such defects can cause unpredictable
behavior at run time; especially in real-time embedded safety/mission-critical sys-
tems, where it can result in catastrophic consequences. To tackle these drawbacks,
we propose RITHM: Runtime Time-triggered Heterogeneous Monitoring.

RiTHM is a runtime verification framework which uses time-triggered monitoring
to observe the system’s runtime behavior. The time-triggered monitor runs in par-
allel with the program and extracts (i.e., samples) the program state at fixed time
intervals (i.e., the sampling period) and subsequently call the verify to evaluate a
set of LTL3 properties with respect to the sampled program state. Our studies show
that the time-triggered monitor of RiTHM results in observing bounded monitoring

4 RiTHM Overview

overhead and predictable monitoring invocation at run time, a feature required for
runtime verification of real-time embedded safety/mission-critical systems.

1.1 Time-triggered Monitor

The time-triggered monitor is a separate thread which runs in parallel with the
program and samples the program with respect to a pre-defined fixed sampling
period. An issue surrounding time-triggered monitoring is sound state reconstruction
(i.e., sampling of all states vital to the verification of the properties). Hence, RiTHM
leverages static analysis of the program to determine the longest sampling period
which ensures sound state reconstruction. To further decrease the runtime overhead
of monitoring, RiTHM devises a technique to add minimal instrumentation into the
program to further increase the sampling period of the time-triggered monitor while
ensuring sound state reconstruction. RiTHM intends to add the instrumentation
such that minimal additional memory is required.

1.2 Verification Engine

When a time-triggered monitor reads the state of a program, it passes them to
the verification engine to evaluate a set of LTLs properties. The verification en-
gine evaluates the set of properties in a parallel fashion and makes use of the GPU
many-core technology. The verification engine uses two parallel monitoring algo-
rithms that effectively exploit the many-core platform available in the GPU. The
verification engine further reduces monitoring overhead, monitoring interference, and
power consumption due to leveraging the GPU technology.

CHAPTER 2

Getting Started

This chapter will guide you through the procedure to download RiTHM’s source files
and build the tool from source. At the moment, RiTHM is targeted for both 32- and
64-bit Ubuntu 12.04 LTS and 32-bit Ubuntu 11.10. Most of the build and execution
infrastructure should be portable to any *nix system, but will require additional
efforts to build RiTHM’s dependencies. The support or other *nix distributions is
under construction and will be available in the future.

2.1 Pre-requisites

The following is a list of things that you will require to build and develop RiTHM:
Operating System

e Any computer running Ubuntu 12.04 LTS or 32-bit Ubuntu 11.10.

e sudo access with your user account in Ubuntu.

get-apt Packages

e ia32-1libs: If the user is running Ubuntu 64-bit, 1132-1ibs package must be
installed. This package allows the user to skip compilation processes specific
to 64-bit machines and run 32-bit executables on 64-bit platforms.

e realpath: This package is used by some of the invocation scripts to resolve
path parsing issues and path dependencies.

6 Getting Started

e gmake: If the user wishes to build the GUI from the committed source file.

OpenCL Packages

RiTHM allows the user to choose whether the verification engine performs its
verification on CPU or on GPU. Thus, the OpenCL supporting packages must be
perviously installed.

e Systems with AMD/ATI GPU: AMD GPU OpenCL SDK can be downloaded

from here:

http://developer.amd.com/tools/hc/AMDAPPSDK/downloads/Pages/
default.aspx

e System with NVIDIA GPU: NVIDI OpenCL SDK can be downloaded from

here:

http://www.nvidia.com/Download/index.aspx?lang=en-us
Remark: If your system uses AMD GPU/APU card, but AMD GPU OpenCL SDK
is not installed, it will be installed automatically when running ./build_deps.sh.

General Applications

e Text editor of your choice.
e An integrated development environment (IDE), if you are not as comfortable

with the command line.

Optional Dependencies
If you intend to acquire RiTHM from Bitbucket (see Section 2.2), you will need
the following:

e git: If git has not been installed on your machine, you can install it on
Ubuntu by typing the following command in the terminal:

sudo apt-get install git

e SSH keys, if you wish to connect to Bitbucket via SSH
e Bitbucket account (this is optional; you can choose to download the source
and work locally).
Other Dependencies

The following packages are packaged along with RiTHM’s source code and will
be installed automatically when running ./build_deps.sh:

http://developer.amd.com/tools/hc/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/tools/hc/AMDAPPSDK/downloads/Pages/default.aspx
http://www.nvidia.com/Download/index.aspx?lang=en-us

2.2 Installation 7

lp_solve.

e libconfig.

e open CSV (java lib).

e apache commons (java lib).
e LLVM.

e clang.

2.2 Installation

Step 1. Make sure you have installed all the pre-requisites for OpenCL Packages
and General Applications.

Step 2. Acquire RiTHM. You can do so by using one of the following methods:

e Acquire it directly from the Real-time Embedded System’s group webpage.
Download the tar ball of the tool provided by the following link:

https://uwaterloo.ca/embedded-software-group/projects/rithm

e Acquire it from Bitbucket. To work with the git repository on Bitbucket, you
can either retrieve the tool sing HT'TPS or SSH. . If you plan on using HT'TPS
to communicate with the Bitbucket repository, change to the directory that
you would like to make the clone in and then enter the following command in
the terminal:

git clone
https://<username>@bitbucket.org/embedded_software group/rvtool.git
[name of local directoryl]

where <username> is your Bitbucket username, and an optional argument
[name of local directory], which designates the name of the folder the
cloned repository will be in. The git clone command is slightly different for
SSH:

git clone git@bitbucket.org:embedded software group/rvtool.git
[name of local directoryl]

Step 3. After cloning the repository to your local machine, it is time to start
building the tool from source. First, change the directory in your terminal to the
root repository directory. Here, there are two files you will need to invoke to build
the tool:

https://uwaterloo.ca/embedded-software-group/projects/rithm

8 Getting Started

e build-deps.sh

e Makefile

build-deps.sh contains the necessary commands required to pull in all of the
tool’s external dependencies and build them as necessary. This will also establish the
subdirectory named ‘build’; which will contain all compiled objects and executables.
From the terminal, run the following command:

sudo ./build-deps.sh

sudo access is required only to install missing packages using apt-get. The following
packages may be installed using apt-get:

e realpath: converts any relative directory /file paths into absolute paths.

e subversion: version control required to pull LLVM and Clang source.

e ia32-1libs: needed for machines running 64-bit Ubuntu for compatibility with
other libraries.

e AMD APP SDK: (Note: this is installed in /opt/AMDAPP/ as opposed to the
‘build’ directory).

e (Jt and QMake.

e 1lp_solve.

e libconfig.

e open CSV (java lib).

e apache commons (java lib).
e LLVM.

e clang.

This script will likely take one or more hours to finish, because the LLVM frame-
work and Clang takes a long time to compile and build for the first time.

Step 4. When the build-deps.sh, run make form the root repository directory in
the terminal (no need in sudo) to build the tool. When make finishes running, you
can change to the ‘build’ directory and run RiTHM by either using command-line
(calling run.sh) or the GUI (initiating rvtool). For more details about running
RiTHM, please refer to Section 4.

CHAPTER 3

Repository Structure

10

Repository Structure

CHAPTER 4

Running RiTHM

RiTHM can be initiated via both from a GUI environment (recommended) and from
command-line. The GUI environment allows the specification of all the required
parameters to run RiTHM. Then the GUI wraps the parameters and invokes the
appropriate shell script that, in turn, the script sequentially invokes the shell scripts
with their corresponding command-line parameters.

4.1 Running RiTHM via GUI

	List of Tables
	List of Figures
	RiTHM Overview
	Time-triggered Monitor
	Verification Engine

	Getting Started
	Pre-requisites
	Installation

	Repository Structure
	Running RiTHM
	Running RiTHM via GUI

