Real-Time Embedded Software Group

RiTHM: A Tool for Enabling Time-triggered
Runtime Verification for C Programs

User’s Guide

Electrical and Computer Engineering Department,
University of Waterloo, January 2013

Table of Contents

List of Tables

List of Figures

1 RiTHM Overview

1.1 Time-triggered Monitor
1.2 Verification Engine

2 Getting Started

2.1 Pre-requisites

2.2 Installation
2.3 Configuration File for RiTHM

3 Repository Structure

3.1 doc Directory
3.2 src Directory

3.3 test Directory

4 Running RiTHM

4.1 Running RiITHM via GUI
4.1.1 Fixed Polling

iii

4.1.2 Dynamic Polling 17

4.1.3 Realtime Plot oo 18
4.2 Running RiITHM via Command line 18
4.3 Viewing Results oo 19
RiTHM with an Example 23
Limitations of RiTHM 33

i

List of Tables

il

v

List of Figures

2.1

4.1
4.2
4.3
4.4

5.1
5.2
2.3
5.4
2.5
2.6
5.7

An example of a configuration file. 10
RiTHM’s GUl window. 16
RiTHM’s dynamic polling GUI window. 21
RiTHM’s realtime plot GUl view. 22
RiTHM’s log GUl view. 22
Globalizer output. 24
GooMF output. 24
Critical Instruction Identifier output. 26
CFG Builder and Critical CFG Builder output. 27
ILP Solver output. 29
Instrumentor output.o oo 30
Monitor Generator and verification output. 31

vi

About This Guide

This guide is intended for software developers that wish to use RiTHM to verify their
systems at runtime. RiTHM is a tool chain that automates the process of runtime
verification of projects written in C. To this end, RiITHM leverages time-triggered
monitoring to observe the system’s runtime behavior, and the GPU many-core tech-
nology to verify the runtime behavior of the system. The rest of the guide provides
(1) an overview of RiTHM, (2) RiTHM’s installation procedure, (3) RiTHM’s di-
rectory structure, (4) how to run RiTHM, (5) an example of running RiTHM, and
(6) RiITHM’s limitations.

CHAPTER 1

RiTHM Overview

In a computing system, correctness refers to the assertion that the system satisfies
its specification at all times. Achieving system correctness is a major problem for
today’s large software systems. Verification and testing are arguably the two most
common approaches to ensure program correctness. However, verification may suffer
from the state explosion problem, and testing may not be able to cover all possible
execution scenarios of the system. These limitations argue for runtime verification
where it inspects a system’s runtime behavior to verify a set of properties at run
time. Runtime verification frameworks mainly consist of two major components, the
monitor which extracts information from the system at run time, and the verification
engine which verifies a set of properties at run time with respect to the information
provided by the monitor.

Most monitoring approaches in runtime verification are event-triggered. In these
approaches, the occurrence of an event of interest triggers the monitor to extract
information and call the verification engine for property evaluation. This technique
leads to defects such as unpredictable monitoring overhead and potentially bursts of
monitoring invocation at run time. Such defects can cause unpredictable behavior
at run time; especially in real-time embedded safety /mission-critical systems, where
it can result in catastrophic consequences. To tackle these drawbacks, we propose
RiTHM: Runtime Time-triggered Heterogeneous Monitoring.

RiTHM is a runtime verification framework which uses time-triggered monitoring
to observe a program’s runtime behavior [3], [2]. The time-triggered monitor runs in
parallel with the program and extracts (i.e., samples) the program state at fixed time
intervals (i.e., the sampling period). In addition, at each sample the time-triggered
monitor calls the verification engine to evaluate a set of LTL3 properties with respect
to the sampled program state. Our studies show that the time-triggered monitor

4 RiTHM Overview

of RiTHM results in observing bounded monitoring overhead and predictable mon-
itoring invocation at run time [3], [2], a feature required for runtime verification of
real-time embedded safety /mission-critical systems.

1.1 Time-triggered Monitor

The time-triggered monitor is a separate thread which runs in parallel with the
program under inspection and samples the program with respect to a pre-defined
fixed sampling period. An issue surrounding time-triggered monitoring is sound
state reconstruction (i.e., sampling of all states that are vital to achieve sound ver-
ification of the set of properties). Hence, RiTHM leverages static analysis of the
program to determine the longest sampling period which ensures sound state re-
construction [3], [2], [6]. To further decrease the runtime overhead of monitoring,
RiTHM devises a technique to add minimal instrumentation into the program to
further increase the sampling period of the time-triggered monitor while ensuring
sound state reconstruction. RiTHM carries out techniques for adding instrumen-
tation such that minimal additional memory is imposed on to the program under
inspection [3], [2], [7].

To further decrease the runtime overhead imposed by RiTHM, we devised a
method to eliminate the inherit overhead of concurrency. Hence, we developed a
self-monitoring technique where the time-triggered monitor is weaved within the
program under inspection [4].

1.2 Verification Engine

When the time-triggered monitor reads the state of a program, it passes them to
the verification engine to evaluate a set of LTLg properties. The verification en-
gine evaluates the set of properties in a parallel fashion and makes use of the GPU
many-core technology. The verification engine uses two parallel monitoring algo-
rithms that effectively exploit the many-core platform available in the GPU. This
verification engine further reduces monitoring overhead, monitoring interference, and
power consumption due to leveraging the GPU technology [1].

CHAPTER 2

Getting Started

This chapter will guide you through the procedure to download RiTHM’s source files
and build the tool from source. At the moment, RiTHM is targeted for both 32- and
64-bit Ubuntu 12.04 LTS, and 32-bit Ubuntu 11.10. Most of the build and execution
infrastructure should be portable to any *nix system, but will require additional
efforts to build RITHM’s dependencies. The support for other *nix distributions is
under construction and will be available in the future.

2.1 Pre-requisites

The following is a list of things that you will require to build and develop RiTHM:
Operating System

e Any computer running Ubuntu 12.04 LTS or 32-bit Ubuntu 11.10.

e sudo access with your user account in Ubuntu.

get-apt Packages

e ia32-1libs: If you are running 64-bit Ubuntu, i132-1ibs package must be
installed. This package allows the user to skip compilation processes specific
to 64-bit machines and run 32-bit executables on 64-bit platforms.

e realpath: This package is used by some of the invoked shell scripts to resolve
path parsing issues and path dependencies.

6 Getting Started

e QMake: If you wish to build the GUI from the committed source file, you
require gmake.

OpenCL Packages

RiTHM allows you to choose whether the verification engine performs its verifi-
cation on CPU or on GPU. Thus, the following OpenCL supporting packages must
be perviously installed.

e Systems with AMD/ATI GPU: AMD GPU OpenCL SDK can be downloaded

from here:

http://developer.amd.com/tools/hc/AMDAPPSDK/downloads/Pages/
default.aspx

e Systems with NVIDIA GPU: NVIDI OpenCL SDK can be downloaded from
here:

http://www.nvidia.com/Download/index.aspx?lang=en-us

Remark: If your system uses AMD GPU/APU card, but you do not have AMD GPU
OpenCL SDK installed, it will be installed automatically when running . /build_deps.sh.

General Applications

e Text editor of your choice.
e An integrated development environment (IDE), if you are not as comfortable

with the command line.

Optional Dependencies

If you intend to acquire RiTHM from Bitbucket (see Section 2.2), you will need
the following:

e git: If git has not been installed on your machine, you can install it on
Ubuntu by typing the following command in the terminal:

sudo apt-get install git

e SSH keys, if you wish to connect to Bitbucket via SSH.

e Bitbucket account (this is optional).

Other Dependencies

The following packages are packaged along with RiTHM’s source code and will
be installed automatically when running ./build_deps.sh:

http://developer.amd.com/tools/hc/AMDAPPSDK/downloads/Pages/default.aspx
http://developer.amd.com/tools/hc/AMDAPPSDK/downloads/Pages/default.aspx
http://www.nvidia.com/Download/index.aspx?lang=en-us

2.2 Installation 7

lp_solve

libconfig

open CSV (java lib)
e apache commons (java lib)

e LLVM

Clang

2.2 Installation

Step 1. Make sure you have installed all the pre-requisites for OpenCL Packages
and General Applications.

Step 2. Acquire RiTHM. You can do so by using one of the following methods:

e Acquire it directly from the Real-time Embedded System’s group webpage.
Download the tar ball of the tool provided within the following webpage:

https://uwaterloo.ca/embedded-software-group/projects/rithm

e Acquire it from Bitbucket. To work with the git repository on Bitbucket, you
can either retrieve the tool using HTTPS or SSH. If you plan on using HTTPS
to communicate with the Bitbucket repository, change to the directory that
you would like to make the clone in and then enter the following command in
the terminal:

git clone
https://<username>@bitbucket.org/embedded_software group/rvtool.git
[name of local directoryl]

where <username> is your Bitbucket username, and an optional argument
[name of local directory], which designates the name of the folder the
cloned repository will locally reside in. The git clone command is slightly

different for SSH:

git clone git@bitbucket.org:embedded software group/rvtool.git
[name of local directoryl]

Step 3. After cloning the repository to your local machine, it is time to start
building the tool from source. First, change the directory in your terminal to the
root directory of RiITHM. In this directory, there are two files you will need to invoke
to build the RiTHM:

https://uwaterloo.ca/embedded-software-group/projects/rithm

8 Getting Started

e build-deps.sh

e Makefile

build-deps.sh contains the necessary commands required to pull in all of the
tool’s external dependencies and build them as necessary. This will also establish
the subdirectory named ‘build’, which will contain all the compiled objects and
executables. From the terminal, run the following command:

sudo ./build-deps.sh

sudo access is required to install missing packages via apt-get. The following
packages may be installed via apt-get:

e realpath: converts any relative directory /file paths into absolute paths.
e subversion: version control required to pull LLVM and Clang sources.

e ia32-1libs: needed for machines running 64-bit Ubuntu for compatibility with
other libraries.

e AMD APP SDK: (Note: this is installed in /opt/AMDAPP/ as opposed to the
‘build’ directory).

e Qt and (QMake

e lp_solve

e libconfig

e open CSV (java lib)

e apache commons (java lib)
e LLVM

e Clang

This script will likely take one or more hours to finish, because the LLVM frame-
work and Clang takes a long time to compile and build for the first time.

Step 4. When build-deps.sh successfully finishes, run make from the root di-
rectory in the terminal (no need for sudo) to build the tool. When make finishes
running, you can change to the ‘build’ directory and run RiTHM by either using
command-line (calling run.sh) or the GUI (initiating rvtool). For more details
about running RiTHM, please refer to Section 4.

2.3 Configuration File for RiTHM 9

2.3 Configuration File for RiTHM

RiTHM requires a configuration file that contains the set of properties that the ver-
ification engine will verify at run time. Hence, you must provide this configuration
file before running RiITHM. This configuration file must contain the list of the prop-
erties along with the mapping of the predicates of the properties to the local and
global variables of the program under inspection. Figure 2.1 shows an example of a
configuration file.

A configuration file consists of the following parts:

e program_name: It contains the name of the program under inspection (ex. fibo).

e functions: You can define your own customized functions that you require to
define a property. You can define the functions using the standard C language.

e properties: It contains the set of properties that the verification engine much
verify at run time. The properties can be either in LTL or AT&T FSM format.
Each property consists of three parts: (1) name, which is the unique name of
the property, (2) formalism, which notes the format of the property, and (3)
syntax, which is the definition of the property.

e predicates: It maps the predicates used in the properties to its definition with
respect to the program variables. Each predicate consists of two parts: (1)
name, which is the name of the predicate, and (2) syntax, which is the definition
of the predicate, using the program variables (ex. for predicate a in Figure 2.1,
variables x and z are variables of the program QLogAudit).

e program_variables: It contains the set of program variables used by the predicates
of the properties. Each program_variable consists of two parts: (1) name, which
is the name of the variable, and (2) type, which is the type of the variable.

10

Getting Started

//A configuration file that describes monitoring objects

//name of the process under scrutiny
program_name = "QlLogAudit";

//developer can specify his own verification functions

functions = (

"bool IMUSanityCheckPhi(float phil, float tetal, float phi2, float p1, float q1, float r1, float delta)

{

float temp = ((phi2 - phil) / 0.01) - (p1 + gl*sin(phil)*tan(tetal) + rl*cos(phil)*tan(tetal));
return (temp < delta && temp > -delta);

}"l

"bool xisNegative(x)

{
return (x < 0);

1)

//LTL properties specified in Future-LTL syntax or in AT&T FSM format
properties = (

{name ="prop1"; formalism="LTL"; syntax = "[] (a && b)"},

{name ="prop2"; formalism="LTL"; syntax ="[] (a U b)"},

{name = "prop3"; formalism="LTL"; syntax ="[] (c-> X (d U ! ¢))"},
{name = "satellites"; formalism="FSM"; syntax =

"digraph G {

\"(0, O)\" ->\"(1, 1)\" [label = \"(e&&f)\", action = \"bind(timestamp)\"];
\"(0, 0)\" ->\"(1, 1)\" [label =\"(e)\", action = \"bind(timestamp)\"];
\"(0, O)\" ->\"(0, 0)\" [label = \"(f]\"];

\"(0, 0)\" ->\"(0, O)\" [label = \"(<empty>)\"];

\"(Z, I\"->\"(1, 1)\" [label = \"(e&&F\"];

\"(2, I\"->\"(-1, 2)\" [label = \"(e)\"];

\"(1, I)\" ->\"(0, O)\" [label = \"(F\"];

\"(2, I\"->\"(0, 0)\" [label = \"(<empty>)\"];

\"(-1, 2\" ->\"(-1, 2)\" [label = \"(e&&F)\"];

\"(-1, 2\" ->\"(-1, 2)\" [label = \"(e\"];

\"(-1, 2\" ->\"(-1, 2)\" [label = \"(F\"];

\"(-1, 2)\" ->\"(-1, 2)\" [label = \"(<empty>)\"];
\"(-1, 2)\" [label=\"(-1, 2)\", style=filled, color=red]
\"(1, 1)\" [label=\"(1, 1)\", style=filled, color=pink]

\"(0, 0)\" [label=\"(0, O)\", style=filled, color=darkseagreen1i]

}Il
)

//mapping of the predicates on the program variables
predicates = ({name ="a"; syntax ="x>y"},
{name ="b"; syntax ="z < 0"},
{name ="c"; syntax = "xisNegative(float x)"},
{name ="d"; syntax ="z == 0"},
{name ="e"; syntax = "num_of_sats < 3"},

{name ="f"; syntax = "timestamp < param1 + 10"});

//all program variables being involved in the monitoring and their types
program_variables = ({name = "x"; type = "float"},

{name ="y", type = "float"},
{name ="2", type = "float"},
{name ="num_of_sats", type = "unsigned int"},

{name = "timestamp", type = "unsigned long"});

Figure 2.1. An example of a configuration file.

CHAPTER 3

Repository Structure

When you download RiTHM, the root directory is called rvtool. This directory
contains three main subdirectories doc, src, and test.

3.1 doc Directory

This directory contains two main folders dev-guide and user-guide. The dev-guide
contains a pdf file dev-guide-main which is a manual for developers who tend to con-
tribute to RiTHM’s development. The user-guide contains a pdf file user-guide
which is this user guide manual.

3.2 src Directory

This directory contains the source files of RITHM. This directory contains the fol-
lowing main subdirectories:

e frontend: This directory contains the source files for RiTHM’s GUI and the
shell scripts to run RiITHM via command line. The gui folder contains the
source files for the GUI, and the run folder contains the shell scripts to run
RiTHM from command line.

e globalizer: This folder contains source files for the portion of the Globalizer
module that parses and extracts data from the configuration file. It contains

12

Repository Structure

two folders. The globalizer formatter contains the source files for the for-
matting functionality of the Globalizer. The test folder contains a sample
used to test the formatter.

GooMF: Contains the source files for the GooMF verification engine. These files
implement the GPU-based LtLy Monitor Generator module. For a detailed
overview of GooMF, please visit the following website:

https://bitbucket.org/sberkovich/goomf/wiki/Home

java: This directory contains the source files of the modules written in java.

It contains two main folders 1ib and src. The 1ib folder contains jar files for
open CVS and apache commons. The src/ca/uwaterloo/esg/rvtool/directory
directory contains the following folders:

— The globalizer folder contains source files for the Globalizer module
that changes the program’s source code appropriately. This module uses
Clang to carry out its functionality.

— The jni folder contains the libconfig java files required by some of the
modules to carry out their functionality.

— Themonitor folder contains the source files for the High Resolution Timer
Observer Generator module. This module creates the RiTHMicMonitor.c
file found in the <path to program>/src directory, after you run RiTHM
on the program. In other words, this module creates the time-triggered
monitor and also hooks it to GooMF and the program (Glue Code Gen-
erator module).

— The SMIRF folder contains source files for the self-monitoring mode of
RiTHM. This mode is still under improvement.

— The TTRV folder contains the source files for the CFG Builder, the Critical
CFG Set Builder, and ILP solver, Greedy heuristic, VC heuristic modules.
In general, TTRV contains the source files which carry out the static anal-
ysis of RITHM. The folders Cleaner, ExtractAlias, FindInstLines,
FunctionCleaner, NullFinder, and VarExtractor either edit the rep-
resentation of the input to the CFG Builder and Critical CFG Set Builder
modules, or edit the representation of the output of these modules to fit
their interfaces. The CfgParser folder contains the source files for the
the CFG Builder, the Critical CFG Set Builder, and ILP solver mod-
ule. The Heuristics folder contains the source files for the Greedy
heuristic, VC' heuristic module, and the Instrumentor folder contains
the source files that create the input to the Instrumentor module (i.e.,
instrumentation.txt file).

— The 11vm folder contains the patches and source files to run the Globalizer,
Critical Imnstruction Identifier, and CFG Builder modules over
LLVM and Clang. The include folder contains the edited LLVM source
files required to create a weighted control-flow graph required for the

https://bitbucket.org/sberkovich/goomf/wiki/Home

3.3 test Directory 13

CFG Builder module. The 1ib folder contains the source file to the
dynamic library carrying out the Critical Instruction Identifier
module. The tools folder contains the Clang patches required to run the
Globalizer module.

— The monitor folder contains the template for the time-triggered monitor.

— The SMIRF folder contains the source files for carrying out self monitoring.
This functionality is at the moment under improvement.

— The swig folder contains libconfig files.

— The TTRV folder contains outputs of examples when running the CFG
Builder, the Critical CFG Set Builder, and ILP solver.

3.3 test Directory

In the root directory, you will find a subdirectory named test. In the test directory,
there are two directories example and expected-output. The example directory
contains multiple program examples that you can use to check out RiTHM. The
expected-output contains the output expected when running the programs in the
example folder in various modes of RiTHM (i.e., ILP, Heul, and Heu2). You can
use these outputs to check if RiITHM properly runs on your machine.

14

Repository Structure

CHAPTER 4

Running RiTHM

RiTHM can be initiated both from a GUI environment (recommended) and from
command line. The GUI environment allows the specification of all the required
parameters for running RiITHM. Then the GUI wraps the parameters and invokes
the appropriate shell script that, in turn, this script invokes the shell scripts with
their corresponding command line parameters.

4.1 Running RiTHM via GUI

The following sections present using the RiITHM GUI with a fixed polling con-
figuration, a dynamic polling period configuration, and using it to view realtime
measurements of the polling process.

4.1.1 Fixed Polling

Figure 4.1 shows the main GUI window when fixed polling is selected. The descrip-
tion of the GUI fields are as follows:

e Source Directory: Specifies the directory containing the source files of the
program under inspection.

e Output Directory: The output directory where the generated files are placed.

e Property Filepath: Specifies the path to the configuration file (see Section 2.3).

Running RiTHM

Source Directory: | /home/yogi/rvsrc/yjrvtool/test/example/Fibo_ver1 Browse...

Output Directory: | /home/yogi/rvsrc/yjrvtool/test/example/Fibover_output1 Browse...

Property Filepath: |/home/yogi/rvsrc/yjrvtool/test/example/Fibo_ver1/fibo.cfg Browse...

Configuration | Realtime Plot

@ Fixed Polling) Dynamic Polling
Algorithm Type: Sequential =
Invocation Type: Synchronous =

Target Polling Period [cycles]: |19

Buffer Size [bytes]: 1000
External |ILP 2
& Log Trace - file rithm_trace.log Run Tool View Log

Valid output directory must be specified

Figure 4.1. RiTHM's GUI window.

Algorithm Type: Specifies the verification algorithm used by the verification
engine (i.e., GooMF). Currently we have developed four different algorithms
for property verification. They can be listed in the declining order of the CPU
engagement: Sequential, Partial Offload, Finite-History, and Infinite-History
algorithm.

Invocation Type: Specifies the blocking type of the verification engine (i.e.,
GooMF). The verification engine might be either blocking (main thread (i.e.,
time-triggered monitor thread) invokes the flush function and waits until its
done) or non-blocking (main thread designates a worker thread from the pool
to perform the verification).

Target Sampling Period: Specifies the intended sampling period for the time-
triggered monitor. The value is in CPU cycles.

Buffer Size: Specifies the size of the buffer in which program states are stored

4.1 Running RiTHM via GUI 17

via the instrumentations. By default, the time-triggered monitor flushes the
buffer containing the program states (i.e., provides stored states to verification
engine, then empties buffer) at each sample. This option allows you to specify a
different behaviour in which you define the buffer size and the buffer is flushed
once it is full.

e External monitoring optimization algorithm. In this GUI field, you can define
the optimization algorithm used to insert instrumentation into the program:
ILP, Heul, or Heu2.

e Log Trace. Controls whether a trace log file should be outputted or not.
After RiTHM finishes its run, enter the following command to create the exe-

cutable of the instrumented program augmented with the time-triggered monitoring
thread:

gcc -L"./.." -o"main" <program name>.c RiTHMicMonitor.c
rithmic_globals.c -1GooMF -1rt

where <program name>.c is the C program under inspection. If your program
accommodates multiple C files, change this command appropriately.

4.1.2 Dynamic Polling

Figure 4.2 shows the main GUI window when dynamic polling is selected. The
description of the GUI fields are as follows:

e Source directory, output directory, and property file configuration is the same
as for fixed polling (see Section 4.1.1).

e Controller Type: The type of controller to use. THere are five possible con-
trollers: PID, Fuzzy 1, Fuzzy 2, Fuzzy 3, and Fuzzy 3 - remapped.

e Dynamic Buffer: Specifies whether dynamic buffer allocations are enabled or
not.

e Initial Sampling Period: Specifies the initial sampling period for the time-
triggered monitor. The value is in microseconds.

e Maximum Sampling Period: Specifies the maximum sampling period for the
time-triggered monitor. The value is in microseconds.

e Static Buffer Size: Specifies the size of the fixed buffer.

e Safety Percentage: Specifies the percentage of buffer occupation that the con-
troller should target.

18 Running RiTHM

e Fuzzy Scaling Factor: Specifies the scale by which to multiply the fuzzy con-
troller output. Applicable to all fuzzy controllers only.

e Target CV: The target coefficient of variation for Fuzzy 3 and Fuzzy 3 -
Remapped.

e P I and D: The proportional, integral, and differential gains of the PID con-
troller.

e Controller invocation frequency: The number of monitor invocations that must
occur before the controller is invoked. Only applicable when dynamic mode is
enabled, otherwise it defaults to 1.

e Maximum Buffer Size: The maximum size of a dynamically allocated buffer.

For more information on these fields, please refer to [7].

After RiTHM finishes its run, enter the following command to create the exe-
cutable of the instrumented program augmented with the time-triggered monitoring
thread:

gcc -L"./.." -o"main" <program name>.c rithmic_globals.c -1GooMF
-lrt -1m

where <program name>.c is the C program under inspection. If your program
accommodates multiple C files, change this command appropriately.

4.1.3 Realtime Plot

The Realtime Plot tab in the RiITHM GUI enables the user to view the current
polling period, and the current buffer utilization percentage (see Figure 4.3). Using
the realtime plot is only applicable when dynamic polling is used. The plot shows
in realtime how the controller adapts to the rate of events by dynamically adjusting
the polling period.

4.2 Running RiTHM via Command line

You can invoke RiITHM via the command line from the root directory (fixed polling
only). An example of invoking RiTHM via command-line is as follows:

./run.sh ../test/Fibo ../test/out ../test/Fibo/fibo.cfg ilp 1
_GOOMF _enum_alg_seq _GOOMF_enum sync_invocation 100 1

4.3 Viewing Results 19

e run.sh is the main shell script which can be found in <root directory> /src/
frontend /run.

e ../test/Fibo is the source directory containing the program under inspection.

e ../test/out is the output directory for files of (1) the program under inspec-
tion after RITHM finishes its processing, and (2) the time-triggered monitor.
Recall that RiTHM instruments the program to meet the provided target sam-
pling period.

e ../test/Fibo/fibo.cfg is the path to the configuration file.

e ilp is the optimization technique used by RiTHM to determine instrumenta-
tion points (can be replaced by heul or heu2 when using external monitoring,
and sat or greedy when using self monitoring).

e 1 is the target sampling period.

e _GOOMF_enum_alg seq means that the verification algorithm used by the veri-
fication engine GooMF is sequential and runs on the CPU (it can be replaced
by other algorithms, see [1] for other options).

e _GOOMF_enum sync_invokation means that the verification process is synchronous
(it can be replaced by other modes, see [!] for other options).

e 100 is the size of the verification buffer where the instrumentation stores pro-
gram state.

1 enables otputting a trace log of the application. Put 0 otherwise.

After RiTHM finishes its run, enter the following command to create the exe-
cutable of the instrumented program augmented with the time-triggered monitoring
thread:

gcc -L"./.." -o"main" <program name>.c RiTHMicMonitor.c
rithmic_globals.c -1GooMF -1lrt

where <program name>.c is the C program under inspection. If your program
accommodates multiple C files, change this command appropriately.

4.3 Viewing Results

There are two methods to view the convergence results of the properties being ver-
ified:

e Using the file /tmp/rithm_trace.log, a user can view the results of periodic
verification of the given properties.

20

Running RiTHM

e Using the GUI, by pressing on the View Log button.

An exmaple of this output is shown in Figure 4.4.

4.3 Viewing Results

21

X RiTHM

Source Directory: | | | Browse... |
Output Directory: | | | Browse... |
Property Filepath: \ \ | Browse... |

Configuration | Realtime Plot

) Fixed Polling @® Dynamic Polling
Controller Type: |Fuzzy 1 |
Dynamic Buffer: |Enabled =
Initial Polling Period [msec]: | 1000 Maximum Polling Period [msec]: | 20000 \
Static Buffer Size [events]: |20 Safety Percentage [0-100]: 80 \
Fuzzy Scaling Factor: | 5000 Target CV [0-1]:
P | D
Controller Invocation Frequency: |5 | Maximum Buffer Size [events]: |100 \
M Log Trace - file rithm_trace.log 1. Run Tool J | View Log

Press run on selection, Press 'View-Log', when the instrumented code's object is run

Figure 4.2. RiTHM's dynamic polling GUI window.

Running RiTHM

« RITHM

Source Directory: \ | Browse... |
Output Directory: \ | Browse... |
Property Filepath: \ | Browse... |

Configuration | Realtime Plot

m Polling Period | m Buffer Utilization

History
~ 11,000
L 10,000
L]
- 9,000 ?,=
v [5
(=] o
3 [o
g - 8,000 g_
o a
. ! B
L 7,000 ®
I o
L 6,000
L 5,000
S T L T T T T :
o ‘o ‘o ‘o ‘o o
N N &) > s
N S s s s N
Qb QB QQ QQ QQ QQ

System Uptime [h:m:s]

Press run on selection, Press 'View-Log', when the instrumented code's object is run

Figure 4.3. RiTHM'’s realtime plot GUI view.

Log Window

Log Errors Warnings

U, 31, 3U, B32U4U, 5 14229, Mool

line_num,event.i,event.n,event.Fnew,event.Fold,File Name
0, 31, 30, 832040, 514229,In monitor

line_num,event.i,event.n,event.Fnew,event.Fold,File Name
0, 31, 30,832040, 514229,In monitor

line_num,event.i,event.n,event.Fnew,event.Fold,File Name|
0,31, 30, 832040, 514229,In monitor
property0: satisfied
property1: violated
2: violated

Figure 4.4. RiTHM’s log GUI view.

CHAPTER b

RiTHM with an Example

In the root directory you will find a subdirectory named test. In the test directory,
there are two subdirectories, example and expected-output. The example direc-
tory contains multiple program examples that you can use to check out RiTHM.
The expected-output contains the output expected when running the programs in
the example directory in various modes of RiTHM (i.e., ILP, Heul, Heu2). You can
use these outputs to check if RiITHM properly runs on your machine.

We will use the fibo verl program from the test/example directory to elab-
orate more on RITHM. We will run RiTHM on fibo_verl in the external mode,
using the ILP algorithm with a target sampling period of 15. To do so, enter the
following command in the terminal:

./run.sh ../test/Fibo ../test/out ../test/Fibo/fibo.cfg ilp 15
_GOOMF _enum_alg_seq _GOOMF_enum_sync_invocation 100

First Step: RiTHM does a syntax check on fibo_verl and calls the Globalizer
to edit fibo_verl. You should see an output similar to Figure 5.1. After this step,
in directory out, files mainMeta.txt and goomfMeta.txt, and in folder out/src,
files fibo_verl.c and rithmic_globals.* have been created.

Second Step: RiTHM generates GooMF related files and recompiles GooMF
libraries. You should see an output similar to Figure 5.2. After this step, in directory
out, files 1ibGooMF.so, and in folder out/src, files GooMF* and ProgramState.h
have been created.

Third Step: RiTHM calls the Critical Instruction Identifier. You should see
an output similar to Figure 5.3(a). After this step, in directory out/Tool, folders

24

RiTHM with an Example

Source files found:

/home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c

========== Checking Syntax of Source File(s) =========

/home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c:17:3: warning: implicit declaration of function 'usleep' is

invalid in C99 [-Wimplicit-function-declaration]
usleep(1000);
A

1 warning generated.

========== Parsing libconfig File for Critical Variables ===

<i,int,local,main>
<n,int,local,main>

========== |nsert Global Header Include Statement ====
/home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c:17:3: warning: implicit declaration of function 'usleep' is

invalid in C99 [-Wimplicit-function-declaration]
usleep(1000);
LY

1 warning generated.
========== Globalizing Source File(s) =========

/home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c:18:3: warning: implicit declaration of function 'usleep' is

invalid in C99 [-Wimplicit-function-declaration]
usleep(1000);

1 warning generated.

Processing: /home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c.
Processing: /home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c.
Processing: /home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c.

Figure 5.1.

Globalizer output.

properties file path = /home/shay/git-repos/rvtool/test/Fibo_verl/fibo.cfg
application path = /home/shay/git-repos/rvtool/test/out_fibo_ilp/src
GooMF library path = /home/shay/git-repos/rvtool/build/GooMF

GooMF output lib path = /home/shay/git-repos/rvtool/test/out_fibo_ilp

generating program state and kernels...

copying generated files...

/home/shay/git-repos/rvtool/build/GooMF/GooMFLibrary/GooMF_CPU_monitor.h
/home/shay/git-repos/rvtool/test/out_fibo_ilp/src/ProgramState.h
/home/shay/git-repos/rvtool/test/out_fibo_ilp/src/GooMF_GPU_monitor_alg_finite.cl
/home/shay/git-repos/rvtool/test/out_fibo_ilp/src/GooMF_GPU_monitor_alg_infinite.cl
/home/shay/git-repos/rvtool/test/out_fibo_ilp/src/GooMF_GPU_monitor_alg_partial.cl

recompiling GooMF shared library...
currently in:

/home/shay/git-repos/rvtool/build/GooMF/GooMFLibrary

compiling...
make: “lib/libGooMF.so' is up to date.
finished!

Figure 5.2.

GooMF output.

25

IR, Nulls, Alias, LLVM, and Pass have been created. These folders contain the
following files:

e IR: contains the internal representation of fibo_veri.c (i.e., fibo_verl.c.bc
and renamed_fibo_verl.c.bc), and rithmic_globals.c (i.e., rithmic_globals
.c.bc and renamed_rithmic_globals.c.bc). Note that in all renamed_x files
the registers used in the corresponding internal representation is renamed.

e Nulls: contains file Nulls.txt which incorporates the list of unnamed regis-
ters that need monitoring. This file should be empty for fibo_verl.c.

e Alias contains files alias.txt and func.txt. File alias.txt contains the
alias sets, if your using the default LLVM alias analysis, this file must contain
the following line:

AliasSet [0x353f690, 2] may alias, Mod/Ref Pointers: (i32x* @mainn,
4), (i32* @main_i, 4).
File func.txt contains the list of functions of fibo_ver1.c: main, usleep, printf.

e LLVM: contains files alias.txt, critInst.txt, and functionCall.txt. File
alias.txt contains the reformatted alias sets from Alias/alias.txt. File
critInst.txt contains the variables to be monitored: main_i, main_n. File
functionCall.txt contains the lines of code that contain calls to program
functions. This file should be empty for fibo_verl.c.

e Pass: contains files critInst.txt, critLines.txt, functionCalls.txt, inst
Lines.txt, and Nulls.txt. File critInst.txt contains the variables to be
monitored: main_i, main_n. File critLines.txt contains the critical instruc-
tions, see Figure 5.3(b). File functionCall.txt contains the lines of code that
contain calls to program functions. This file should be empty for fibo_verl.c.
File instLines.txt contains the critical instructions with the duplicates re-
moved, see Figure 5.3(c). File Nulls.txt contains the list of unnamed registers
that need monitoring. This file should be empty for fibo_verl.c.

Fourth Step: RiTHM calls CFG Builder and Critical CFG Builder. You should
see an output similar to Figure 5.4(a). After this step, in directory out/Tool, folders
CFG and Graph have been created. These folders contain the following files:

e CFG: contains files cfg.main.dot and rawCFG. File cfg.main.dot is the dot
file containing the CFG of the main function of fibo_verl.c. File rawCFG
contains the contents of all the dot files in the CFG folder (see Figure 5.4(b)).

e Graph: contains files critical CFG, graph.txt, and vertices. File critical
_CFG contains the weighted critical CFG of fibo_verl.c (see Figure 5.4(c)).
File graph.txt contains the weighted CFG of fibo_verl.c. File vertices
maps the critical vertices of the weighted critical CFG to the variable repre-
senting these vertices in the ILP model.

26

RiTHM with an Example

>>>>>>>>>>>>>>>>> Start Renaming registers
>>>>>>>>>>>>>>>>> Renaming Complete
>>>>>>>>>>>>>>>> Start Finding Null Instructions
>>>>>>>>>>>>>>>> Finished Finding Null Instructions
/home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl
invalid in C99 [-Wimplicit-function-declaration]

usleep(1000);

A

1 warning generated.

>>>>>>>>>>>>>>>>> Start Renaming registers
>>>>>>>>>>>>>>>>> Renaming Complete
>>>>>>>>>>>>>>>> Start Finding Null Instructions
>>>>>>>>>>>>>>>> Finished Finding Null Instructions
>>>>>>>>>>> Start processing Aliases

>>>>>>>>>>> Finished processing Aliases

>>>>>>>>>>> Starting the processing of Nulls

main_i

main_n

>>>>>>>>>>> Finished the processing of Nulls
>>>>>>>>>>>>>>> Start Extracting Lines for Instrumentation
>>>>>>>>>>>>>>> Finish Extracting Lines for Instrumentation
>>>>>>>>>>>>>>> Start Extracting Lines for Instrumentation
>>>>>>>>>>>>>>> Finish Extracting Lines for Instrumentation
>>>>>>>>>>>>>>> Start Extracting Lines for Instrumentation
>>>>>>>>>>>>>>> Finish Extracting Lines for Instrumentation
>>>>>>>>>>>>>>> Start Extracting Lines for Instrumentation
>>>>>>>>>>>>>>> Finish Extracting Lines for Instrumentation
>>>>>>>>>>>>>>> Start Cleaning out the Final Result
>>>>>>>>>>>>>>> Finished Cleaning out the Final Result

.c:20:3: warning: implicit declaration of function 'usleep' is

(a) Output on terminal.

main,main_n,8
main,main_i,8
main,main_n,12
main,main_i,12
main,main_n,19
main,main_i,19
main,main_n,8
main,main_i,8
main,main_n,12
main,main_i,12
main,main_n,19
main,main_i,19

main,main_n,8
main,main_i,8
main,main_n,12
main,main_i,12
main,main_n,19
main,main_i,19

(b) critlLines.txt for
fibo_verl.c.

Figure 5.35.

(¢c) instLines.txt for
fibo_verl.c.

Critical Instruction ldentifier output.

27

[[---mm- Starting Creation of Critical CFG ------------------- ///
>>>>>>>>>>>>>>> Start Extracting Function Calls for Merging CFGs

Writing 'cfg.main.dot'...
>>>>>>>>>>>>>>> Start Extracting Function Calls for Merging CFGs

>>>>>>>>>>>>>>> Start Extracting Function Calls for Merging CFGs

Writing 'cfg.main.dot'...

/][Merging the CFGS ---------------------- ///
/11 /11
>>>>>>>>>>>>>> Parsing the function Call locations
>>>>>>>>>>>>>> Finished Parsing the function Call locations
>>>>>>>>>>>>>> Finished Merging dot files
>>>>>>>>>>>>>> Reading the raw CFG files

4

>>>>>>>>>>>>>> Adding edges to the graph
>>>>>>>>>>>>>> Reading variables of interest
->>>>>>>>>>>>>> Syncing CFG graph with dummy nodes
->>>>>>>>>>>>>> Merging CFG of functions at function call locations
>>>>>>>>>>>>>> Providing CFG to SMIRF

>>>>>>>>>>>>>> Finished Providing CFG to SMIRF

L ——— Creating Critical CFG -----------=---------- ///
/11 /11

>>>>>>>>>>>>>> Removing Non-Critical nodes from the CFG graph

/[Calculating LSP -----------mm-mmmemeo- ///
/11 /11

>>>>>>>>>>>>>> Writting the Critical CFG
>>>>>>>>>>>>>> Finding LSP

/home/shay/git-repos/rvtool/test/out_fibo_ilp/Tool/IR/fibo_verl.c.bc
>>>>>>>>>>>>>>> Finished Extracting Function Calls for Merging CFGs
>>>>>>>>>>>>>>> Finished Extracting Function Calls for Merging CFGs
/home/shay/git-repos/rvtool/test/out_fibo_ilp/Tool/IR/rithmic_globals.c.bc

>>>>>>>>>>>>>>> Finished Extracting Function Calls for Merging CFGs

>>>>>>>>>>>>>> Putting the critical instructions in separate nodes in the CFG graph

(a) Output on terminal.

digraph "CFG for 'main’' function" {

label="CFG for 'main' function";

NodeOx1c6eaf0 [shape=record,label="{entry\n 7--12--14\n,
7@5,8@0,11@1,12@0,14@0\n}"];

NodeOx1c6eaf0 -> NodeOx1c6eb50;

NodeOx1c6eb50 [shape=record,label="{while.cond\n 14--14\n,14@5\n | {<sO>T | <s1>F}}"];

Node0Ox1c6eb50:s0 -> NodeOx1c6ebb0;

NodeOx1c6eb50:s1 -> NodeOx1c6ecl0;

NodeOx1c6ebb0 [shape=record,label="{while.body\n 16--20--21\n,
16@3,17@3,18@1,19@2,20@0,21@0\n}"];

NodeOx1c6ebb0 -> NodeOx1c6eb50;

NodeOx1c6ec10 [shape=record,label="{while.end\n 23--25--27\n,
23@3,25@1,27@0\n}"];
1

(b) rawCFG for fibo_verl.c.

v,2,main,16,21
v,6,main,7,8
v,7,main,9,14
v,-1,main,0,0
v,-2,main,0,0
e,2,2,16
e2,-2,14
e6,7,1
e7,2,14
e7,-2,12
e,-1,6,6

(¢) critical CFG
for fibo_veril.c.

Figure 5.4/. CFG Builder and Critical CFG Builder output.

28 RiTHM with an Example

Fifth Step: RiTHM calls the ILP solver to create and solve the ILP model. You
should see an output similar to Figure 5.5(a). After this step, in directory out/Tool,
folder ILP has been created. This folder contain the following files:

e out_histModel.lp: contains the ILP model.
e out_ilp.txt: contains the ILP solution (see Figure 5.5(b)).

e insLines.txt: contains the lines that the ILP solution says that need to be
instrumented.

Sixth Step: RITHM calls the Instrumentor. You should see an output similar
to Figure 5.6(a). After this step, in directory out, file instrumentation.txt has
been created (see Figure 5.6(b)). In addition, fibo_ver1l.c has been instrumented
with GooMF APIs (see Figure 5.6(c)).

Seventh and Last Step: RiTHM calls the Monitor Generator. You should
see an output similar to Figure 5.7(a). After this step,in directory out/src, file
iRiTHMicMonitor.c has been created. At this point, fibo_verl.c is ready to be
compiled (see last paragraph of Section 4). The resulting executable will be verified
at runtime. If a property is violated, you will be notified via a message in the
terminal (see Figure 5.7(b)).

29

/// Creating ILP History Model ///
/1] /1]
>>>>>>>>>>>>>> Finding the Loop Structures

>>>>>>>>>>>>>> Finding indegree of each node
>>>>>>>>>>>>>> Creating ILP Model

>>>>>>>>>>>>>> |LP Model Complete

>>>>>>>>>>>>>>> Start Extracting the Instrumentation Points
>>>>>>>>>>>>>> Reading variables of interest

>>>>>>>>>>>>>> Creating Instrumentation for History
>>>>>>>>>>>>>> Instrumentation for Instrumentor Complete
>>>>>>>>>>>>>>> Finished Extracting the Instrumentation Points

(a) Output on terminal.

Value of objective function: 3.00000000
Actual values of the variables:
x0 0

x1 1

x2 0

x3 1

x4 1

e0 00 6

yo 6

vyl 0
e3.00 7
e2.10 14
y2 14

y3 0

v4 7

y5 0

e4 00 21
e4 10 19
y6 0

y7 21

y8 19

v9 0

e2 0B OO 16
y10 0

yl1 16

(b) out_ilp.txt for fibo_verl.c.

Figure 5.5. ILP Solver output.

RiTHM with an Example

=== Auto-instrumenting Source File(s) ==:
Instrumentation Map:

8 =><main_i,main,main_i,8>

12 =><main_i,main,main_i,12>

---------- Checking Syntax of Instrumented Source File(s)
Processing: /home/shay/git-repos/rvtool/test/out_fibo_ilp/src/rithmic_globals.c.
Processing: /home/shay/git-repos/rvtool/test/out_fibo_ilp/src/rithmic_globals.c.
Processing: /home/shay/git-repos/rvtool/test/out_fibo_ilp/src/rithmic_globals.c.
Processing: /home/shay/git-repos/rvtool/test/out_fibo_ilp/src/rithmic_globals.c.
Processing: /home/shay/git-repos/rvtool/test/out_fibo, |Ip/src/r|thm|c globals.c.
=== Checking Syntax of Source File(s) ===
/home/shay/glt repos/rvtool/test/out_fibo |Ip/5rc/ﬁbo verl €:20:3: warning: implicit declaration of function 'usleep' is
invalid in C99 [-Wimplicit-function-declaration]

usleep(1000);

A

1 warning generated.
=== Inserting Braces in Source File(s) ===
/home/shay/git-repos/rvtool/test/out_fibo |Ip/src/ﬁbo verl.c:20:3: warning: implicit declaration of function 'usleep' is
invalid in C99 [-Wimplicit-function-declaration]

usleep(1000);

A

1 warning generated.
—————————— Checking Syntax of Modified Source File(s) ---------
/home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c:20:3: warning: implicit declaration of function 'usleep' is
invalid in C99 [-Wimplicit-function-declaration]

usleep(1000);

A

1 warning generated.
=== Auto-instrumenting Source File(s) ==;
Instrumentation Map:
8 =><main_i,main,main_i,8>
12 =><main_i,main,main_i,12>
/home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c:20:3: warning: implicit declaration of function 'usleep' is
invalid in C99 [-Wimplicit-function-declaration]

usleep(1000);

A

Instrumenting [** main_i **] after 12:2-12:11

---------- Checking Syntax of Instrumented Source File(s) ---------

Processing: /home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c.
Processing: /home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c.
Processing: /home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c.
Processing: /home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c.
Processing: /home/shay/git-repos/rvtool/test/out_fibo_ilp/src/fibo_verl.c.

(a) Output on terminal.

#include "rithmic_globals.h"
#inclide "GooMFInstrumentor.h"
#include <stdio.h>

int program_main()
{
int Fnew, Fold, temp, ans;
main_n = 30;
Fnew = 1; Fold = 0;
main_i = 2;_GOOMF_nextEvent(context,1,(void*)(&main_n));

while(main_i <= main_n)
{
temp = Fnew;
Fnew = Fnew + Fold;

Fold = temp;
main_i++;_GOOMF_nextEvent(context,0,(void*)(&main_i));

GOOMF_Header,<#include "GOOMFInstrumentor.h"> usleep(1000);

main,main_n,8,< _GOOMF_nextEvent(context,1,(void*)(&main_n));> ins = Fnew:

main,main_i,8,< _GOOMF_nextEvent(context,0,(void*)(&main_i));> printf("%'d\n", ans);

main,main_n,12,< _GOOMF_nextEvent(context,1,(void*)(&main_n));> return 0;

main,main_i,12,< _GOOMF_nextEvent(context,0,(void*)(&main_i));> }

(b) instrumentation.txt for fibo_verl.c. (¢) Instrumented fibo_verl.c.

Figure 5.6. Instrumentor output.

Running generate-mon.sh

>>>>>>>>>>>>>>> Start Creating Monitor.c Code
name=i type=int scope=local function=main

name=n type=int scope=local function=main
>>>>>>>>>>>>>>> Finished Creating Monitor.c Code

(a) Monitor Generator output.

rtesg@ubuntu: ~fgit/rvtool/testfout_ilp_ver1_works/src

rtesg@ubuntu: ~/git/rvtool/build # | rtesg@ubuntu: ~/git/rvtool/test/out_ilp_ver1_wor... ¥
-TWw-rw-r-- 1 rtesg rtesg 116 2012-12-10 13:59 ProgramState.h

-rW-FW-r-- 1 rtesg rtesg 24 2012-12-10 13:59 rithmic_globals.c

-rwW-rw-r-- 1 rtesg rtesg 121 2012-12-10 13:59 rithmic_globals.h

-TW-rw-r-- 1 rtesg rtesg 5220 2013-81-08 14:13 RiTHMicMonitor.c

-TW-rw-r-- 1 rtesg rtesg 5218 2013-01-08 12:47 RiTHMicMonitor.c~

drwxrwxr-x 2 rtesg rtesg 4096 2012-12-10 13:59 src

drwxrwxr-x 11 rtesg rtesg 4096 2012-12-10 13:59 Tool

rtesg@ubuntu:~/git/rvtool/testfout_ilp_verl_works/src$./malIN
bash: ./maIN: Mo such file or directory
rtesg@ubuntu:~/git/rvtool/test/out_ilp_veri_works/srcs ./main
0

Context initialized..

3524578

property ©: probably satisfied
rtesg@ubuntu:~/git/rvtool/testfout_1ilp_veri_works/src$
rtesg@ubuntu:~/git/rvtool/test/out_ilp_verl_works/src$
rtesg@ubuntu:~/git/rvtool/testfout_1ilp_veri_works/src$
rtesg@ubuntu:~/git/rvtool/test/out_ilp_verl_works/src$
rtesg@ubuntu:~/git/rvtool/test/out_1ilp_veri_works/src$
rtesg@ubuntu:~/git/rvtool/testfout_1ilp_verl_works/src$./main
0

Context initialized..

3524578

property 0: probably satisfied
rtesg@ubuntu:~/git/rvtool/test/out_1ilp_veri_works/src$ I

(b) Verification output.

Figure 5.7. Monitor Generator and verification output.

32

RiTHM with an Example

CHAPTER 6

Limitations of RiITHM

The current distribution of RiTHM has certain limitations where you as a user must
consider to properly use RiITHM. Here we highlight the main current limitations of
RiTHM:

Source Code Limitations

At the time being RiTHM can only consider monitoring the following data types.
In other words, the predicates of the properties can use variable types of the follow-
ing:

e integer

e float

e character

e double

e string

e arrays with the above type

In addition, RiTHM has a limited capability of handling aliases. RiTHM uses
the alias analysis provided by LLVM. Hence, RiTHM is limited to the capability of
LLVM’s alias analysis. If the analysis suffers from inaccuracy (ex, does not find an
alias), then RiTHM will also suffer from it. Therefore, we highly recommend that
you install LLVM patches which provide highly accurate alias analysis. You can

find a detailed overview of the LLVM’s alias analysis at this link http://11vm.org/
docs/AliasAnalysis.html.

http://llvm.org/docs/AliasAnalysis.html
http://llvm.org/docs/AliasAnalysis.html

34 Limitations of RiITHM

As for the structure of the source code of the program under inspection, we
highly advise that the definition of an array to reside on a separate line. At the
time being in some cases the Instrumentor can not handle arrays being defined with
other variables on the same line. We are currently working on fixing the issue.

Time-triggered Monitor Limitations

Currently the monitor preempts the main thread using hi-res timers. The min-
imum period for hi-res timers depends on many factors, including CPU load at
the time of preemption, background processes, and other scheduling issues. To de-
crease the minimum period, we used a linux kernel patched with realtime scheduling
(Linux-RT). In our experiments, the period could only be decreased to 5 microsec-
onds and still maintain predictability. Thus for a program to be preempted in a
reliable manner, the sampling period should not fall below 5 microseconds.

Bibliography

1]

2]

3]

S. Berkovich. GooMF: GPU-based Online and Offline Monitoring Framework.
https://bitbucket.org/sberkovich/goomf/wiki/Home.

B. Bonakdarpour, S. Navabpour, and S. Fischmeister. Sampling-based runtime
verification. In Formal Methods (FM), pages 88-102, 2011.

B. Bonakdarpour, S. Navabpour, and S. Fischmeister. Time-triggered runtime

verification. Accepted for publication in Springer journal of Formal Methods in
System Design (FMSD), 2012.

B. Bonakdarpour, J. J. Thomas, and S. Fischmeister. Time-triggered program
self-monitoring. In IEEFE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 260269, 2012.

R. Medhat, D. Kumar, B. Bonakdarpour, and S. Fischmeister. Runtime verifi-
cation with controllable time predictability and memory utilization. Technical
Report CS-2013-02, University of Waterloo, 2013.

S. Navabpour, B. Bonakdarpour, and S. Fischmeister. Path-aware time-triggered
runtime verification. In Runtime Verification (RV), 2012. To appear.

S. Navabpour, C. W. Wu, B. Bonakdarpour, and S. Fischmeister. Efficient tech-
niques for near-optimal instrumentation in time-triggered runtime verification.
In Runtime Verification (RV), pages 208-222, 2011.

https://bitbucket.org/sberkovich/goomf/wiki/Home

	List of Tables
	List of Figures
	RiTHM Overview
	Time-triggered Monitor
	Verification Engine

	Getting Started
	Pre-requisites
	Installation
	Configuration File for RiTHM

	Repository Structure
	doc Directory
	src Directory
	test Directory

	Running RiTHM
	Running RiTHM via GUI
	Fixed Polling
	Dynamic Polling
	Realtime Plot

	Running RiTHM via Command line
	Viewing Results

	RiTHM with an Example
	Limitations of RiTHM

