OPTIMAL OPERATION OF DISTRIBUTION FEEDERS IN SMART GRIDS

Sumit Paudyal, Claudio A. Cañizares, and Kankar Bhattacharya Department of Electrical and Computer Engineering University of Waterloo, Ontario, Canada

OBJECTIVES

- Develop an optimal decision making tool for distribution system operations in Smart Grids.
- Incorporate unbalanced system operation in the model development.
- ➤ Propose a solution method for the optimization problem to facilitate practical implementations.

MODELING

Distribution Optimal Power Flow (DOPF) Model

- ➤ A generic three-phase optimization model.
- Objective Function:
 - Minimize energy drawn from substation.
 - Limit number of switching operations.
- > Equality Constraints:
 - Three-phase component models
 - o Conductors/cables.
 - o Switches.
 - o Transformers.
 - o Load Tap Changers (LTCs).
 - o Loads and Capacitors.
 - o Switched Capacitors (SCs).
 - Network Equations.
- > Inequality Constraints: Operating limits such as,
 - Voltage limit (as per ANSI).
 - Feeder current limits.

SOLUTION METHOD

- Nature of the Problem:
 - Proposed DOPF model is an MINLP problem.
 - LTC positions are discrete (-16 to +16).
 - Capacitor blocks in SCs are discrete (1, 2, 3 ..).
 - Associated with large number of variables even for a small distribution system.
 - Number of variables increase for 24-hour optimization problem.
- Converting MINLP to NLP problem:
 - Commercially available solvers (BARON,
 DICOPT) did not perform well in terms of solution time and convergence characteristics.
 - A quadratic penalty function is used.
 - Integer solution to NLP problem is obtained.
 - Integer solution may lie outside feasible space.
- Proposed Local Search:
 - In order to make sure that the obtained optimal solution lie in feasible space.
 - Search was carried out in the neighbourhood of the obtained solution (integer variables).
 - The search space is still huge due to the large number of integer variables and 24-hour optimization problem.
 - An hourly local search procedure is employed which reduces the search space substantially.

CASE STUDIES

IEEE 13-node Test Feeder

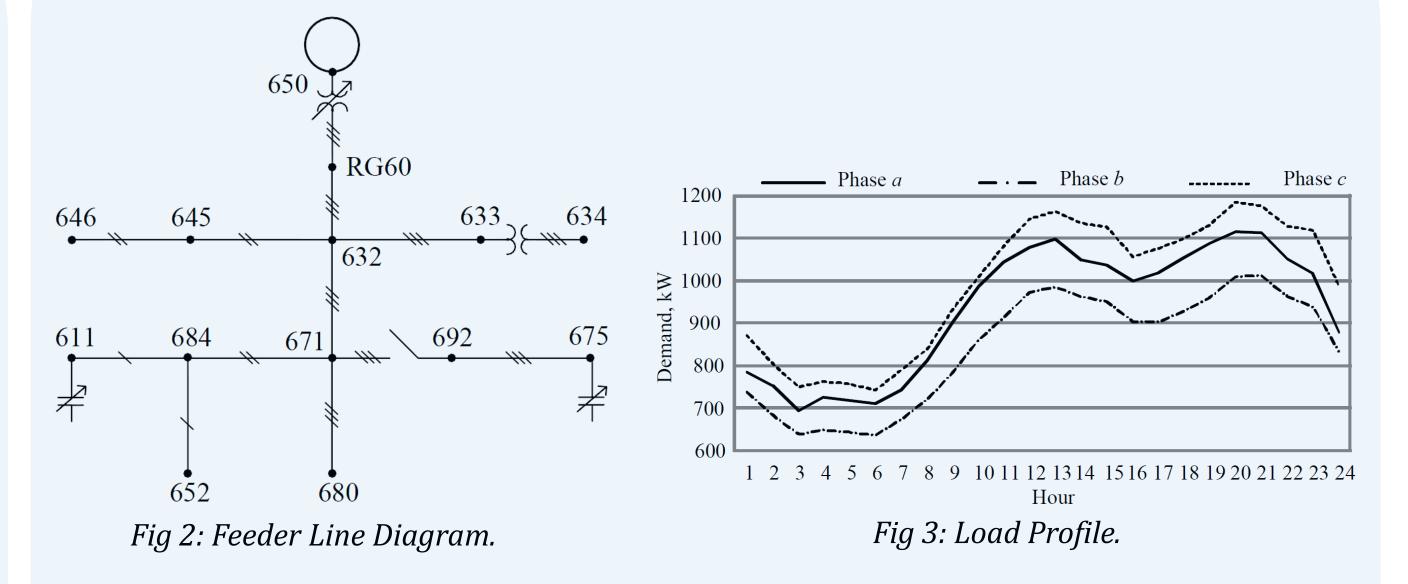


Table I: Simulation Results in IEEE 13-node Test Feeder.

	α	Number of				Energy from	Energy	% Reduction in	% Reduction in
Case		switching operations				substation	loss	energy from	number of
		Tap_1	Cap_1	Cap ₂	Total	(Mwh)	(Mwh)	substation	switching operations
1	_	10	8	14	32	67.684	2.129	_	_
2	1.0	8	16	6	30	62.886	1.986	7.09	6.25
3	0.2	16	2	2	20	67.081	2.125	0.89	37.5
4	0.0	12	0	0	12	67.730	2.138	-0.07	62.5

Hydro One Distribution Feeder

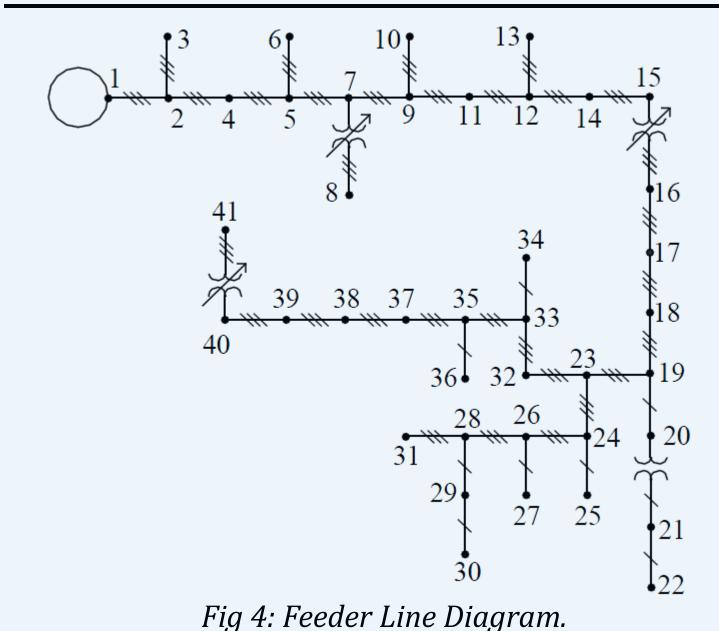


Table II: Simulation Results in Hydro One Distribution Feeder.

	α	Number of				Energy from	Energy	% Reduction in	% Reduction in
Case		switching operations				substation	loss	energy from	number of
		Tap_1	Tap ₂	Tap ₃	Total	(Mwh)	(Mwh)	substation	switching operations
1		12	14	50	76	291.619	6.090		
2	1	28	6	12	46	286.976	6.058	1.59	39.47
3	0.6	10	12	20	42	293.793	6.264	-0.75	44.73
4	0	4	14	14	32	293.987	6.265	-0.81	57.89

CONCLUSIONS

- The generic DOPF model, developed as an integral part of a Smart Grid, will help to optimize distribution operation.
- The proposed solution method yields suboptimal solutions, but reduces computational burden so that it can be used in real-time applications.