Module 6

ENGINEERING *ESCHERICHIA COLI* FOR BIOFUEL PRODUCTION

Growth and Production Kinetics

Kajan Srirangan, Lamees Akawi, Lyndia Stacey, Cheryl Newton, Perry Chou and Marc Aucoin

Problem Statement

After reading "Engineering *Escherichia coli* for Biofuel Production", answer the following questions using Table 1 and Appendix B of the case study [1]:

- 1. Calculate $Y_{x/s}$ (yield coefficient of biomass on glycerol).
- 2. How much of the glycerol do you think is going into making biomass? Why?
- 3. Is the $Y_{x/s}$ calculated above a "true/maximum" yield or is it an "observed" yield?
- 4. Estimate the specific growth rate of *E. coli* and comment on the kinetics of this growth.
- 5. Comment on the kinetics of metabolite production.

Table 1 – Culture performance of batch cultivation in a bioreactor for CPC-PrOH3 using glycerol as the
major carbon source

	Glycerol	Dry Cell Weight (Biomass)	Succinate	Acetate	Propionate	Ethanol	1-Propanol
Initial Concentration (g/L)	30.73	2.638	0.318	0.259	0.370	0.363	0
Final Concentration (g/L)	0	5.474	0.906	4.297	1.152	9.897	2.438

References

 Kajan Srirangan, Lamees Akawi, Lyndia Stacey, Cheryl Newton, Perry Chou and Marc Aucoin, Module 01. "Engineering *Escherichia coli* for Biofuel Production". Waterloo Cases in Design Engineering (WCDE), University of Waterloo.