Module 7

ENGINEERING ESCHERICHIA COLI FOR BIOFUEL PRODUCTION

Reactor Simulation and Operation

Kajan Srirangan, Lamees Akawi, Lyndia Stacey, Cheryl Newton, Perry Chou and Marc Aucoin

Problem Statement

Engineered *E. coli* strain CPC-PrOH3 was cultivated anaerobically in a bioreactor with 30.7 g/L of glycerol for approximately 40 hours. Refer to Appendix B of the case study for a full data set [1]. The culture was inoculated in a 1-L stirred-tank bioreactor containing the medium described in Table 1 and operated anaerobically at 30°C with stirring at 430 rpm with a single Rushton turbine. Anaerobic conditions were maintained by constant bubbling of nitrogen. The pH of the production culture was maintained at 7.0 ± 0.1 with 30 % (v/v) NH₄OH and 15 % (v/v) HNO₃.

- 1. Suggest a mode of operation to continue to the fermentation, to extend the culture, and maximize the production of solvents.
 - a. Should you decide to provide additional nutrients to extend the culture, explain the choice of nutrients in the feed.
- 2. Develop material balances around the various components for the fermentation that will allow you to simulate the extension of your fermentation.
- 3. Prepare a short MATLAB script that will show the fermentation extension.
- 4. What are the pitfalls of your approach that would make your anticipated outcome deviate from reality?

Module 7

Component	Concentration
carbon source (i.e. glycerol)	30 g/L
K ₂ HPO ₄	0.23 g/L
NH ₄ Cl	0.51 g/L
MgCl ₂	49.8 mg/L
K ₂ SO4	48.1 mg/L
FeSO4	1.52 mg/L
CaCl ₂	0.055 mg/L
NaCl	2.93 g/L
tricine	0.72 g/L
yeast extract	10 g/L
NaHCO ₃	10 mM
cyanocobalamin (vitamin B ₁₂)	0.2 μΜ
Trace Elements	
H ₃ BO ₃	2.86 mg/L
MnCl ₂ •4H ₂ O	1.81 mg/L
ZnSO ₄ •7H ₂ O	0.222 mg/L
Na ₂ MoO ₄ •2H2O	0.39 mg/L
CuSO ₄ •5H ₂ O	79 μg/L
$Co(NO_3)_2 \bullet 6H_2O$	49.4 µg/L

Table 1 - One litre stirred-tank bioreactor components and concentrations

References

[1] Kajan Srirangan, Lamees Akawi, Lyndia Stacey, Cheryl Newton, Module 01. "Engineering *Escherichia coli* for Biofuel Production". Waterloo Cases in Design Engineering (WCDE), University of Waterloo.