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A B S T R A C T

The high-precision generation of 3D building models is a controversial research topic in the field of smart
cities. However, due to the limitations of single-source data, existing methods cannot simultaneously balance
the local accuracy, overall integrity, and data scale of the building model. In this paper, we propose a novel 3D
building model generation method based on multi-source 3D data fusion of 3D point cloud data and 3D mesh
data with deep learning method. First, A Multi-Source 3D data Quality Evaluation Network (MS3DQE-Net) is
proposed for evaluating the quality of 3D meshes and 3D point clouds. Then, the evaluation results are utilized
to guide 3D building model generation. The MS3DQE-Net uses 3D meshes and 3D point clouds as inputs and
fuses the learned features to obtain a more complete shape description. To train MS3DQE-Net, a multi-source
3D dataset is constructed, which collected from a real scene based on mobile laser scanning (MLS) 3D point
clouds and 3D mesh data, including pairs of matching 3D meshes and 3D point clouds of the 3D building
model. Specifically, to our knowledge, we are the first researchers to propose such multi-source 3D dataset.
The experimental results show that MS3DQE-Net achieves a state-of-the-art performance in multi-source 3D
data quality evaluation. We demonstrate the large-scale and high-precision, 3D building model generation
approach on a campus.
1. Introduction

With the development of remote sensing and urban intelligence,
urban data visualization is the key to convenient urban management.
The construction of 3D urban models is an essential approach to data
visualization, and 3D building models are widely utilized in all aspects
of urban management. However, due to the complexity of a scene
and the limitations of existing methods, obtaining high-precision and
large-scale, 3D building models remains challenging.

The data captured by different sensors represent data from different
sources, which are referred to as multi-source data or cross-domain
data (Liu et al., 2021). Specifically, the fusion of multi-source data
aggregates the characteristics of different sensors and the respective
advantages of multi-source data, which enrich target information such
as multisensing, multiperspective, and multidimensional information.
In this paper, multi-source 3D data fusion is introduced into 3D building
model generation.

∗ Corresponding author.
E-mail address: zangyu7@126.com (Y. Zang).

Currently, there are three mainstream methods for obtaining large-
scale, urban, 3D model data. The first method is the 3D model gen-
erated by the Structure from Motion (SfM) (Méndez-Barroso et al.,
2018; Moran et al., 2021) or Multi-View Stereo (MVS) (Seitz et al.,
2006; Chen et al., 2021c) algorithm through the aerial image sequence
captured by oblique, unmanned aerial vehicle (UAV) photography, and
multiple cameras onboard manned aerial platforms (Remondino et al.,
2011; Nex and Remondino, 2014; Mohsan et al., 2022). The second
method is the 3D point cloud obtained by the mobile laser scanning
(MLS) system (Liu et al., 2020a; Su et al., 2022). The third method
is the 3D point cloud obtained by the Airborne Laser Scanner (ALS)
system (Roshandel et al., 2021, 2022).

Specifically, the 3D model generated by the SfM or MVS algorithm
has high integrality, but the local accuracy is limited. The 3D point
cloud obtained by MLS has high accuracy, but it is easily occluded,
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resulting in missing parts of a building. The ALS system can quickly ob-
tain a large range of urban 3D point cloud. However, ALS system obtain
the 3D data on the top of the target very well, but it is easily affected
by occlusion, and it is difficult to obtain the 3D point cloud data of the
target facade. Thus, the 3D model generated from single source data
cannot simultaneously balance the local accuracy, overall integrity, and
scope of a scene. In conclusion, the SfM/MVS data and point cloud
data are complementary in space and accuracy and can be employed as
basic 3D data for generating large-scale and high-precision, 3D building
models.

3D models are usually expressed as mesh data, which comprise
a collection of vertices, edges and faces of objects in 3D space (Yu
et al., 2022). Thus, 3D mesh is suitable for use as the mathematical
representation of urban scenes (Rocchini et al., 2001; Neto et al.,
2021). The methods for obtaining 3D building models can be divided
into two categories: the first category consists of manual modeling by
modeling software, and the second category comprises a 3D model
generation algorithm. Although the manual modeling method artifi-
cially controls the details of the 3D model, the modeling cost is very
high since the process is time-consuming and labor-intensive, which
is not suitable for the acquisition of 3D urban models. Currently, the
mainstream method for obtaining 3D building models involves the use
of 3D model generation algorithms, which are divided into traditional
methods (Méndez-Barroso et al., 2018; Moran et al., 2021; Seitz et al.,
2006; Chen et al., 2021c) and deep learning methods (Nan and Wonka,
2017; Ladicky et al., 2017; Wang et al., 2018). However, existing 3D
model generation methods cannot simultaneously take into account the
local accuracy, overall integrity and data scale of the 3D models. Details
are presented as follows:

(1) Although the overall high integrality of a 3D model is ensured,
the local high precision cannot be guaranteed. By using the
SfM or MVS algorithm, the aerial image sequence captured by
UAV tilt photography generates a large-scale, urban, 3D building
model with complete scene coverage in a short time. However,
aerial images are easily affected by the weather and distribution
of buildings, which may cause uneven light distribution and
occlusion of buildings. As a result, the local accuracy of the
3D building models generated by the SFM or MVS algorithm is
low, and the scene details are absent. For example, the building
structures at the eaves occlusion are abnormal, and the walls
have holes.

(2) Although the local high precision of the 3D model is ensured,
the 3D reconstruction of the large-scale scenes cannot be guar-
anteed. 3D model generation methods based on deep learning
improve the problem of insufficient details, but due to the large
consumption of computing power, the scale of generating 3D
models is limited, and only smaller objects or scenes can be
generated.

(3) Although the local high precision of the model is ensured, the
high integrality of the 3D model cannot be guaranteed. 3D model
generation methods based on point cloud meshing rely on the
accuracy of 3D point clouds. However, the working area of the
laser scanning system is constantly blocked by trees, pedestrians,
vehicles, etc., making the captured point cloud data incomplete.
This disadvantage results in the absence of the local area from
the 3D model.

In this paper, in view of the limitations of the 3D model generated
y single-source data and the existing 3D model generation methods,
e focus on large-scale and high-precision, 3D building model gen-
ration. Moreover, deep learning has promoted the development of
any computer vision tasks (Chen et al., 2021b; Liu et al., 2022;
hen et al., 2021a, 2022; Wu et al., 2022). Thus, a deep learning
ethod is proposed for generating 3D building models based on the

usion of multi-source 3D data. The overall process of this method
2

is shown in Fig. 1, which consists of three steps: 3D point cloud
registration, 3D model quality evaluation, and 3D model generation
based on multi-source data fusion.

The main contributions of this paper are summarized as follows:

(1) A Multi-Source 3D Data Quality Evaluation Network, MS3DQE-
Net, is innovatively proposed for evaluating the data quality of
the paired matching of 3D point clouds and 3D meshes. Experi-
mental results show that MS3DQE-Net achieves a state-of-the-art
performance in multi-source 3D data quality evaluation.

(2) Based on the evaluation results of the paired matching of 3D
point clouds and 3D meshes by MS3DQE-Net, we propose an
adaptive, 3D building model generation method based on multi-
source data fusion. We use the MS3DQE-Net quality evaluation
results for guidance, adaptively adjusting the fusion scheme in
different areas of the 3D building model so that the generated
3D model balances the accuracy and completeness.

(3) To the best of our knowledge, we are the first researchers to
propose a multi-source dataset, the paired matching of 3D mesh
patch and 3D point cloud patch dataset of buildings, based on
mobile laser scanning (MLS) 3D point cloud and 3D mesh data.

The organization of this paper is as follow: First, we introduce
the background in Section 1; Second, the related work is described
in Section 2; Third, we construct a multi-source 3D dataset of paired
matching 3D mesh and 3D point cloud patches in Section 3; Fourth,
we propose the MS3DQE-Net in Section 4; Fifth, we describe the 3D
building model generation based on multi-source fusion in Section 5;
Sixth, Section 6 shows the experimental results. Finally, the conclusion
(Section 7) summarizes the works of this paper.

2. Related work

2.1. Deep learning with 3D data

2.1.1. Deep learning with 3D point clouds
Before deep learning with 3D point clouds, traditional, handcrafted,

3D point cloud feature descriptors rely on manual design, focusing
on constructing the local geometric features of a point cloud, such as
Fast Point Feature Histograms (FPFH) (Rusu et al., 2009), Signature
of Histograms of OrienTations (SHOT) (Tombari et al., 2010), and
Rotational Projection Statistics (ROPS) (Guo et al., 2013). Recently,
many cloud feature descriptors based on deep learning strategies have
been proposed with better overall performance (Guo et al., 2020).

The disorder, discreteness and uneven distribution of point clouds
pose a challenge to deep neural networks that directly process points
for feature extraction. Qi et al. (2017a) designed a neural network
named PointNet that directly uses point cloud data as input, using each
point as the smallest input unit. Subsequently, Qi et al. proposed Point-
Net++ (Qi et al., 2017b), which aims to overcome the limitation that
PointNet cannot capture the local features of a point cloud. Inspired by
PointNet, a series of works that directly input point clouds into deep
neural networks for feature extraction, such as PointCNN (Li et al.,
2018a), PointConv (Wu et al., 2019), PointASNL (Yan et al., 2020),
SCF-Net (Fan et al., 2021) have been proposed.

2.1.2. Deep learning with 3D mesh data
Most of the current processing of 3D mesh data is based on tra-

ditional, handcrafted feature descriptors. Lien et al. (Lien and Kajiya,
1984) calculated moments of each tetrahedron in the mesh data. For
2D/3D objects in mesh representation, Zhang et al. (Zhang and Chen,
2001) developed several functions applied to each triangle and added
all the resulting values. To solve the unstructured problem of mesh
data, Hubeli et al. (Hubeli and Gross, 2001) extended the features
of faces to a multiresolution setting. Kazhdan et al. (2003) proposed

using the Spherical Harmonic descriptor (SPH) as a rotation invariant
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Fig. 1. Overview of 3D building model generation based on multi-source 3D data fusion.
representation for mesh data. Kokkinos et al. (2012) introduced the
intrinsic shape context (ISC) descriptor to develop a generalization to
faces, which solves the problem of orientational ambiguity.

Compared with the traditional processing method for 3D meshes, 3D
mesh processing based on deep learning is just emerging. Feng et al.
(2019) proposed MeshNet to learn 3D shape representation from 3D
mesh data to solve the complexity and irregularity problem of mesh
and to adequately conduct 3D shape representation. Li et al. (2020)
presented a deep normal filtering network, DNF-Net, for mesh denois-
ing. DNF-Net receives patches of facet normals as inputs and directly
outputs the corresponding denoised facet normals. Zhang et al. (2021)
proposed MeshingNet3D for the generation of high-quality tetrahedral
meshes by using artificial neural networks.

2.2. Multi-source 3D data fusion

Bódis-Szomorú et al. (2016) proposed the fusion of airborne laser
scanner (ALS) point clouds and MLS point clouds for modeling and
provided a solution to the problem of excessively smooth model faces
caused by using only ALS point clouds. Yang et al. (2017) investigated
a workflow that utilizes factor graph Simultaneous Localization and
Mapping (SLAM), dense 3D reconstruction and Iterative Closest Point
(ICP) to efficiently generate LiDAR and camera point clouds and then
coregistered them in a navigation frame to provide a consistent and
more detailed reconstruction of the environment. Brell et al. (2019) pre-
sented the application of fusing the first pulse return information from
ALS data at a subdecimeter spatial resolution with the lower-spatial-
resolution hyperspectral information available from the HyperSpectral
Imager (HSI) into a hyperspectral point cloud.

3. Multi-source 3D dataset acquisition

To the best of our knowledge, there is currently no public, large-
scale, paired matching of a 3D point cloud patch and a 3D mesh patch
for 3D building models. In this paper, the Zhangzhou Port campus at
Xiamen University, Fujian Province, China, which covers an area of
approximately 2 square kilometers, is selected as a real experimental
scene. We propose a strategy to generate the multi-source 3D dataset
of a building, which comprise the paired matching of 3D point cloud
and 3D mesh patches.

As shown in Fig. 2, first, we use the RIEGL VMX-450 Mobile Laser
Scanner (MLS) system to capture the LiDAR point cloud and street-
view images of the campus. Second, we use a UAV equipped with a
multiangle lens to capture the aerial image sequence of the campus and
generate a 3D mesh model by using ContextCapture modeling software.
Last, data preprocessing is performed on the original MLS point cloud
and 3D mesh model, and only the data of the building area are retained.

Specifically, the height of UAV flight depends on the height of the
building, the flight height is controlled at about 80–110 m, and the
Ground Sampling Distance (GSD) is about 2–3 cm per pixel. The number
of 3D mesh faces in 1 m2 varies depending on the structure of the
building. The number of points in the obtained 3D point cloud within
1 m2 is about 4000 points, which will attenuate with distance.
3

Algorithm 1: Partition of the 3D mesh model based on the mesh
face structure.
Input: The face set 𝐹 and the discrete vertex set 𝑃 of 3D mesh
model, the size 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒 of the 3D grid
Output: The 3D mesh patch set 𝐶𝑜𝑏𝑗
1: Determining the largest vertex coordinate 𝑣𝑚 and the smallest

vertex coordinate 𝑣𝑠 in 𝐹 , calculating the number of partitioned
3D grids 𝑛𝑢𝑚𝑏𝑜𝑥 = (𝑣𝑚 − 𝑣𝑠)∕𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒, and initializing the list 𝐶𝑜𝑏𝑗
with a size of 𝑛𝑢𝑚𝑏𝑜𝑥 to store the partitioned 3D mesh patches;

2: Traversing 𝐹 and performing the following operations on each
mesh face 𝑓𝑖:
(a) Calculating the center point 𝑣𝑐 of 𝑓𝑖;
(b) Calculating 𝐼𝑐 = [(𝑣𝑐 − 𝑣𝑠)∕𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒], and 𝐶𝑜𝑏𝑗 [𝐼𝑐 ] was added to
𝐼𝑛𝑑𝑒𝑥(𝑓𝑖), denoting that 𝑓𝑖 belongs to the 3D mesh patch 𝐶𝑜𝑏𝑗 [𝐼𝑐 ];

3: Traversing 𝑃 and performing the following operations on each
discrete vertex 𝑝𝑖:
Calculating 𝐼𝑝 = [(𝑝𝑖 − 𝑣𝑠)∕𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒], and 𝐶𝑜𝑏𝑗 [𝐼𝑝] was added to
𝐼𝑛𝑑𝑒𝑥(𝑝𝑖), denoting that 𝑝𝑖 belongs to the 3D mesh patch 𝐶𝑜𝑏𝑗 [𝐼𝑝];

4: Output 3D mesh patch set 𝐶𝑜𝑏𝑗 .

3.1. Multi-source point cloud registration

In this paper, we use the SAC-IA algorithm (Rusu et al., 2009)
for coarse registration and then use the Scale-ICP algorithm (Ying
et al., 2009) for fine registration. In coarse registration, the number of
iterations is set to 1000, and the distance threshold between two point
sets is set to 10 cm. In fine registration, the number of iterations is set
to 1000, and the distance threshold between two point sets is set to
1 mm. The registration results are shown in Fig. 3.

3.2. Generation of paired matching of 3D point cloud patch and 3D mesh
patch dataset

The matching of 3D point cloud and 3D mesh patches are generated
based on the 3D mesh model and MLS 3D point cloud, which is shown
in Fig. 4, including 3 steps: partition, outlier removal and labeling.

3.2.1. Partition of 3D data
The partition of the 3D mesh model is based on a fixed-size 3D grid.

The partition algorithm (Algorithm 1) treats the entire 3D mesh model
as a large cube and divides it into small cubes of the same size according
to the 3D grid. The data contained in each small cube are treated as a
small 3D mesh patch.

After completing the partition of the 3D mesh model, the corre-
sponding MLS point cloud needs to be partitioned as a point cloud patch
with the same size as the 3D mesh patch. The idea of the partition
algorithm of the MLS point cloud is similar to that of the 3D mesh
model. The partition algorithm (Algorithm 2) of the MLS point cloud
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Fig. 2. Schematic of obtaining MLS point clouds and 3D mesh data.
Algorithm 2: Partition of the MLS point cloud based on the discrete
points.
Input: Point cloud set 𝑃 , and the size 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒 of the 3D grid
Output: Point cloud patch set 𝐶𝑙𝑎𝑠
1: Determining the largest vertex coordinate 𝑣𝑚 and the smallest

vertex coordinate 𝑣𝑠 in 𝐹 , calculating the number of partitioned
3D grids 𝑛𝑢𝑚𝑏𝑜𝑥 = (𝑣𝑚 − 𝑣𝑠)∕𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒, and initializing the list 𝐶𝑙𝑎𝑠
with a size of 𝑛𝑢𝑚𝑏𝑜𝑥 to store the partitioned 3D mesh patches;

2: Traversing 𝑃 and performing the following operations on each
mesh face 𝑝𝑖:
Calculating 𝐼𝑝 = [(𝑝𝑖 − 𝑣𝑠)∕𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒], and 𝐶𝑙𝑎𝑠[𝐼𝑝] was added to
𝐼𝑛𝑑𝑒𝑥(𝑝𝑖), denoting that 𝑝𝑖 belongs to the point cloud patch
𝐶𝑙𝑎𝑠[𝐼𝑝];

3: Output point cloud patch set 𝐶𝑙𝑎𝑠.

considers the set of points that fall into the same small cube as a point
cloud patch.

In this paper, we set 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒 of the 3D grid to a cuboid with length,
width and height of 23 cm, 10 cm and 7 cm, respectively. The partition
results of the 3D mesh model patch and MLS point cloud patch are
shown in Fig. 5.

3.2.2. Outlier removal of 3D data volume
The shapes of the 3D mesh and 3D point cloud patches are irregular,

so the number of faces or points contained between each 3D patch
differs. According to the number of points or faces, the 3D data patches
are distributed and counted. The 3D data patches with a lower pro-
portion in the whole are outlier data. Note that the outlier 3D data
patches are not representative, and they will affect the effect of the
experiments, so it is necessary to remove the outlier 3D data patches.
4

We use graphical analysis to remove outliers. In detail, we model the
distribution of discrete faces or points into a histogram and fit a normal
distribution curve on the histogram.

Fig. 6 presents an example of removing outlier data from 3D mesh
patches. Fig. 6(a) shows that the proportion of faces with many or
fewer faces overall is small. Therefore, they belong to outlier data and
should be removed. After removing the outlier data, the distribution
of the number of faces in each 3D mesh patch is shown in Fig. 6(b),
which shows that removing the outliers makes the distribution more
concentrated. Intuitively, the distribution of the number of faces in the
3D mesh patch dataset tends to be concentrated after outlier data are
removed.

3.2.3. 3D data labeling
After removing the outlier data, the paired matching of the 3D mesh

and 3D point cloud patches need to be labeled. Specifically, the purpose
of the 3D model quality evaluation method proposed in this paper
is to assess the quality of each area of the 3D model. Therefore, the
paired matching of the 3D mesh and 3D point cloud patches need to be
labeled as good or bad. The quality of the paired matching 3D mesh and
3D point cloud patches is labeled by 2 teachers and 8 students. They
observe the building structure on the spot, compare with the photos
of the building, then discuss together to form a consensus, and finally
complete the labeling. The detailed criteria are as follows: (1) If there
are holes in the building facade of the paired matching 3D mesh and
3D point cloud patches, it is judged as bad; (2) If the structure of paired
matching 3D mesh and 3D point cloud patch is inconsistent with the
structure of the building (protruding or recessed), it is judged as bad.

Finally, we construct 1000 pairs for matching the 3D mesh patch
dataset and 3D point cloud patch dataset, of which 575 pairs of samples
are labeled as good and 425 pairs of samples are labeled as bad.
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Fig. 3. Registration result of the 3D mesh model and MLS point cloud. The orange
points represent the 3D mesh model vertex set, and the blue points represent the MLS
point cloud. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

4. Method

In this section, a Multi-Source 3D data Quality Evaluation Network
(MS3DQE-Net) is proposed to evaluate the paired matching of 3D mesh
and 3D point cloud patches. Note that the quality of each local area
of the 3D building model can be evaluated as good or bad. Therefore,
we convert the quality evaluation problem of the multi-source 3D data
fusion of the 3D building model to a classification problem.

4.1. 3D data preprocessing

4.1.1. 3D data outlier removal and normalization
First, the outliers of faces or points in the 3D data are removed

to reduce noise (as mentioned in Section 3.2.2). Second, the faces or
points in the 3D data are moved to the center point and normalized.
After normalization, the coordinates of the 3D data are moved to the
center point and limited to the range of (−1, 1).

4.1.2. 3D data augmentation
To improve the robustness and performance of MS3DQE-Net, 3D

mesh and 3D point cloud are performed for data augmentation. Specif-
ically, random noise following a normal distribution is added to the
3D point cloud (for the 3D mesh model, the vertex set of the 3D mesh
model is approximately the same as the 3D point cloud). Selecting the
3D point cloud as an example, Fig. 7 shows the noise and 3D point
cloud data augmented by noise. Figs 7(b), and 7(c) shows the results of
3D point cloud data augmentation, where purple represents the original
3D point cloud, and orange denotes the noise point cloud.
5

4.1.3. 3D data sampling
To ensure the same size of the 3D data patches, i.e., inputs of

MS3DQE-Net, the number of faces or points of the input 3D data
patches need to be fixed. When the number of faces or points is less
than the fixed value, we randomly select faces or points in the current
3D data patch to fill up to the preset value. When the number of faces
or points is greater than the set maximum number, we use the Farthest
Point Sampling (FPS) method (Eldar et al., 1997) to downsample the
3D data patch to the fixed value. Fig. 8 shows the comparison before
and after downsampling the 3D point cloud using the FPS method. The
point density of the 3D point cloud is reduced after downsampling, but
the overall structure has not changed.

4.2. 3D data characteristic analysis

In this paper, the features of the 3D mesh and 3D point cloud are
fused to improve the accuracy of MS3DQE-Net in the quality evaluation
of the generated 3D building models. When constructing the geometric
structure relationship of 3D data, it is necessary to construct the neigh-
borhood information of the faces or points of the 3D data. For 3D mesh
data, the connection relationship between two faces is regular, that is,
two faces sharing one edge are adjacent. The face of the 3D mesh and
its neighborhood are shown in Fig. 9. The blue triangle represents the
current face, and the red triangles represent the neighborhood faces.
For 3D point clouds with fuzzy definitions of neighbor relations, the
K-nearest neighbor algorithm (Altman, 1992) is employed to calculate
the neighborhood.

4.3. MS3DQE-Net

The overall structure of MS3DQE-Net is shown in Fig. 10; it uses
the paired matching of 3D mesh patches and 3D point cloud patches as
inputs. First, MS3DQE-Net consists of two branches, a 3D point cloud
feature extraction branch and a 3D mesh feature extraction branch,
which are used to extract the features of 3D mesh patches and 3D
point cloud patches, respectively. Second, the features extracted by the
two branches are coupled by a feature aggregation module. Last, the
complete feature pool is fed into the multilayer perception (MLP) layer
to output the quality evaluation results of the model. Specifically, the
processing of 3D point clouds refers to the idea of symmetric functions
in PointNet (Qi et al., 2017a) and MeshNet (Feng et al., 2019). The
function of each branch and module in the proposed MS3DQE-Net is
shown in Table 1. For 3D mesh data, face-by-face processing combined
with symmetric functions is utilized to solve the problem of face
disorder. The detailed information of the 3D mesh data and 3D point
cloud data input to MS3DQE-Net is shown in Table 2.

4.3.1. 3D point cloud feature extraction branch
Compared with the mesh data obtained by tilt modeling, the 3D

LiDAR point cloud has higher accuracy, and its structure is closer to
a real object or scene, so we use 3D LiDAR point cloud features to
guide the classification of 3D data. For the point set, we use the shared
MLP to extract high-dimensional features and then use max pooling
as the symmetry function to solve the disorder problem. The spatial
characteristics of the LiDAR point cloud are generated. The structure
of the 3D point cloud feature extraction branch is shown in Fig. 11.
The output dimension of MLP is set to (32, 64), and the output of the
3D point cloud feature is 𝐹𝑒𝑎𝑝𝑜𝑖𝑛𝑡.

4.3.2. 3D mesh feature extraction branch
The structure of the 3D mesh feature extraction branch is shown in

Fig. 12. Face features are employed to describe the structural features
of the 3D mesh. The face in the 3D mesh contains its own shape and
local structure information, so the face feature extraction subbranch
can be subdivided into two subbranches: face-shape feature extraction
and surface-local structure feature extraction. On the other hand, the
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Fig. 4. Pipeline for generating paired matching of 3D point cloud patch and 3D mesh patch dataset.

Fig. 5. Partition of the corresponding 3D mesh model and MLS point cloud.

Fig. 6. Example of removing outlier data from 3D mesh patches in a 3D mesh model.

Fig. 7. Example of 3D point cloud data augmentation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Comparison before and after downsampling the 3D point cloud.
Fig. 9. Face of the 3D mesh model and its neighborhood faces. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
Table 1
The function of each branch and module in the proposed MS3DQE-Net.
Branch/Module Function

3D point cloud feature extraction branch Extracting the features of
3D point cloud patches

3D mesh feature
extraction branch

Face feature
extraction subbranch

Face-shape feature
extraction subbranch

Capturing the geometric structure
feature of each 3D mesh face

Face-local structure feature
extraction subbranch

Capturing the local neighborhood structure
feature centered on each 3D mesh face

Face center point global feature
extraction subbranch

Describing the overall spatial
features of the 3D mesh

Face center point local feature
extraction subbranch

Describing the detailed local geometric spatial
features of the 3D mesh

Feature aggregation
module

Point feature aggregation Combining all the above extracted features
Mesh feature aggregation
Table 2
Detailed information of the 3D mesh face and 3D point cloud
input to MS3DQE-Net.
Type Input Data dimension

3D mesh (face)

𝑐𝑒𝑛𝑡𝑒𝑟 3
𝑛𝑜𝑟𝑚𝑎𝑙 3
𝑐𝑜𝑟𝑛𝑒𝑟 18
𝐼𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑓𝑎𝑐𝑒 3
𝐼𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑐𝑒𝑛𝑡𝑒𝑟 3

3D point cloud 𝑝𝑜𝑖𝑛𝑡 3
7

center point feature expresses the position information of the face in
space, where it is subdivided into global features and local geometric
features.

Next, as shown in Fig. 12, we decompose the 3D mesh feature
extraction branch into (i) the face feature extraction subbranch; (ii) the
face center point global feature extraction subbranch; and (iii) the face
center point local feature extraction subbranch and describe them in
detail.

(i) Face feature extraction subbranch

Fig. 13 shows the structure of the face feature extraction sub-
branch, which combines the face-shape feature extraction subbranch
and face-local structure feature extraction subbranch.
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Fig. 10. The architecture of the proposed MS3DQE-Net.
Fig. 11. Architecture of the 3D point cloud feature extraction branch.
1⃝ Face-shape feature extraction subbranch

The face-shape feature extraction subbranch aims to capture the
geometric structure feature of each 3D mesh face. The entrance to
this subbranch is a triangular mesh composed of 3 corners of each
face, as they clearly express their shape characteristics. The processed
data of this branch are triangular mesh data, and the three corners of
each face can clearly express its shape characteristics, so the branch
takes the three corners of the face as input. In this paper, we use
two edge vectors to represent a corner, which can be represented by
6-dimensional parameters.

For each corner, we use MLP to obtain its feature in a higher di-
mensional space. To fuse the features of the three corners, a symmetric
operation is used to eliminate their disorder. We use average pooling as
8

the symmetric operation, which stabilizes the extracted corner fusion
feature regardless of the order of corner input. The output features of
the three corners are defined as follows:

𝑔(ℎ(𝑐𝑜𝑟𝑛𝑒𝑟𝐴) + ℎ(𝑐𝑜𝑟𝑛𝑒𝑟𝐵) + ℎ(𝑐𝑜𝑟𝑛𝑒𝑟𝐶 )) (1)

where ℎ is the MLP(32,32), each layer of which performs a one-
dimensional convolution operation, performs batch normalization, and
then uses ReLU as the activation function. 𝑔 is the average symmetrical
function defined as follows:

𝑔
(

ℎ1, ℎ2,… , ℎ𝑛
)

= 1
𝑁

∑
(

ℎ1, ℎ2,… , ℎ𝑛
)

(2)

Through an MLP(64, 64), a 64-dimensional face shape feature
𝐹𝑒𝑎 is obtained.
𝑓𝑎𝑐𝑒_𝑠ℎ𝑎𝑝𝑒
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Fig. 12. Architecture of the 3D mesh feature extraction branch.
Fig. 13. Architecture of the face feature extraction subbranch.
2⃝ Face-local structure feature extraction subbranch

To more comprehensively represent the feature of each face in the
3D mesh data, in addition to capturing the internal structural features
of each face (e.g., face-shape feature), it is also necessary to extract
the external structural features. Inspired by KC-Net (Shen et al., 2018),
the designed face-local structure feature extraction subbranch aims to
capture the local neighborhood structure feature centered on each face.

As shown in Fig. 13, first, the face-shape feature 𝐹𝑒𝑎𝑓𝑎𝑐𝑒_𝑠ℎ𝑎𝑝𝑒 and
the face-local structure feature 𝐹𝑒𝑎𝑓𝑎𝑐𝑒_𝑘𝑐 are combined by a cascade
strategy to obtain the face feature, which includes the internal and
external structure features. Second, this face feature and the normal fea-
ture 𝐹𝑒𝑎𝑓𝑎𝑐𝑒_𝑛𝑜𝑟𝑚𝑎𝑙 are concurrently cascaded. Through this operation,
the internal shape feature, external local structure feature and normal
vector feature of the face are coupled, and last, this coupled feature is
fed into the MLP to obtain the face feature 𝐹𝑒𝑎𝑓𝑎𝑐𝑒.

(ii) Face center point global feature extraction subbranch

The global features of the face center points of the 3D mesh data
are used to describe the overall spatial features of the 3D mesh data.
Generally, the points in the 3D mesh data refer to the vertices of
9

each face, which express the position of each face in the 3D space. To
reduce the number of network calculations, we use the face center point
instead of the three vertices of the face as input. The calculation of the
center point (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 ) of vertices 𝐴, 𝐵 and 𝐶 is presented as follows:

⎧

⎪

⎨

⎪

⎩

𝑥𝑐 = 1∕3
(

𝑥𝐴 + 𝑥𝐵 + 𝑥𝐶
)

𝑦𝑐 = 1∕3
(

𝑦𝐴 + 𝑦𝐵 + 𝑦𝐶
)

𝑧𝑐 = 1∕3
(

𝑧𝐴 + 𝑧𝐵 + 𝑧𝐶
)

(3)

Considering the face center point of the 3D mesh as a 3D point cloud
and using PointNet to extract the global features, the architecture of
the face center point global feature extraction subbranch is shown in
Fig. 14. In detail, the face center point is fed into the MLP(64, 64), fol-
lowed by pooling, and the 64-dimensional global feature 𝐹𝑒𝑎𝑐𝑒𝑛𝑡𝑒𝑟_𝑔𝑙𝑜𝑏𝑎𝑙
is output.

(iii) Face center point local feature extraction subbranch

The face center point local feature of the 3D mesh is employed to
describe the detailed local geometric spatial features of the 3D mesh.
We regard the face center point set as a 3D point cloud and apply
the idea of kernel correlation (Shen et al., 2018), which is capturing
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Fig. 14. Architecture of the face center point global feature extraction subbranch.
Fig. 15. Architecture of the face center point local feature extraction subbranch.
Fig. 16. Architecture of the Feature aggregation module.
local structures with nearest neighbors, to capture the local geometric
features. The structure of the face center point local feature extraction
subbranch is shown in Fig. 15.

We regard the 𝐾 points closest to the face center point in Euclidean
space as its neighbors. We use the 𝐾-nearest neighbor algorithm to
calculate the neighbor points and the KD tree to establish a 𝐾-nearest
neighbor search. The inputs of this subbranch are the 𝑐𝑒𝑛𝑡𝑒𝑟 point
and its neighbor index 𝐼𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑐𝑒𝑛𝑡𝑒𝑟. Similar to the face-local structure
feature extraction subbranch, this subbranch makes the kernel a set
of points in a spherical coordinate system and replaces the source in
the kernel correlation function with a collection of face center points
and neighbor points. The kernel function was also the Gaussian kernel
function. The final output of this subbranch is a 64-dimensional feature
𝐹𝑒𝑎𝑐𝑒𝑛𝑡𝑒𝑟_𝑙𝑜𝑐𝑎𝑙.

4.3.3. Feature aggregation
We propose a feature aggregation module that combines the above

extracted face feature 𝐹𝑒𝑎 , face center point global feature
10

𝑓𝑎𝑐𝑒
𝐹𝑒𝑎𝑐𝑒𝑛𝑡𝑒𝑟_𝑔𝑙𝑜𝑏𝑎𝑙, face center point local feature 𝐹𝑒𝑎𝑐𝑒𝑛𝑡𝑒𝑟_𝑙𝑜𝑐𝑎𝑙 and 3D point
cloud feature 𝐹𝑒𝑎𝑝𝑜𝑖𝑛𝑡 and that performs a complete description of the
multi-source 3D data for the final classification task. Fig. 16 shows
the structure of the feature aggregation module, which is divided
into two modules: (i) point feature aggregation and (ii) mesh feature
aggregation.

(i) Point feature aggregation

The point feature aggregation module uses the face center point
local feature 𝐹𝑒𝑎𝑐𝑒𝑛𝑡𝑒𝑟_𝑙𝑜𝑐𝑎𝑙 and 3D point cloud feature 𝐹𝑒𝑎𝑝𝑜𝑖𝑛𝑡 as inputs,
cascades and feeds them into the MLP(128, 256) layer, and then
outputs a 64-dimensional 𝐹𝑒𝑎𝑝𝑜𝑖𝑛𝑡_𝑑𝑒𝑒𝑝𝑒𝑟.

(ii) Mesh feature aggregation

The inputs of mesh feature aggregation module are face feature
𝐹𝑒𝑎𝑓𝑎𝑐𝑒, face center point global feature 𝐹𝑒𝑎𝑐𝑒𝑛𝑡𝑒𝑟_𝑔𝑙𝑜𝑏𝑎𝑙 and face neigh-
bor index list 𝐼 . The face center point global feature
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑓𝑎𝑐𝑒
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Fig. 17. Pipeline of the proposed 3D building model generation method based on multi-source 3D data fusion.
𝑒𝑎𝑐𝑒𝑛𝑡𝑒𝑟_𝑔𝑙𝑜𝑏𝑎𝑙 and face feature 𝐹𝑒𝑎𝑓𝑎𝑐𝑒 are cascaded and fed into
the MLP to obtain a deeper face central point feature 𝐹𝑒𝑎𝑐𝑒𝑛𝑡𝑒𝑟_𝑑𝑒𝑒𝑝𝑒𝑟.
𝑒𝑎𝑐𝑒𝑛𝑡𝑒𝑟_𝑑𝑒𝑒𝑝𝑒𝑟 contains richer spatial and structural features. On the
ther hand, the face feature 𝐹𝑒𝑎𝑓𝑎𝑐𝑒 and face neighbor index list
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟_𝑓𝑎𝑐𝑒 are defined as inputs. In the local neighborhood of each
ace, we cascade the central face feature with the neighbor face feature,
erform maximum pooling, and then feed it into the MLP. This module
urther fuses the face features of the local neighborhood to obtain a
eeper face feature 𝐹𝑒𝑎𝑓𝑎𝑐𝑒_𝑑𝑒𝑒𝑝𝑒𝑟.

As shown in Fig. 10, after the point and mesh feature aggregation
odule operations, the strategy of final classification result of 3D mesh

nd 3D point cloud is as follows: (1) the output features 𝐹𝑒𝑎𝑐𝑒𝑛𝑡𝑒𝑟_𝑑𝑒𝑒𝑝𝑒𝑟
nd 𝐹𝑒𝑎𝑓𝑎𝑐𝑒_𝑑𝑒𝑒𝑝𝑒𝑟 are cascaded and fed into an MLP to obtain a 1024-
imensional feature. (2) The 1024-dimensional features are cascaded
ith the multidimensional 𝐹𝑒𝑎𝑐𝑒𝑛𝑡𝑒𝑟_𝑑𝑒𝑒𝑝𝑒𝑟0 and 𝐹𝑒𝑎𝑐𝑒𝑛𝑡𝑒𝑟_𝑑𝑒𝑒𝑝𝑒𝑟1 to obtain
esh feature 𝐹𝑒𝑎𝑚𝑒𝑠ℎ. (3) The mesh feature 𝐹𝑒𝑎𝑚𝑒𝑠ℎ and point feature
𝑒𝑎𝑝𝑜𝑖𝑛𝑡_𝑑𝑒𝑒𝑝𝑒𝑟 are cascaded and performed to obtain a 1024-dimensional

usion feature 𝐹𝑒𝑎𝑓𝑢𝑠𝑖𝑜𝑛. The fusion feature 𝐹𝑒𝑎𝑓𝑢𝑠𝑖𝑜𝑛 is a complete
escription of multi-source 3D data. (4) The 𝐹𝑒𝑎𝑓𝑢𝑠𝑖𝑜𝑛 is fed into the
LP(512, 256, 2) to obtain the classification result.

MS3DQE-Net updates the network parameters by minimizing the
ross-entropy (De Boer et al., 2005) between the predicted classification
esult and the true labeled value and obtains the final model quality
valuation model through multiple iterations.

.4. Training strategy

MS3DQE-Net was implemented using Python 3.6 and PyTorch 1.7.0
n the Ubuntu 18.01 operating system with CUDA 11.0 and cuDNN 8.0.
o accelerate the training, an Nvidia RTX 3090 GPU, whose training
ime is usually approximately 4 h, was employed. The cross-entropy
s used as the loss function; the stochastic gradient descent (SGD)
lgorithm with momentum is used as the optimizer; and the momentum
s set. The optimization algorithm restrains the loss oscillation and
ccelerates the convergence of the network. L2 regularization is utilized
o prevent the model from overfitting, and the MultiStepLR method is
mployed to adjust the learning rate. The initial learning rate was set
o 0.001; the momentum factor was set to 0.9; the training batch size
as 8; and the network was trained for 100 epochs.

. 3D building model generation based on multi-source fusion

In the step of 3D building model generation, we propose considering
he characteristics of different source 3D data. We propose a novel,
D building model generation method that is based on multi-source
ata fusion and that adopts an adaptive fusion strategy according to
he quality evaluation results of MS3DQE-Net. In this way, different
egions adaptively adjust the fusion strategy. The specific measures are
resented as follows: the strategy of retaining the original 3D mesh
s adopted for the areas with excellent evaluation, and the 3D mesh
econstruction strategy is adopted for the areas with poor evaluation.
he reconstructed 3D mesh is merged with the retained mesh of the
igh-quality area, and a high-precision, 3D model of the building is
btained. The pipeline of the proposed 3D building model generation
ethod based on multi-source 3D data fusion is shown in Fig. 17.
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5.1. Point cloud fusion

For the area where the 3D building model quality evaluation result
is poor, it is necessary to fuse the higher-precision LiDAR point cloud
patch (i.e., closer to the real scene) with the matching 3D mesh patch
to obtain richer information in the current area. However, based on the
pros and cons of the MLS 3D LiDAR point cloud and oblique photog-
raphy modeling 3D mesh model, the following key integration factors
need to be considered: (1) The 3D mesh model has high integrity, large
scale, and comprehensive coverage of the scene. (2) Because the MLS
system is restricted by height or road obstructions, the LiDAR point
cloud in certain areas is partially missing (such as roofs and areas where
vehicles cannot enter), but the accuracy of the point cloud obtained is
extremely high. (3) For the same scene, when the LiDAR point cloud
can be obtained, the 3D mesh data in the same area lack model details,
and the data quality is low.

Therefore, we use a point cloud fusion strategy based on the graph
cut algorithm (Bódis-Szomorú et al., 2016; Li et al., 2018b), which uses
the vertex set of the 3D mesh model as the reference basic data and the
LiDAR point cloud as the candidate data. In detail, for the same 3D data
patch region, when the similarity between the vertices of the 3D mesh
and the point of a LiDAR point cloud exceeds the threshold, the point
of the LiDAR point cloud and its neighboring points are used to replace
and supplement the current 3D mesh vertices. Both types of points are
measured by the Euclidean distance between two points and the angle
between the normals as the similarity.

5.2. Point cloud triangulation

After the vertex set of the 3D mesh data is fused with the 3D LiDAR
point cloud to generate a new point cloud, it retains the integrity of
the scene area while containing the model details. Based on this fused
point cloud, a more refined 3D building model can be generated. The
most direct way is to turn the point cloud data into mesh data, and a
common way is to triangulate the point cloud. We use the point cloud
triangulation algorithm based on Delaunay triangulation (Gopi et al.,
2000).

5.3. Texture mapping

After triangulation of the fusion point cloud to generate a 3D mesh,
the texture of the original 3D mesh data may have issues such as miss-
ing or distorted data, and it needs to be remapped with a high-quality
new texture. During the LiDAR point cloud scan, the MLS system also
captures high-quality images that have internal and external camera
parameters. These MLS images can be employed as a new texture for
the generated 3D mesh data. In this paper, we use the projection texture
mapping algorithm (Segal et al., 1992) to map the MLS images to the
generated 3D mesh. Note that the standard for manually selecting high-
quality texture is that the camera lens is facing the building facade
when the texture image is taken.
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Table 3
Comparison of classification results between MS3DQE-Net and representative methods.
Method Data Acc (%) mAP (%) Parameter Time (s)

PointNet point clouds 83.7 80.3 3,528,790 0.167
PointNet++ point clouds 85.5 82.0 968,269 0.744
PointCNN point clouds 86.7 82.9 207,226 3.210
MeshNet mesh 87.1 83.7 4,254,631 0.433
DIFD-Net point clouds, mesh 85.6 82.7 14,889,054 0.083
Y-Net point clouds, mesh 86.7 84.1 14,882,750 0.070
2D3D-MVPNet point clouds, mesh 87.8 85.3 10,240,740 0.012
MS3DQE-Net point clouds, mesh 88.7 86.1 4,541,057 0.514
Table 4
Classification results of ablation experiment on MS3DQE-Net.
Network structure (1) (2) (3) (4) (5) (6) Full

3D point cloud feature extraction branch ✓ ✓ ✓ ✓ ✓ ✓

Face feature extraction subbranch ✓ ✓ ✓ ✓ ✓ ✓

Face center point global feature extraction subbranch ✓ ✓ ✓ ✓ ✓ ✓

Face center point local feature extraction subbranch ✓ ✓ ✓ ✓ ✓

Kernel correlation module ✓ ✓ ✓ ✓ ✓ ✓

Point feature aggregation ✓ ✓ ✓ ✓ ✓

Acc (%) 83.1 83.6 82.9 86.1 86.7 87.9 88.7
Time (s) 0.411 0.509 0.421 0.488 0.496 0.441 0.514
6. Results

In this paper, the quality evaluation of the proposed MS3DQE-Net
is considered a classification task, so the evaluation metrics used in this
experiment are Accuracy (Acc) and mean Average Precision (mAP), in
which the accuracy ratio is utilized to measure the accuracy of classifi-
cation and the accuracy index is used to measure the multiclassification
performance of the network.

As there is no publicly available multi-source 3D dataset that con-
tains a 3D mesh and corresponding 3D point cloud for 3D data classifi-
cation, the dataset used in this paper is the multi-source 3D dataset
(paired matching of 3D mesh patches and 3D point cloud patches)
presented in Section 3. We divide the entire dataset into training data
and testing data in a 4:1 ratio, of which 800 pairs are used to train the
network and 200 pairs are used to test the network.

6.1. Multi-source 3D data fusion quality evaluation comparisons

To verify the effectiveness of the method, we apply MS3DQE-
Net to the university campus multi-source 3D dataset to perform the
quality evaluation task. The quality evaluation is approximate to the
classification task, which is compared with the representative methods
PointNet (Qi et al., 2017a), PointNet++ (Qi et al., 2017b), PointCNN (Li
et al., 2018a), and MeshNet (Feng et al., 2019). We also compare the
cross-domain data matching network, DIFD-Net (Liu et al., 2020b),
Y-Net (Liu et al., 2021), 2D3D-MVPNet (Lai et al., 2022), with our
method. We keep the framework of the cross-domain data matching
network, change the input data to 3D mesh and 3D point cloud patches,
keep the loss function unchanged, and concatenate the extracted fea-
tures of the two branches and put them into the MLP(512, 256, 2) to
obtain the classification result.

Table 3 shows the results of 3D data classification of the MS3DQE-
Net proposed in this paper and other representative methods. From
a data perspective, many methods for 3D data classification can be
divided into point cloud-oriented methods and mesh-oriented meth-
ods. The results show that both the Acc and mAP of MS3DQE-Net
classification are higher than those of other representative methods,
indicating that feature fusion of multimodal 3D data can better describe
3D objects and thus improve the classification accuracy. It is also pos-
sible to observe that the mesh-based method, MeshNet, obtained better
results than other point cloud-based methods. This finding corroborates
therefore that the proposed method is capable of extracting relevant
information from the mesh and point cloud. The time in Table 3 is
the time cost for a pair of 3D data to propagate forward through the
network.
12
Table 5
The influence of parameters 𝜎 on the classification results.
𝜎 Acc (%) 𝑚𝑎𝑥_𝑝𝑜𝑖𝑛𝑡 Acc (%)

0.001 88.0 7500 88.7
0.005 88.7 5500 87.6
0.01 87.9 3500 87.1

1500 86.9

6.2. Ablation study

6.2.1. Influence of key modules in MS3DQE-Net
To verify the effectiveness of the key modules in the proposed

MS3DQE-Net, an ablation experiment was conducted to compare the
effect of data classification by changing or removing the network
structure. The results of the experiments are shown in Table 4.

The results show that the Acc is lower in cases (1), (2) and (3)
and higher in cases (6) and Full. Therefore, the modules in MS3DQE-
Net that have the greatest influence on the classification effect are the
LiDAR point cloud feature extraction branch, the central point global
feature extraction branch, and the surface feature extraction branch.
The analysis results can be inferred as follows: The feature fusion of
homologous data is very beneficial to 3D data classification. Compared
with point cloud data, the mesh has a stronger ability to describe 3D
data, which helps to improve the classification effect.

6.2.2. The influence of hyperparameters
There are special hyperparameters in MS3DQE-Net: the maximum

number of points, maximum number of faces, and parameter in the
kernel function. This experiment explores the influence of these param-
eters on the results of the proposed method.

(i) Scope of influence of Gaussian kernels

As shown in Table 5, the parameter 𝜎 that controls the influence
range of the Gaussian kernel was set to 0.005 based on the experience
of Shen et al. (2018). Experimental results show that very large or small
values worsen the classification.

(ii) Maximum number of points

To explore the influence of the number of points on the LiDAR point
clouds, experiments were carried out, as shown in Table 5.

The results show that the accuracy of classification decreases with

a decrease in the number of points, which indicates that MS3DQE-Net
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Fig. 18. Results of point cloud fusion. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 6
Influence of parameters 𝑚𝑎𝑥_𝑓𝑎𝑐𝑒 on the effect of experiment.
𝑚𝑎𝑥_𝑓𝑎𝑐𝑒 Number of faces Proportion (%) Acc (%)

7500 (5000, 7500] 12 88.3
5000 (2500, 5000] 37 89.0
2500 (0, 2500] 51 87.9

is more sensitive to the reduction in the number of LiDAR point clouds.
These results also indirectly indicate that the features of LiDAR point
clouds have a great influence on classification and that the addition of
multi-source data features can improve the classification accuracy.

(iii) Maximum number of faces

For the maximum number of faces, due to the different distribution
of the number of faces in the mesh data, the mesh data are grouped
according to an interval of 2500. The purpose of this experiment is to
explore the influence of the number of faces on the classification effect.
The experimental results are shown in Table 6.
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According to the results, the classification accuracy of the group
with the largest number of faces was the highest, while that of the
group with the largest number of faces was the second highest, in-
dicating that the correlation between the classification effect and the
number of faces was lower. There was a small difference among the
three groups of data, indicating that the sensitivity of the change in
the number of opposite faces of the MS3DQE-Net model was lower.

6.3. Point cloud fusion

Fig. 18 shows the results of point cloud fusion based on the graph
cut method, where the blue points represent the vertex set of the 3D
mesh model, and the orange points denote the MLS LiDAR point cloud.

A comparison of the top view of the 3D building data, as shown in
Figs. 18(a), 18(d) and 18(g), reveals that the points near the central
area of the roof originate from the 3D mesh vertex set and that only
the points on the outer edge of the roof are replaced by the points of
the MLS LiDAR point cloud. The reason is that the scan height of the
MLS system is limited and certain roads are blocked, which produces
an incomplete scan area. Therefore, the idea of using the vertex set of



International Journal of Applied Earth Observation and Geoinformation 116 (2023) 103171W. Liu et al.
Fig. 19. Triangulation of the fused point cloud.
the 3D mesh as the basic reference data is correct and can ensure the
integrity of the target scene model.

A comparison of the side view of the 3D building data, as shown in
Figs. 18(b), 18(e) and 18(h), indicates that part of the 3D mesh vertices
in the building wall area and roof edge area are replaced by the LiDAR
point cloud. This finding shows that the fusion method proposed in
this paper effectively replaces the low-precision, 3D mesh vertices with
a high-precision LiDAR point cloud and provides high-precision point
cloud data for subsequent 3D building model generation.

A comparison of the roof details of the 3D building data, as shown
in Figs. 18(c), 18(f) and 18(i), indicates that most of the points under
the eaves are derived from LiDAR point clouds. The results show that
the redundant building structure under the eaves is corrected to a
certain extent after the fusion and that the model has more architectural
details, but a few 3D mesh vertices still remain at the eaves occlusion.
The analysis shows that the area where the residual points are located
does not have a high similarity to the top LiDAR point cloud of the
mesh, so the vertices of the 3D mesh are not removed.

6.4. Point cloud triangulation

The fused point cloud is meshed by the triangulation algorithm; the
meshing result is shown in Fig. 19. The results show that the quality
of the 3D mesh generated by the fusion point cloud is improved to
a greater extent than that of the original 3D mesh. The holes on the
building surface have been repaired; the quality improvement effect
under the eaves is slightly lacking; and the remaining mesh vertices
are meshed.

6.5. Texture mapping and model generation

For texture mapping of the 3D mesh data generated by point cloud
triangulation, it is first necessary to filter out high-quality texture
14
images from the photos taken by the MLS system. The texture image
candidates are shown in Fig. 20 (we use the manual method to select
high-quality candidate texture images from MLS system, and the se-
lected images are usually images where buildings are not occluded).
The building in Fig. 20(a) is occluded, and the front of the building in
Fig. 20(b) is unobstructed and has less distortion, which can be selected
as a high-quality texture. The texture coordinates are then calculated
for each vertex through the projection texture mapping method, and the
selected texture image is mapped to the mesh to obtain a reconstructed
3D mesh. The reconstructed 3D mesh is merged with the 3D mesh of
the reserved area, and finally, a high-precision, large-scale, building 3D
model is generated.

Fig. 21 shows a comparison of the model generation results, which
reveals that under the guidance of the quality score by our proposed
MS3DQE-Net, the holes on the building surface of the model are re-
paired, the accuracy of the local area of the model is greatly improved,
and the distorted building structure under the eaves is improved to a
certain extent. This finding shows that the 3D model generation method
based on multi-source data fusion ensures the high integrity and large
scale of the model but also ensures the high integrity and large scale
of the model. The local accuracy of the model is greatly improved, and
the details of the model are increased.

Note that, first, there are holes on the face of the original 3D mesh
model, due to a lack of triangular face structure and texture. Second,
our point cloud fusion algorithm provides supplementary points for
the holes, and the fusion point cloud meshing solves the problem of
a lack of a triangular face structure. Third, the images obtained by the
MLS system provide new textures for the generated 3D mesh, which
compensates for the missing texture.

6.6. Discussion

3D mesh data are a representation that has richer information than
3D point cloud data. In addition to rich information such as points,
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Fig. 20. Candidate texture image captured by the MLS system.
Fig. 21. Comparison between the original 3D model and the repaired 3D model.
faces, and textures, 3D mesh data also have surface neighborhood
relationships. Our proposed MS3DQE-Net uses the face neighborhood
structure to extract the face-local structure features so that the fusion
features of the 3D mesh data have a better representation. There-
fore, the classification performance of MS3DQE-Net is better than that
of point cloud-based classification methods, e.g. PointNet (Qi et al.,
2017a), PointNet++ (Qi et al., 2017b), PointCNN (Li et al., 2018a),
which in turn leads to better multi-source 3D data quality evaluation
performance.
15
The proposed MS3DQE-Net integrates the 3D mesh face center
point feature with the LiDAR point cloud features to form better point
feature descriptions, which can better guide the classification, thereby
improving the accuracy of the classification and the performance of
multi-source 3D data quality evaluation.

In addition, the proposed quality evaluation network of multi-source
3D data and 3D building model generation methods have limitations.
MS3DQE-Net only classifies 3D data into two categories, good and bad,
in the model quality evaluation, and the multi-source 3D data with
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bad quality evaluation uniformly employs the same fusion scheme.
However, areas classified as bad in the original 3D model of the scene
may have different characteristics, and using the same fusion scheme
may yield poor results. The selection of texture images for texture
mapping still relies on manual work, and it is necessary to explore
automated methods to automatically reduce the difference between old
textures and new textures.

7. Conclusion

In this paper, we propose a novel 3D building model generation
method based on multi-source 3D data fusion. Our proposed MS3DQE-
Net creatively integrates the characteristics of the 3D mesh and 3D
LiDAR point cloud to evaluate the quality of the model, and the
final output quality evaluation results guide the generation of the
3D building model. The MS3DQE-Net integrates the global and local
features of the 3D mesh, which are fused with the features of the 3D
point cloud, to obtain a better quality evaluation of the local multi-
source 3D data fusion of the 3D building model. Experimental results
show that MS3DQE-Net is more effective than certain representative
methods. To train MS3DQE-Net, to the best of our knowledge, we
are the first researchers to propose a multi-source 3D dataset (paired
matching of 3D point cloud patch and 3D mesh patch dataset) for 3D
data classification, which is collected from a real university campus
scene and contains textured 3D mesh data and corresponding region
3D point cloud data. In future work, we plan to explore not only a
larger, scene-scale, 3D building model generation based on the fusion
of multi-source 3D data but also a more comprehensive, multi-source
3D data quality evaluation and fusion scheme.
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