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Abstract— Although the application of Transformers to 3-D
point cloud processing has achieved significant progress and
success, it is still challenging for existing 3-D Transformer
methods to efficiently and accurately learn both valuable global
and local features for improved applications. This article presents
a novel point cloud representational learning network, called 3-D
Dual Self-attention global local (GLocal) Transformer Network
(3DGTN), for improved feature learning in both classification
and segmentation tasks, with the following key contributions.
First, a GLocal feature learning (GFL) block with the dual
self-attention mechanism [i.e., a novel point-patch self-attention,
called PPSA, and a channel-wise self-attention (CSA)] is designed
to efficiently learn the global and local context information.
Second, the GFL block is integrated with a multiscale Graph
Convolution-based local feature aggregation (LFA) block, leading
to a GLocal information extraction module that can efficiently
capture critical information. Third, a series of GLocal modules
are used to construct a new hierarchical encoder–decoder struc-
ture to enable the learning of information in different scales in
a hierarchical manner. The proposed framework is evaluated on
both classification and segmentation datasets, demonstrating that
the proposed method is capable of outperforming many state-of-
the-art methods on both synthetic and LiDAR data. Our code
has been released at https://github.com/d62lu/3DGTN.

Index Terms— Graph convolution, LiDAR data processing,
point cloud classification, point cloud segmentation, self-attention
mechanism, transformer.

I. INTRODUCTION

POINT cloud classification and segmentation are funda-
mental tasks in 3-D computer vision. Point clouds, being

flexible, simple, and with easy-to-use data structures, are
commonly used in 3-D mapping, robotics, autonomous navi-
gation, and city information modeling. From the perspective of
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point cloud processing, both local and global features play an
important role in classification and segmentation tasks. Local
features refer to the features that capture the local geometric
patterns and details of the point cloud. Global features refer to
the features that capture the overall shape and structure of the
entire point cloud. A combination of global and local features
(called GLocal features here) is able to provide the model with
a more complete representation of the target point cloud.

For classification and segmentation tasks, many types of
deep learning architectures have been experimented with in
the recent past. Among these, the Transformer [1] architec-
ture emerged as a powerful point cloud feature extraction
backbone, performing exceedingly well on LiDAR point cloud
classification and segmentation. [2], [3], [4], [5]. First devel-
oped for natural language processing, the Transformer is a
low-inductive bias network that is capable of learning long-
range features. Since then, Transformers have successfully
been applied to 2-D and 3-D computer vision to various
tasks, achieving state-of-the-art results across a wide variety
of benchmarks.

Although existing 3-D Transformer approaches demon-
strated strong feature learning capabilities in 3-D point cloud
applications, they still have limitations in terms of modeling
both the local information and global information in an
efficient and accurate manner. This article presents a 3-D
Dual-attention GLocal Transformer Network, called 3DGTN.
It focuses on addressing the difficulty of effectively exploit-
ing global and local features for point cloud classification
and segmentation. Many current Transformer methods either
emphasize local information extraction or struggle to integrate
global and local features accurately. The proposed point-patch
self-attention (PPSA) mechanism in 3DGTN aims to overcome
this limitation. 3DGTN is tailor-designed to improve combined
global and local feature learning in 3-D point cloud data
processing, with the following key characteristics.

1) A GLocal feature learning (GFL) block with the dual
self-attention mechanism is designed to efficiently learn
the GLocal context information. The PPSA approach can
better capture global correlation among local neighbor-
hoods. The dual-attention mechanism integrates PPSA
and channel-wise self-attention (CSA) to improve the
learning of critical information in both the spatial
domain and feature domain.
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2) The GFL block is integrated with a local feature aggre-
gation (LFA) block into a GLocal information extraction
module to enable the learning of both valuable global
information and critical local information. The LFA
block is designed based on the graph convolution net-
work (GCN) to improve both the efficiency and accuracy
of local information extraction.

3) The GLocal modules are used to construct a new hierar-
chical encoder–decoder structure to enable the learning
of information at different scales in a hierarchical man-
ner, leading to a general point cloud representation
network that can improve both classification and seg-
mentation.

Extensive experiments comparing the proposed approach
with many state-of-the-art algorithms on many datasets, i.e.,
ModelNet40, ScanObjectNN, ShapeNet, and Titan MultiSpec-
tral (MS) LiDAR datasets, demonstrate that our method
exceeds previous state-of-the-art performance in both classifi-
cation and segmentation tasks.

II. RELATED WORK

Transformer-based methods tailored for point cloud data
can be broadly categorized into two main groups: global
Transformer-based methods and local Transformer-based
methods. Here, we review existing approaches in both cat-
egories and summarize the limitations.

A. Global Transformers in 3-D Point Cloud Processing

The global Transformer approaches focus on learning
large-scale context information from the 3-D point cloud to
improve classification and segmentation. point cloud trans-
former (PCT), as a standard global Transformer network,
was proposed in [6]. In PCT, all input points were lever-
aged for global feature extraction. PCT first adopted a
neighborhood-embedding strategy to aggregate the local infor-
mation, followed by feeding the embedded features into four
stacked global Transformer blocks. At last, it utilized a global
max and average (MA) pooling to extract the global informa-
tion for point cloud classification. The segmentation network
variant of PCT [6] had the same feature encoding backbone as
the classification network variant. However, the decoder first
concatenated the pooled global feature with each point feature,
enhancing the perception of global information for each point.
Then, the concatenated features were fed into a series of MLP
layers for dense prediction, following PointNet [7].

3CROSSNet proposed in [8] used multiscale global infor-
mation for classification. Taking the raw point cloud as input,
it first generated three point subsets with different resolutions
using Farthest Point Sampling (FPS). Second, it established
k-nearest neighborhood (kNN) [7] and extracted local infor-
mation using a series of multilayer perception (MLP) modules
for each point subset. Third, the cascaded global Transformer
blocks were applied to extract the global information of
each subset. At last, given the multiscale global features,
3CROSSNet used the cross-level cross-attention (CLCA) and
cross-scale cross-attention (CSCA) modules to capture long-
range inter- and intralevel dependencies for classification.

Instead of using raw point clouds, Stratified Transformer [9]
took 3-D voxels as input to the segmentation network.
It applied Transformer blocks in predefined local windows,
following Swin Transformer [10]. To capture the global infor-
mation and establish connections between different windows,
it presented a novel key sampling strategy, enlarging the
effective receptive field for each query point.

B. Local Transformers in 3-D Point Cloud Processing

As a local Transformer network, point transformer (PT) [11]
focused on extracting local information by the Transformer.
A downsampled pointset was passed through five local Trans-
former blocks. Specifically, for each block, PT used kNN for
sampling points, and then utilized a vector-attention mecha-
nism to capture local features. After five local Transformer
blocks, PT used a global MA pooling to extract the global
feature for classification. Local feature transformer network
(LFT-Net) [12] had a similar architecture. However, it used an
additional trans-pooling module to alleviate the feature loss
during the pooling. For 3-D point cloud segmentation, PT [11]
developed the segmentation network based on its classification
framework. The authors designed a U-net-style architecture
for segmentation, where the decoder was symmetric to the
encoder. Since it used a hierarchical structure in the encoder,
a transition-up module with trilinear interpolation was pro-
posed in the decoder for point cloud upsampling.

C. Limitations of Current 3-D Transformer-Based Networks

Despite the great success of Transformers in point cloud
classification and segmentation, existing 3-D Transformer
methods tend to only consider local information extraction or
struggle to learn both global and local features effectively. This
issue makes it still challenging for 3-D Transformer methods
to capture the global information of the target accurately
while preserving the local features. For example, PT [11]
only utilized Transformer blocks in local neighborhoods, while
ignoring global feature learning. FlatFormer [13] used Trans-
former blocks to extract window-based local features, and
designed a window shift strategy to indirectly achieve global
feature learning. PCT [6] only captured local information at
the beginning of the network, as data preprocessing. It cannot
dynamically fuse the local information with the global infor-
mation extracted from each stage in the network. Recently,
there have been several works [14], [15], [16], [17], [18], [19]
that extract both local and global features in a simple cascading
way. PatchFromer [17], SPFormer [18], and SPT [19] all used
Transformer blocks to capture global features from aggregated
superpoint-based local features. However, it is easy for them
to lose local neighborhood information. Therefore, this article
proposes a novel PPSA (Section III-C) mechanism to improve
global and local feature learning. It aims to explicitly fuse the
local neighborhood and global information of the target. To the
best of our knowledge, our 3DGTN is the first work to intro-
duce combined GLocal feature learning to 3-D Transformers
for point cloud processing.
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Fig. 1. (Top) 3DGTN networks for point cloud classification. (Bottom) segmentation, where GCN-based LFA blocks and dual self-attention-based GFL
blocks are designed for strong feature representation. A brief illustration of the GLcoal Module 1 is provided to highlight GLocal feature generation. Please
refer to Fig. 2, Sections III-B and III-C for more details.

III. THREE-DIMENSIONAL DUAL-ATTENTION
GLOCAL TRANSFORMER

In this section, we introduce the encoder and decoder
structures of our 3DGTN for both point cloud classification
and segmentation. We first show the pipeline of our method,
then introduce the main blocks in the encoder and decoder,
respectively.

A. Overview

Fig. 1 shows the overall pipeline of our method. Our
classification and segmentation networks use the same encoder
architecture. After that, the classification network utilizes an
MLP head to obtain the final classification results, while
the segmentation network utilizes a decoder with trilinear
interpolation-based upsampling for dense prediction.

The original point cloud is taken as input to the encoder.
We first design a stem MLP block to project the input data into
a higher dimensional space. After that, the projected features
are fed into stacked LFA and GFL blocks in a hierarchical
manner for GLocal feature extraction. Specifically, the LFA
block is adapted from the multiscale GCN [20], and the
GFL block is adapted from the Transformer. Following this,
we use the max-pooling operation on the output feature maps
of each module, to obtain the GLocal feature of each level.
Then, we concatenate them for multilevel GLocal feature
generation. Given the extracted feature, we leverage an MLP
head for the point cloud classification task, which consists
of two fully connected layers with batch normalization and
RELU activation. For the segmentation task, the extracted
features are then taken as input to the decoder. To improve

efficiency, we adopt an ALL-MLP decoder structure, instead
of a symmetric one. In the upsampling block, the interpolated
points are concatenated with the corresponding feature points
from the encoder via a skip connection. The trilinear upsam-
pling method we used has been widely applied to hierarchical
networks of point cloud processing. It generates new points
by considering the weighted averages of neighboring points
in the geometric space as 3-D linear interpolation, providing
an effective method to enhance the density and precision
of 3-D data representations. We note that the number of
modules in the encoder and decoder can vary according to
the number of input points. In our experiments, we designed
a two-module encoder for the classification task (1024 points),
but a three-module encoder and corresponding decoder for the
segmentation task (2048 points).

B. LFA Block

We adopt the GCN-based LFA block for LFA. The LFA
block (Fig. 2) is introduced as follows.

The input point cloud is first downsampled to N/4 points
via FPS, generating a sampled point subset S, where N is
the number of the input points. After that, the LFA block
constructs multiscale k-NN neighborhoods (three scales k1,
k2, k3 in our experiments) for each sampled point, to ensure
the diversity of the receptive fields. In each neighborhood χi

of the sampled point Si , a fused feature Ci j is generated by
computing the difference between the j th neighborhood point
χi j in χi and Si

Ci j = concat(Fi j − Fi , Fi ) (1)
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Fig. 2. Architecture of GLocal Module 1, which consists of an LFA block and a GFL block.

where Fi and Fi j represents the feature of Si and χi j ,
respectively. Given the fused neighborhood feature, the Graph
Convolution in χi can be formulated as

li = maxpooling
j∈χi

(Conv(Ci j )) (2)

where li is the aggregated local feature of Si , Conv is a con-
volution operation with 1 × 1 kernels. Specifically, in Fig. 2,
we denote the dimension of the input feature map as (N , C),
and the dimension of Ci j is 2C . Furthermore, we define
different output dimensions of Graph Convolution for different
scale neighborhoods: d1, d2, and d3, where d1 < d2 < d3
(k1 < k2 < k3). Conv(Ci j ) establishes semantic relationships
between the sampling point Si and neighborhood point χi j .
As such, a neighborhood feature set containing local informa-
tion, Ni of Si , is generated. Then, the max-pooling operation
is used to aggregate the local information to Si .

The multiscale local feature L i of Si , can be expressed as
via a concatenation as

L i = concat(li_1, li_2, li_3) (3)

where li_1, li_2, li_3 represent three local features of Si at three
different scales.

C. GFL Block

Our GFL block contains two kinds of self-attention mech-
anisms: PPSA and CSA. PPSA, as a novel point-wise
self-attention mechanism, is proposed to fuse the global fea-
tures and local neighborhood information extracted from the
LFA block for better GFL. CSA is utilized to measure the
correlation among different feature channels. It is able to
improve context information modeling by highlighting the role
of interaction across various channels. A detailed introduction
to these two mechanisms is as follows.

1) Point-Patch Self-Attention: PPSA fuses local and global
features. As shown in Fig. 3, the aggregated features FL =

{L i }i∈s ∈ Rs×d from the LFA block is taken as input, where s
is the number of sampled points in S, and d denotes the feature
dimension of FL . We first project FL into two different feature

spaces to generate Query, Key matrices

Query = FL WQ P

Key = FL WK P (4)

where WQ PandWK P are learnable weight matrices. Then, the
attention map MP ∈ Rs×s of PPSA can be formulated as

MP = softmax
(

QK T

√
d

+ B
)

(5)

where Q, K denote the Query, Key matrices, and B is a
learnable position encoding matrix defined by [11]. Next,
we treat the neighborhood feature map N = {Ni }i∈s at
each scale as the Value branch, instead of FL used by the
vanilla PSA. In other words, the elements in the attention
map are taken as weights of the corresponding neighborhood
feature sets in N . Then, the output neighborhood feature
set is obtained by computing a weighted sum of all input
sets. As such, we leverage all the points including sampling
points and neighborhood points for the GLocal information
extraction, instead of only sampling points. This method is
able to improve the feature learning and mitigate the local
information loss caused by the pooling operation in 2. Given
the aforementioned attention map MP and the Value matrix,
the output GLocal feature can be expressed as

Fo = maxpooling (MP V ) (6)

where V denotes the Value matrix, i.e., N . The detailed
algorithm flow and feature dimension transformation of PPSA
are shown in Fig. 3. We note that there are three neighborhood
feature maps N for each sampled point Si because of the
multiscale grouping strategy, which are denoted asN1,N2, and
N3. Correspondingly, we obtain three output GLocal features
at different scales, Fo1, Fo2, and Fo3. At lastly, we concatenate
them to get the final point-wise GLocal feature FP

FP = concat(Fo1, Fo2, Fo3) (7)

where Fo1, Fo2, and Fo3 are generated from neighborhood fea-
ture maps at different scales.
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Fig. 3. PPSA mechanism. It utilizes the sampling point features and the corresponding neighborhood (patch) feature maps for point-wise GLocal feature
extraction.

Fig. 4. CSA mechanism. An affinity matrix AC is designed to avoid aggregating redundant features, enhancing the channel-wise GLocal feature representation.

2) Channel-Wise Self-Attention: Apart from the PPSA
mechanism, we also utilize the CSA mechanism to capture
context dependencies in the channel dimension. It enables the
model to build connections among different channels, allowing
it to focus on different feature channels depending on input
data. As shown in Fig. 4, given the aggregated local feature
FL ∈ Rs×d , we first compute the attention map MC ∈ Rd×d

of CSA as

MC = K T Q = (FL WK C)T (FL WQC). (8)

where the shapes of K , Q are reduced to (s/8) × d by
weight matrices WK C and WQC , to improve efficiency. Inspired
by [21], we calculate the affinity matrix AC based on MC ,

to measure the difference among channels, which can be
expressed as

AC = softmax(expand(maxpooling(MC)) − MC) (9)

where maxpooling(MC) ∈ Rd×1 extracts the maximum
value of each row in MC and expand(·) expands the matrix
maxpooling(MC) to the same size as MC by column repetition.
From the subtraction, the larger in magnitude the element
in AC , the lower the similarity of the corresponding two
channels. As such, CSA tends to focus on channels with
significant differences, avoiding aggregating similar/redundant
information. After that, we calculate the Value matrix as

V = FL WV C (10)
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where WV C is a learnable weight matrix. Finally, the
channel-wise GLocal feature FC can be expressed as

FC = V AC . (11)

Given both FP and FC , the final GLocal feature can be
generated by combining them with an element-wise addition

FG = FP + FC . (12)

Additionally, we apply a residual connection between the LFA
block and the GFL block

FOUT = FL + LBR(FG) (13)

where FOUT is the final output feature map of the defined
GFL block, and LBR denotes the combination of Linear,
BatchNorm, and ReLU layers.

IV. EXPERIMENTS

In this section, we first introduce the implementation
details of our 3DGTN, including hardware configuration
and hyperparameter settings. Second, we present the per-
formance evaluation of our method on classification and
segmentation tasks, comparing it to state-of-the-art meth-
ods. Specifically, we tested our method for the classification
task on the widely used ModelNet40 and ScanObjectNN
datasets [22], [42]. For object part segmentation, we tested
our method on the ShapeNet dataset [43]. For semantic
segmentation, we tested our method on the challenging large-
scale MS-LiDAR dataset [44]. Finally, we present the ablation
experiment results on the main components of our method.

A. Implementation Details

We implemented our classification and segmentation net-
works in PyTorch. Both were trained and tested on an NVIDIA
Tesla V100 GPU. We used the SGD Optimizer with a momen-
tum of 0.9 and weight decay of 0.0001. The initial learning rate
was set to 0.01, with a cosine annealing schedule. We trained
classification, part segmentation, and semantic segmentation
networks for 250, 300, and 500 epochs, respectively, with the
same batch size of 16.

B. Point Cloud Classification

1) Datasets and Metrics: The ModelNet40 dataset contains
12 311 CAD models with 40 object categories. We split them
into 9843 training samples and 2468 testing models, following
PoineNet++ [23]. For a fair comparison, we downsampled
each input point cloud to 1024 points with normals via FPS.
Since point clouds in ModelNet40 are generated from 3-D
meshes, we can easily obtain the normal of each point accord-
ing to the corresponding surface normal. The mean accuracy
within each category (mAcc) and the overall accuracy (OA)
are used for performance evaluation, which are formulated as

mAcc =

∑K
i=1

Ti
Ni

K

OA =
T
N

(14)

where T is the number of all correctly predicted point clouds,
T =

∑K
i=1 Ti , Ti is the number of correctly predicted point

clouds in class i , K is the number of classes in the dataset,
and N is the number of all point clouds in the dataset,
N =

∑K
i=1 Ni and Ni is the number of point clouds in class

i . Additionally, we adopt the total number of parameters,
FLOating point operations (FLOPs), and Frame Per Second
to evaluate the model size and efficiency.

To further evaluate the performance of 3DGTN to the
real-world data captured by LiDAR scanning, ScanOb-
jectNN [42] classification performance was also tested in our
experiments. There are ∼15 000 objects in ScanObjectNN,
which are categorized into 15 categories with 2902 unique
object instances. Since each object was segmented from the
scanned scene point cloud, object point clouds usually include
numerous outliers in the form of background points, and were
corrupted by occlusions and noises. Therefore, it was more
challenging to perform shape classification on this dataset.
We used the hardest variant of the dataset (P B_T 50_RS)
and adopted the original training/testing split as in [42].
Similarly, each sample from ScanObjectNN was downsampled
to 1024 points. Since point clouds in P B_T 50_RS have no
normal information, we only took the 3-D coordinates of point
clouds as input.

2) Performance Comparison: We compared our 3DGTN
with the state-of-the-art Transformer-based methods and other
deep learning-based methods. The comparison results are
shown in Tables I and II. Specifically, for the ModelNet40
dataset, our method achieves the best mean accuracy of
92.4% among all benchmarked methods in terms of mAcc,
outperforming the prior state-of-the-art (PointMLP [29]) by
1.0 absolute percentage points. In terms of OA, our method
achieves the best result of 94.0% among the Transformer-
based methods. For the model size, our method requires
fewer parameters (5.21 MB) and FLOPs (3.09 GB) compared
to most Transformer-based algorithms, accounting for only
57% and 18% of PT [11], respectively. However, due to the
naive implementation of several time-consuming operations
like downsampling and kNN neighborhood construction, the
inference speed of our method can still be improved. For
the ScanobjectNN dataset, 3DGTN also achieves competitive
performance with the SOTA approaches. Especially, it obtains
the best results in terms of both OA (85.8%) and mAcc
(83.2%) among all compared Transformer-based methods,
which demonstrates the excellent performance of 3DGTN in
LiDAR data processing.

3) Visualization: We generate Grad-CAM [45] map visual-
ization results from the ModelNet40 dataset. The Grad-CAM
technique is designed to produce a coarse localization map
highlighting the important regions in target point clouds.
It uses the gradient information flowing into the last convolu-
tional layer of a deep network to understand the importance
of each neuron for a decision of interest. As shown in Fig. 5,
we obtain the regions of interest of our network for several
point clouds of the Airplane, Car, Cup, and Plant classes. From
the results, the attention (colored in red) is mainly focused on
the wings and tail of the Airplane, the tires of the Car, the
handle of the Cup, and the leaves of the Plant. As we can
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TABLE I
QUANTITATIVE COMPARISON (mACC, OA, PARAMETERS, FLOPS, AND FRAME PER SECOND) OF CLASSIFICATION PERFORMANCE

ON THE MODELNET40 DATASET. TRANSFORMER METHODS ARE SEPARATED FROM OTHER LEARNING-BASED
METHODS. THE HIGHEST EVALUATION SCORE IS SHOWN IN BOLD TYPE

TABLE II
QUANTITATIVE COMPARISON (%) OF CLASSIFICATION PERFORMANCE
ON THE SCANOBJECTNN DATASET. TRANSFORMER-BASED METHODS

AND OTHER LEARNING-BASED METHODS ARE SEPARATED. THE
HIGHEST EVALUATION SCORE IS SHOWN IN BOLD TYPE

see, all the regions of interest are consistent with the human
visual system, which helps us establish appropriate trust in
predictions from deep networks.

C. Part Segmentation on ShapeNet Dataset

1) Dataset and Metrics: The ShapeNet dataset contains
16 880 models with 16 shape categories. We split them into
14 006 training samples and 2874 testing models, following
PT [11]. The dataset has 50 part labels, and each object has
at least two parts. For a fair comparison, we downsampled

each input point cloud to 2048 points with normals by FPS.
The category-wise mean intersection over union (mIoU) and
instance-wise mIoU [11] are used for performance evaluation,
which are formulated as below

Cat.mIoU =

∑Cls
i=1

∑Hi
j=1 mIoU j

Cls

mIoU j =

∑M j
i=1

TPi
TPi +FPi +FNi

M

Ins.mIoU =

∑G
i=1 mIoUi

G
(15)

where Cls is the number of total shape classes of the dataset
(Cls = 16 in the ShapeNet dataset), Hi represents the number
of instances of the class i , M j represents the number of part
classes (varies with shape classes) in the j th instance, TPi

represents the number of the true positive samples in the i th
part class, and G is the numbers of all instances in the dataset
(G = 2874 in the testing dataset of ShapeNet.)

2) Performance Comparison: The comparison results are
shown in Table III. As measured by instance-wise mIoU,
our 3DGTN achieves competitive results (86.6%) compared
with the SOTA Transformer-based methods such as Stratified
Transformer [9]. This demonstrates the excellent performance
of 3DGTN in terms of part segmentation. Several part seg-
mentation results are shown in Fig. 6.

D. Semantic Segmentation on Airborne MS-LiDAR Dataset

1) Dataset and Metrics: Most recently, a large-scale air-
borne MS-LiDAR dataset was proposed in [44]. We tested
3DGTN on this dataset to explore its performance in practical
remote sensing applications. The MS-LiDAR dataset was
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Fig. 5. Visualization of 3DGTN attention on the ModelNet40 classification dataset. As can be seen, the attention (red) is focused on the discriminative parts
of targets, such as the wings of (a) airplane, the tires of (b) car, the handle of (c) cup, and the leaves of (d) plant.

Fig. 6. Part segmentation results from the ShapeNet dataset. As can be seen, our segmentation predictions are faithful to the ground truth. (a) Airplane.
(b) Chair 1. (c) Guitar. (d) Chair 2. (e) Mug. (f) Skateboard.

TABLE III
QUANTITATIVE COMPARISON (%) OF PART SEGMENTATION
PERFORMANCE ON THE SHAPENET DATASET. THE HIGHEST

EVALUATION SCORE IS SHOWN IN BOLD

captured by a Teledyne Optech Titan MS-LiDAR system [44].
In addition to 3-D coordinates, each point also has three

channels with wavelengths of 1550 nm (MIR), 1064 nm
(NIR), and 532 nm (Green). The dataset was labeled into six
categories: Road, Building, Grass, Tree, Soil, and Powerline.
The dataset was divided into 13 subsets, where subsets 1–10
were taken as training data, while subsets 11–13 were taken
as testing data. For fair comparison, we took the same data
preprocessing (data fusion, normalization, and training/testing
sample generation) methods described in [44]. The average F1
score [62], mIoU, and OA are used for performance evaluation

mIoU =

∑Cls
i=1 mIoUi

Cls

mIoUi =

∑
TPi∑

TPi +
∑

FPi +
∑

FNi

AverageF1 =

∑Cls
i=1 F1i

Cls
(16)

where Cls = 6 in the airborne MS-LiDAR dataset, and F1i is
calculated as follows:

F1i =
Precisioni ∗ Recalli
Precisioni + Recalli

Precisioni =

∑
TPi∑

TPi +
∑

FPi

Recalli =

∑
TPi∑

TPi +
∑

FNi
. (17)
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TABLE IV
CONFUSION MATRIX OF 3DGTN ON THE AIRBORNE MS-LIDAR DATASET. THE SECOND TO SEVENTH ROW REPRESENT THE NUMBER

OF POINTS, THE LAST THREE ROWS REPRESENT THE PRECISION, RECALL, AND F1 SCORE IN % FOR EACH CLASS

TABLE V
QUANTITATIVE COMPARISON (%) OF SEMANTIC SEGMENTATION PERFORMANCE ON THE AIRBORNE MS-LIDAR DATASET.

THE HIGHEST EVALUATION SCORE IS SHOWN IN BOLD. THE F1 SCORE FOR EACH CATEGORY IS ALSO PROVIDED

TABLE VI
RESULTS (%) COMPARISON OF INPUT DATA WITH REMOVAL OF DIFFERENT CHANNEL ON THE

AIRBORNE MS-LIDAR DATASET. THE F1 SCORE FOR EACH CATEGORY IS ALSO PROVIDED

Additionally, the F1i score for each category i is also
provided.

2) Performance Comparison: As shown in Table IV, the
semantic segmentation results of Airborne MS-LiDAR data
are presented in the form of a confusion matrix. Since we
integrate the CSA mechanism into global feature learning, our
method is able to handle MS LiDAR point cloud segmentation
well. Specifically, from the table, the number of samples
differs significantly among categories. In this case of extremely
imbalanced data, our 3DGTN still achieves excellent F1 scores
of over 85% for all categories except soil. The F1 scores of
the grass, tree, and building are over 95%. However, since the
geometric characteristics of the soil are very similar to those
of grass, which tends to confuse the network, the segmentation
results of the soil are not very satisfactory. More feature
discrimination approaches would be designed in our future
work which could improve the segmentation of similar classes.
The comparison results are shown in Table V. As can be seen,
our 3DGTN outperforms all benchmarked methods in terms

of average F1 score (88.63%). It surpasses the prior SOTA
methods such as [62] and [63] by 5.33 and 0.50 absolute
percentage points, respectively. It also achieves the best OA
(95.20%) and a competitive mIoU (82.05%). The prediction
results and corresponding ground truth of testing data are
shown in Fig. 7. These results demonstrate that our method
has excellent performance in processing real-scanned data,
exceeding previous SOTA.

We also explored the importance of different channels in
the MS-LiDAR data. Specifically, we removed the each of the
three channels (MIR, NIR, and Green) of MS-LiDAR data,
and then analyzed the corresponding performance changes
in Table VI. When the NIR channel was removed (Row 4),
the performance dropped significantly (average F1 score was
reduced to 74.29% from 88.63%). There is also a slight
performance drop when the MIR or Green channel is removed.
The results demonstrate that all these three channels are useful
for data segmentation, where the NIR channel contributes the
most to performance.
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Fig. 7. Semantic segmentation results and ground truth from the Airborne MS-LiDAR dataset. (a) Test area-11. (b) Test area-12. (c) Test area-13.

TABLE VII
QUANTITATIVE COMPARISON RESULTS OF ABLATION STUDIES FOR THE MAIN COMPONENTS OF 3DGTN, WHICH WERE PERFORMED

ON THE MODELNET40 CLASSIFICATION DATASET. − MEANS COMPONENT REMOVAL, AND → MEANS COMPONENT CHANGING

E. Ablation Study

We conducted a series of ablation experiments for the main
components of our 3DGTN to verify their effectiveness. These
experiments were performed on the ModelNet40 dataset.

1) LFA Block: We first investigate the effectiveness of
the LFA block, which is used to capture local informa-
tion. As shown in Table VII Row 2, the performance with
the MLP-based LFA block is 91.6%/93.1% in terms of
mAcc/OA, which is lower than that with the initial LFA
block (92.4%/94.0%). This demonstrates that the GCN-based
LFA block plays an important role in our algorithm. We also
replaced the multiscale strategy of the LFA block with the
single-scale one. As shown in Table VII Row 3, the clas-
sification performance of the multiscale strategy is superior
(91.3%/92.9%). This suggests that the multiscale features
are beneficial to enhancing the expression of local informa-
tion, thereby improving the performance of our algorithm.
Finally, we replaced the Furthest Point Sampling method
with random sampling, to investigate the performance of
3DGTN with different sampling approaches. As shown in
Table VII Row 4, the classification accuracy drops slightly
with random sampling (92.1%/93.5% in terms of mAcc/OA).
This is because compared with random sampling, FPS could
maintain the geometric characteristics of the target point cloud
better. However, as measured by Frame Per Second, Furthest

Point Sampling (15) is more time-consuming than random
sampling (23). Therefore, developing an efficient and adaptive
sampling method for point cloud processing is one of our
future works.

2) GFL Block: We conducted a detailed ablation study on
the GFL block. As shown in Table VII, when we removed
the GFL block, the performance drops significantly, which
demonstrates that the GFL block is essential to our algorithm.
Second, since the GFL block contains two important mech-
anisms: PPSA and CSA, we also studied the effectiveness
of each mechanism. When the CSA was removed, the clas-
sification accuracy (mAcc/OA) drops from 92.4%/94.0% to
91.9%/93.7%. Likewise, when the PPSA was removed, there
is a similar drop (from 92.4%/94.0% to 91.13%/93.2%). These
results suggest that both self-attention mechanisms are effec-
tive in improving classification performance. Additionally,
to further verify the effectiveness of the PPSA mechanism,
we replaced it with a regular point-wise self-attention mech-
anism (treating the FL as the Value matrix). After replacing,
we observe a 0.9% and 0.4% drop in mAcc and OA, respec-
tively. This confirms the superiority of our PPSA mechanism.

3) Multilevel GLocal Feature Concatenation: We studied
the effectiveness of the multilevel GLocal feature concatena-
tion. As illustrated in Fig. 1, we concatenate the output feature
of each level (module) using a residual connection to generate
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the multilevel GLocal feature. As shown in Table VII Row 9,
when the residual connection was removed, we observed a
0.3% and 0.4% drop in mAcc and OA, respectively. This
suggests that the multilevel GLocal feature contributes sig-
nificantly to performance improvement.

V. CONCLUSION

In this article, we have proposed a hierarchical point cloud
representation network for classification and segmentation,
named 3DGTN. It is an encoder–decoder architecture. The
encoder has a series of GLocal modules for effective feature
extraction, each of which consists of two cascaded LFA and
GFL blocks. In particular, for the GFL block, we adopt the
dual-attention Transformer which combines the PPSA and
CSA mechanisms. The novel PPSA mechanism is designed to
fuse both global features and local neighborhood information
of input points, which is able to improve feature learning abil-
ity as GLocal features and mitigate local information loss. The
decoder is composed of several MLP layers for efficient point
cloud reconstruction. It achieves a better trade-off between
accuracy and efficiency than a symmetric decoder. Extensive
experiments on the ModelNet40, ScanObjectNN classification
datasets [22], [42], ShapeNet part segmentation dataset [43],
and MS-LiDAR semantic segmentation dataset [44] demon-
strate the superiority of our method in dealing with both
synthetic data and real-scene LiDAR data.

Future Work: Our hierarchical network uses Euclidean
distance-based downsampling and neighborhood search meth-
ods, which are time-consuming and cannot serve the semantic
information extracted by the network very well. Since the
attention map in the Transformer contains rich feature relation-
ships, we plan to utilize the attention map for semantic-based
point cloud sampling and grouping as a future research project.
To this end, the “superpoint” strategy could be a potential
solution.
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