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A B S T R A C T   

Road extraction from remote sensing imagery is a fundamental task in the field of image semantic segmentation. 
For this goal, numerous supervised deep learning techniques have been created, along with the employment of 
various loss functions that play a crucial role in determining the performances of supervised learning models. 
However, there is a lack of comprehensive analysis of the performance differences between the loss functions for 
road segmentation in remote sensing imagery. Therefore, this study conducts a comparative study of 12 well- 
known loss functions used widely in the field of image segmentation by training and evaluating the represen
tative D-LinkNet network for road segmentation tasks with two publicly available remote sensing road datasets 
consisting of very high-resolution aerial and satellite images. The results show that different loss functions could 
lead to very different outcomes using the D-LinkNet, with varying focuses such as on overall model perfor
mances, precision, or recall. By dividing the loss functions into the distribution-based, region-based, and com
pound ones, we found that the region-based loss function type led to generally better model performances than 
the distribution-based one in terms of F1, IoU, and the road segmentation maps, with the compound loss function 
type being comparable to the region-based one. This paper eventually tries to offer suggestions for choosing the 
loss function that best suits the purposes of road segmentation-related studies.   

1. Introduction 

Automated road extraction from remotely sensed imagery is an in
tegral part of many remote sensing applications, such as intelligent 
transportation management (Guerrero-Ibañez et al., 2021), image 
registration processing (Tondewad and Dale, 2020), and topographic 
database updating (Mena, 2003). Furthermore, the accuracy of road 
extraction notably affects the detection of other objects such as vehicles 
(Abraham & Sasikumar, 2013), buildings (Simler, 2011), and oil well 
pads (He et al., 2022). Therefore, automated road segmentation is of 
general interest to researchers in the remote sensing community. 

Numerous studies have been conducted in recent years to address the 
challenge of automated road extraction from high to very high spatial 
resolution remote sensing imagery, with the use of deep learning (DL) 

techniques becoming the norm (Lian et al., 2020). The DL-based road 
segmentation algorithms can be understood as to address a binary image 
classification problem. In other words, the road segmentation is 
completed by classifying the pixels that represent the road in remote 
sensing images, in which the road is the foreground and other elements 
are the background. In more recent years, DL-based road segmentation 
approaches usually adopt an encoder-decoder structure (Abdollahi 
et al., 2020). This idea is to first encode and down-sample the input 
image using convolutional operations, thereby gradually extracting 
high-level features. The mapping of features is then performed by 
employing a decoder procedure to recover the classification results of 
each pixel layer by layer. Therefore, each pixel in the output image will 
correspond to a target class. The well-known Fully Convolutional 
Network (FCN) (Long et al., 2015) and U-Net (Ronneberger et al., 2015) 
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are examples of semantic segmentation networks that use this structure. 
In particular, these networks have been refined and widely employed for 
the application of automated road extraction tasks. For example, Zhong 
et al. (2016) used an FCN-4s model for road segmentation in aerial 
remote sensing imagery, achieving about 66 % recall. Zhang et al. (2018) 
adopts residual blocks in the U-Net, which reduced the number of 
network parameters and increased computational efficiency. Similarly, 
Singh & Dash (2019) combines two U-Net networks to perform a two- 
step road extraction from aerial images. 

The training of DL-based road segmentation networks is typically 
conducted in a supervised fashion (Abdollahi et al., 2020; Lian et al., 
2020). This means that the model uses labeled samples (also known as 
“ground truth”) to adjust its parameters so that it can make correct 
predictions on unknown data. However, the accuracy and efficiency of a 
supervised learning-based DL model heavily rely on the loss function, 
which is a measure of the distance between the true values of training 
samples and those of model predictions. There are many loss functions 
designed for addressing tasks in the field of image semantic segmenta
tion (Ma et al., 2021). Unfortunately, there is no universal loss function 
that works perfectly for all types of data. Different loss functions can 
have different characteristics, such as being more sensitive to certain 
types of errors or being more efficient to compute. Therefore, it is 
important to carefully evaluate the performance of different loss func
tions in the context of a specific model and task. 

To the best of our knowledge, there have been few studies on dis
cussing loss functions in the particular field of road segmentation in 
remote sensing imagery. Considering road extraction plays a crucial role 
in a wide range of remote sensing applications such as topographic 
database updating and intelligent transportation management, under
standing how different loss functions impact the performance of DL- 
based road segmentation models can be valuable for improving the ac
curacy and efficiency of relevant tasks. This study fills this gap in the 
literature by conducting a thorough evaluation of 12 well-known loss 
functions on road segmentation in remotely sensed imagery. In partic
ular, the D-LinkNet, a representative DL network developed specifically 
for road segmentation, with two public remotely sensed road datasets 
consisting of aerial and satellite images, respectively, are utilized to 
examine and analyze the differences in the model performance between 
different loss functions in terms of evaluation metrics such as accuracy, 
precision, and recall. This research provides valuable insights into the 
effects of different loss functions on the model performance with regard 
to road segmentation, contributes to the broader field of image semantic 
segmentation, and may inform the development of improved road seg
mentation methods for remote sensing applications. Three detailed 
contributions of this paper are as follows:  

(1) The common loss functions for binary semantic segmentation are 
thoroughly reviewed and compared.  

(2) Comparative analyses of 12 loss functions are presented 
regarding road extraction from two public remote sensing road 
datasets using the D-LinkNet model.  

(3) Suggestions for the selection of an appropriate loss function in 
road segmentation tasks are offered based on our findings. 

The remainder of this paper is organized as follows. The mathe
matical expressions and characteristics of the 12 loss functions exam
ined in this paper are summarized in Section 2. The D-LinkNet 
architecture for road segmentation, two publicly available road datasets, 
and quantitative evaluation metrics are all covered in Section 3. Section 
4 elaborates on the designed experiments and the evaluation results of 
the models with different loss functions. Section 5 provides a summary 
of key findings in this study and provides suggestions for the choice of 
loss functions regarding road segmentation in remote sensing imagery. 

2. Loss functions 

The loss function is a fundamental concept in fields such as statistics, 
economics, and machine learning (ML)/DL, which is used to map the 
values of a random event or its associated random variables to non- 
negative real numbers, representing the function of “risk” or “loss” of 
that event (Goodfellow et al., 2016). In supervised learning, the loss 
represents the deviation between the true and model-predicted values, 
which is a measure of the model performance during training. The more 
the loss function can expand the inter-class distance and shrink the intra- 
class distance of samples, the higher the model’s predictive performance 
will be. The use of loss functions is an indispensable component of the 
training process, and it is usually placed in the output layer of DL net
works, which is responsible for feeding back the calculated loss to prior 
layers and updating the network parameters according to the loss value 
in order to adjust the model for a better fit on the training data. Typi
cally, there is a large loss between the predicted and true values at the 
start of training, but after updating the network parameters through 
gradient descent methods in the backpropagation process, the predicted 
values gradually approach the true values until the loss is reduced below 
an acceptable threshold or no longer decreases. 

The design and selection of loss functions are crucial to the appli
cation of DL networks in road extraction tasks. In this study, we will 
examine 12 loss functions in semantic segmentation. The reasons why 
these loss functions are chosen are as follows. First, we concentrate on 
the loss functions for general use instead of those designed for specific 
applications with less common usage. Second, the loss functions for 
multi-class segmentation are excluded given road segmentation is 
essentially a binary classification problem. In addition, the selected loss 
functions in this paper can be categorized into three very popular 
groups: distribution-based, region-based, and compound losses (Ma 
et al., 2021). The distribution-based loss category is a measure of the 
distance between the predicted and true values in a pixel-by-pixel 
fashion, whereas the region-based loss type measures the non-overlap 
between the road segmentation map and the ground truth map. On 
the other hand, the compound loss type is a combination of both types, 
thereby leveraging pixel- and region-level losses (Zhou et al., 2018). The 
commonly used and representative loss functions in the three categories 
are accordingly presented in detail in the following sub-sections. 

2.1. Distribution-based loss functions 

2.1.1. Binary Cross-Entropy (BCE) 
The pixel-wise cross entropy loss is the most fundamental one and 

commonly used for the task of image segmentation in ML/DL. For road 
extraction, there are only a road class and a non-road class. It is therefore 
necessary to use a binary cross-entropy (BCE) loss, which represents the 
deviation of the predicted probability distribution from the true one, as 
shown below: 

L BCE = −
1
N
∑N

i=1
(yilog(p̂i)+ (1 − yi)log(1 − p̂i) ) (2.1) 

where yi ∈ {0,1} is a binary class label for pixel i with 1 being pos
itive class and 0 being negative class. While p̂i ∈ [0, 1] refers to the 
predicted likelihood that pixel i will be classified into the positive class, 
(1 − p̂i) ∈ [0,1] is the probability that pixel i will be categorized into the 
negative one. The input image’s total number of pixels is denoted by the 
letter N. 

2.1.2. Weighted Cross-Entropy (WCE) 
Considering that most of the pixels in a large remote sensing image in 

relation to road extraction are usually negative examples (i.e., non-road 
class, labeled as “0′′) and only a very few pixels belong to the road, it is 
difficult to fit the model well on the training data using the BCE loss 
function. This is because even if in the worst case the classifier predicts 
all labels as the negative class, it is still acceptable in terms of 
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classification accuracy due to the dominant number of negative example 
pixels in the input image, but this result is senseless in terms of road 
extraction and results in poor predictive performance of the trained 
model. Thus, the Weighted Cross-Entropy (WCE) loss (Pihur et al., 2007) 
is proposed to account for such a class imbalance. 

The major improvement of the WCE on the BCE loss is adding 
weights to the positive examples, i.e., assigning a smaller weight to the 
loss of the dominating background, and a larger weight to that of the 
foreground. It can be described as: 

L WCE = −
1
N

∑N

i=1
(βyilog(p̂i)+ (1 − yi)log(1 − p̂i) ) (2.2) 

where β is the coefficient that weighs the loss of positive examples. 
Whereas setting β > 1 reduces false negatives and consequently in
creases recall, β < 1 cuts false positives, thus increasing precision. 

2.1.3. Balanced Cross-Entropy (BalanCE) 
The balanced cross-entropy (BalanCE) (Xie and Tu, 2017) is a further 

improvement on the WCE loss by adding the (1 − β) coefficient to the 
negative examples, which can be defined as follows: 

L BalanCE = −
1
N
∑N

i=1
(βyilog(p̂i)+ (1 − β)(1 − yi)log(1 − p̂i) ) (2.3) 

When β = 0.5, it is equivalent to the BCE loss. 

2.1.4. Focal loss 
The Focal loss (Lin et al., 2020) can also be considered as a variation 

of the BCE, which can be written as: 

L Focal = −
1
N

∑N

i=1
(α(1 − p̂i)

γyilog(p̂i)+ (1 − α)p̂γ
i (1 − yi)log(1 − p̂i) )

(2.4) 

where γ ≥ 0, and when γ = 0, the Focal loss function becomes the 
BalanCE. Similar to the BalanCE loss, α is a parameter that accounts for 
class imbalance. 

With the Focal loss, the examples with smaller errors (called easy 
examples) are downweighed, which drives the model to concentrate 
more on learning difficult ones (with larger errors) (Lin et al., 2020). In 
general, the prediction probability of easy examples is higher than that 
of hard ones. Here, assume the former be p̂1 > 0.5 and the latter 
p̂2 < 0.5. For positive examples, when γ > 1, (1 − p̂1)

γ does not decrease 
as fast as (1 − p̂2)

γ. Therefore, adding the parameter γ can make the loss 
of easy examples smaller than that of hard ones. In other words, the 
network reduces the influence of easy examples and pays more attention 
to hard ones. 

2.2. Region-based loss functions 

2.2.1. Jaccard loss 
The Jaccard index is a measure of the similarity between two finite 

sets. It is calculated as the ratio between the intersection of the positive 
instances between two sets to their mutual combined values: 

J(X, Y) =
|X ∩ Y|

|X| + |Y| − |X ∩ Y|
(2.5) 

where X and Y stand for the predicted and true values, respectively. 
|X ∩ Y| represents the common elements between set X and set Y, and |X|
refers to the number of elements in set X (likewise for |Y|). 

With a value range of [0, 1], if the Jaccard index is closer to 1, then 
the prediction is closer to the ground truth. It can be modified to act as a 
loss function as follows: 

L Jaccard = 1 − J = 1 −
∑N

i=1yi p̂i + 1
∑N

i=1yi +
∑N

i=1 p̂i −
∑N

i=1yi p̂i + 1
(2.6) 

It is worth noting that a constant value, 1, also known as a “smooth” 
parameter, is added to both the numerator and the denominator to avoid 

instability of the function when y = p̂ = 0. 

2.2.2. Dice loss 
Like the Jaccard coefficient, the Dice coefficient (Sudre et al., 2017) 

is a similarity index defined as follows: 

D(X,Y) =
2|X ∩ Y|
|X| + |Y|

(2.7) 

Correspondingly, the Dice loss function is formulated as follows: 

L Dice = 1 − D = 1 −
2
∑N

i=1yi p̂i + 1
∑N

i=1yi +
∑N

i=1 p̂i + 1
(2.8)  

2.2.3. Squared Dice (sDice) loss 
The Dice loss has another form of expression, in which a squared sum 

instead of a simple sum of values in the denominator is used (see Eq. 
(2–9)). Some researchers, such as Milletari (2018), speculated in favor of 
this formulation of the Dice loss because its derivative is zero when the 
prediction equals the ground truth while that of the former Dice loss (i. 
e., Eq. (2–8)) is not. In this study, both Dice losses will be examined for 
comparison, and in order to distinguish one another, we term the second 
one the “Squared Dice (sDice)” loss. 

L sDice = 1 −
2
∑N

i=1yi p̂i + 1
∑N

i=1y2
i +

∑N
i=1 p̂2

i + 1
(2.9)  

2.2.4. Log-Cosh Dice (lcDice) loss 
The Log-Cosh Dice (lcDice) loss function (Jadon, 2020) is a refine

ment of the Dice loss. According to the author, by applying a log of cosh 
function to the Dice loss, the lcDice loss can become tractable while 
incorporating the characteristics of the Dice coefficient. Its mathemat
ical expression can be written as: 

L lcDice(x) = log(coshx) = log
(

ex + e− x

2

)

(2.10) 

where x = L Dice is the Dice loss. 

2.2.5. Tversky loss 
The Tversky coefficient (Salehi et al., 2017) is a generalization of the 

Jaccard and Dice coefficients, which can be expressed as: 

T(X,Y) =
|X ∩ Y|

|X ∩ Y| + α|X − Y| + β|Y − X|
(2.11) 

where |X − Y| indicates modifying set X by removing its elements 
that also belongs to set Y, and likewise for |Y − X|. α and β are the weight 
added to the penalties for false negatives and false positives, respec
tively, and by adjusting the two parameters, the balance between recall 
and precision can be controlled. When α = β = 0.5, the Tversky coeffi
cient becomes the Dice coefficient, and when α = β = 1, the Tversky 
coefficient degrades to the Jaccard coefficient. 

Setting β = 1 − α, the Tversky loss is written as: 

L Tversky = 1 − T

= 1 −
∑N

i=1yi p̂i + 1
∑N

i=1yi p̂i + α
∑N

i=1yi(1 − p̂i) + (1 − α)
∑N

i=1(1 − yi)p̂i + 1
(2.12) 

where a larger α would favor recall over precision. 

2.2.6. Focal Tversky(fTversky) loss 
Like the Focal loss, the Focal Tversky (fTversky) loss (Abraham & 

Khan, 2019) aims to leverage hard examples by using a γ modifier, 
which downweights easy examples in favour of hard ones as shown 
below: 

L fTversky = (1 − T)γ
= L

γ
Tversky (2.13) 
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2.3. Compound loss functions 

2.3.1. BCE-Dice loss 
It is also feasible to combine different loss functions to create a single 

loss function. The BCE-Dice loss is one example, which refers to a 
weighted sum of the BCE and Dice losses: 

L BCE− Dice = (1 − α)L BCE + αL Dice (2.14) 

where α is the coefficient that weighs the Dice loss, L Dice, against the 
BCE loss, L BCE. It is quite a popular loss function in data competitions 
(Zhou et al., 2018). 

2.3.2. Combo loss 
A similar compound loss to the BCE-Dice is the Combo loss (Tagha

naki et al., 2019), which is calculated as a weighted sum of the BalanCE 
and Dice losses: 

L Combo = (1 − α)L BalanCE + αL Dice (2.15) 

where α is a weighting coefficient for the BalanCE loss, L BalanCE, and 
the Dice loss, L Dice. By replacing the BCE with the BalanCE, the Combo 
loss tends to account for more class imbalance than the BCE-Dice loss. 

3. Data and method 

3.1. Public road datasets 

This paper makes use of two publicly available road datasets: the 
Massachusetts roads dataset (Mnih, 2013) and the DeepGlobe road 
extraction dataset (Demir et al., 2018). Both are popular and extensively 
used remote sensing road datasets (Buslaev et al., 2018; He et al., 2019; 
Panboonyuen et al., 2018), with the former containing aerial RGB im
ages and the latter containing satellite RGB images. 

3.1.1. Massachusetts roads dataset 
The Massachusetts roads dataset contains 1171 aerial RGB images of 

Massachusetts in the U.S. With a resolution of 1.0 m/pixel and a size of 
1500 × 1500 pixels, each image is coupled with a mask image in 
grayscale, with white pixels standing for roads and black ones repre
senting the background. 

A training set of 1108 images, a validation set of 14 images, a test set 
of 49 images, and associated labelled images make up the dataset. This 
dataset covers an area of approximately 2600 km2 with diverse land
scapes, containing roads in urban, suburban, and rural regions. 

3.1.2. DeepGlobe road extraction dataset 
The DeepGlobe road extraction dataset is obtained from “Road 

Extraction Challenge Track” in “DeepGlobe 2018 Challenge”. It is 
sampled from DigitalGlobe’s “+Vivid”, a high-quality base map 
covering Thailand, Indonesia, and India, with satellite images collected 
from the WorldView-2/3 satellites. The dataset contains 6226, 1243, 
and 1001 images for training, validation, and test, respectively, covering 
different types of road data in rural and urban areas. However, only 
training images (72.7 % of the whole dataset) are provided with cor
responding mask images of road labels. The satellite images are in RGB 
combination, while the mask images are grayscale. Both satellite and 
mask images are in a size 1024 × 1024 and have 0.5 m/pixel resolution. 

In this paper, since the original validation and test sets are not an
notated, only 6226 images in the original training set and their paired 
mask images are utilized as the sample data for our road segmentation 
experiments. Further, these 6226 images and their corresponding 
labeled images are randomly split into 4368, 928, and 930 pairs as the 
training, validation, and test set, respectively. 

3.2. Methodology 

In this study, the methodology for comparing different loss functions 
is developed by configuring the D-LinkNet model with each of the 12 
loss functions for training on the Massachusetts and DeepGlobe datasets, 
respectively. Each trained model is then evaluated on the test set from 
the two road datasets, respectively, in a quantitative manner based on 
evaluation metrics including precision, recall, F1 score, and IoU, as well as 
in a qualitative manner by generating road segmentation maps using the 
trained models and comparing them to the ground truths. 

3.2.1. D-LinkNet 
D-LinkNet is a convolutional neural network (CNN)-based network 

that was developed specifically for the task of road segmentation in 
remote sensing imagery (Zhou et al., 2018). It is derived from the pop
ular U-Net architecture (Ronneberger et al., 2015), which has been 
widely used for tasks such as medical image segmentation, satellite 
image analysis, and object detection. D-LinkNet incorporates several 
improvements over U-Net, including the use of dilated convolutions, 
which allows it to maximize the extent of the perceptual field and 
facilitate multi-scale feature fusion. 

The reasons for the adoption of D-LinkNet in this study are as follows. 
First, in addition to dilated convolution layers, D-LinkNet also features 
an encoder-decoder structure, residual blocks, and skip connections, 
which enables efficient and accurate road segmentation in high- 
resolution aerial and satellite remote sensing imagery. Second, D-Link
Net has been shown to perform well in road segmentation tasks 
compared to its counterparts. Apart from its championship at the 
DeepGlobe 2018 Road Extraction Challenge (Demir et al., 2018), D- 
LinkNet has also been proven by articles in more recent years for its 
advantages over other DL methods for road segmentation in remote 
sensing images. For example, Chen et al. (2022) showed that D-LinkNet 
outperformed other well-known DL-based road segmentation networks, 
including SegNet (Badrinarayanan et al., 2017), DCS-TransUperNet 
(Zhang et al., 2022), DeepLabV3+ (Chen et al., 2018), U-Net, CRAE
Net (Li et al., 2022), Res-UNet (Zhang et al., 2018), and DiResNet (Ding 
and Bruzzone, 2021) on both the Massachusetts and DeepGlobe road 
datasets in terms of F1 score. Similar results were reported by Jie et al. 
(2022), in which D-LinkNet achieved better overall performance than 
RoadNet (Liu et al., 2019), SegNet, NL-LinkNet (Wang et al., 2021), U- 
Net, DeepLabV3+, PP-LinkNet (Tran et al., 2020), and LinkNet 
(Chaurasia and Culurciello, 2017) also on these two datasets. Finally, D- 
LinkNet has been widely used and validated in various other fields. 
Some notable examples include its use in segmenting brain tumors in 
medical images (Bi et al., 2022), detecting driver behavior in video 
surveillance footage (Zhang et al., 2019), and extracting buildings (Zhu 
et al., 2020) and helping detect oil well pads (He et al., 2022) from 
satellite imagery. These applications highlight the robustness, general
izability, and effectiveness of D-LinkNet in solving complex segmenta
tion tasks in various domains. Overall, the adoption of D-LinkNet in this 
study is justified by its proven performance and versatility in related 
tasks. 

Fig. 1 depicts the architecture of D-LinkNet, which is composed of 
three parts: the encoding part, the central part, and the decoding part. 
The encoding part transforms the information in input images into 
features by employing several combinations of a maxpooling layer, a 
convolutional layer, and 3 to 6 residual blocks after an initial convolu
tional filter of size 7 × 7 with a stride of 2. The residual block features 
skip connections, which could help improve the model’s generalization 
ability, and this encoder structure is from a pre-trained ResNet34 (He 
et al., 2016). The central part consists of dilated convolutional layers in 
both cascaded and parallel mode, which could enlarge the receptive 
field while retaining spatial information. The decoding part uses a 
“bottleneck” building block structure (He et al., 2016) for residual 
modules, which utilizes a 1 × 1 convolutional kernel to enhance the 
computational efficiency of the network. Finally, using transposed 
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convolution-based up-sampling strategies, the encoded feature maps are 
restored to the original image size (Chen et al., 2017). It is important to 
note that the input would be down-sampled 32 times after the encoding 
part because of the initial 7 × 7 convolutional filter with stride 2 and 
three 2 × 2 maxpooling filters with stride 2; therefore, in order to restore 
the encoded features to its original size, the size of the input image is 
required to be a multiple of 32. 

3.2.2. Evaluation metrics 
The commonly used evaluation metrics for road segmentation are 

precision, recall, F1 score, (pixel) accuracy, and IoU: 

Precision =
TP

TP + FP
(3.1)  

Recall =
TP

TP + FN
(3.2)  

F1 =
2 × (Precision × Recall)

Precision + Recall
=

2TP
2TP + FP + FN

(3.3)  

Accuracy =
TP + TN

TP + FN + FP + TN
(3.4)  

IoU =
TP

TP + FP + FN
(3.5) 

where TP and FP denote true and false positives, indicating outcomes 
in which the model correctly and incorrectly predicts the positive class, 
respectively, while FP and FN stand for true and false negatives that are 
correctly and incorrectly predicted outcomes regarding the negative 
class, respectively. 

Whereas precision denotes the ratio of correctly predicted road pixels 
to all the pixels predicted as road, recall indicates the proportion of 
correctly predicted road pixels to all road pixels in the ground truth 
image. F1 is the harmonic mean of precision and recall (Taha and Han
bury, 2015). While accuracy is the percentage of correct predictions to 
total predictions, IoU refers to the proportion of the overlap between 
predicted road pixels and ground truth pixels to their union. 

4. Experiments and results 

4.1. Experiment settings 

Table 1 lists the 12 loss functions used for road segmentation and 
their parameters for subsequent experiments in this study. The values of 
parameters in each loss function are determined based on the recom
mendation in previous source papers, which are also noted in the table. 
One reason we used suggested values rather than tuning all the hyper
parameters to improve performance for some loss functions is that the 
hyperparameters obtained through searching may not be generally 
applicable. This is because the best hyperparameters for one task may 
not be the best for others. Therefore, using suggested values can provide 

Fig. 1. Architecture of D-LinkNet (adapted from Zhou et al. (2018)). The circled A, B, and C denote the encoding, central, and decoding part, respectively.  

Table 1 
Summary of loss functions used in this study and their parameter settings for 
experiments.  

Type Loss 
function 

Expression Parameter 

Distribution- 
based  

Loss 

BCE Eq. (2–1) −

WCE Eq. (2–2) β =
1
N
∑N

i=1

(
1 − yi

)
(Xie and Tu, 

2017) 
BalanCE Eq. (2–3) β =

1
N
∑N

i=1

(
1 − yi

)
(Xie and Tu, 

2017) 
Focal Eq. (2–4) α = 0.25, γ = 2(Lin et al., 2020) 

Region-based  

Loss 

Jaccard Eq. (2–6) −

Dice Eq. (2–8) −

sDice Eq. (2–9) −

lcDice Eq. (2–10) −

Tversky Eq. (2–12) α = 0.7 (Salehi et al., 2017) 
fTversky Eq. (2–13) α = 0.7, γ = 0.75(Abraham and 

Sasikumar, 2013)   

Compound  

Loss 

BCE-Dice Eq. (2–14) α = 0.5(Zhou et al., 2018) 
Combo Eq. (2–15) α = 0.5(Taghanaki et al., 2019)  
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a good starting point for choosing hyper-parameters, even though they 
may not be the optimal choice for all tasks. It is worthwhile to state that 
according to Xie and Tu (2017), the β coefficient in the BalanCE loss can 
be defined as 1N

∑N
i=1

(
1 − yi

)
, in which yi is the true label of pixel i, and N 

refers to the image’s total number of pixels. This setting is believed to 
alleviate label-imbalanced problems, especially when the non-road 
pixels greatly outnumber the road ones, because in that case a larger β 
would be assigned to add more importance to positive samples. For 
consistency, in this study we set the weighting parameter β in the WCE 

loss to be the same as that in the BalanCE loss function. 
In terms of the settings of experiments, for the Massachusetts dataset, 

the image size input to the network is 1500 × 1500 × 3, and then a 
resizing process is performed to resize the image to 1504 × 1504 × 3 
using the bilinear interpolation method from the Python Pillow package, 
in order to be compatible with the input size (i.e., a multiple of 32) of the 
D-LinkNet (c.f., Section 3.2.1) while retaining the resampling to a 
minimum degree. The reason why a different input image size from the 
original D-LinkNet paper (i.e., 1024 × 1024 × 3) is used is to leverage 
the context of the entire input image while cutting computational costs 

Fig. 2. Training vs. validation accuracy over epoch for D-LinkNet trained with different loss functions on the Massachusetts roads dataset.  
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compared to the random cropping strategy that would generate multiple 
1024 × 1024 × 3 crops from a single original image. In addition, the 
fully convolutional structure of D-LinkNet permits differently sized 
input. In terms of the DeepGlobe dataset, the image size input to the 
network is 1024 × 1024 × 3. The training and validation batch sizes are 
set to 4 and 14 for the Massachusetts roads and 8 and 32 for the Deep
Globe dataset, respectively. The batch sizes are chosen based on the 
maximum available GPU memory size. In addition to the above, other 
settings for D-LinkNet models trained on the two datasets with different 
loss functions are the same: the Adam optimizer (Kingma and Ba, 2017) 

is selected for model optimization with an initial learning rate of 0.0001, 
the input image data during training are augmented with horizontal and 
vertical flips, and the training and validation epochs are all set to 500. 
All the models are trained and evaluated using the Ubuntu 20.04 
operating system with 32 GB of RAM, along with the Tensorflow DL 
framework and dual Nvidia GeForce GTX 1080 Ti cards for accelerated 
computing. 

Fig. 3. Training vs. validation loss over epoch for D-LinkNet trained with different loss functions on the Massachusetts roads dataset.  
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4.2. Comparison of loss functions in road segmentation 

4.2.1. Evaluation of model performance 
Figs. 2-5 illustrate the training and validation progresses of D-Link

Net models with the 12 loss functions for the Massachusetts and Deep
Globe datasets, respectively. In general, the accuracy in the training 
phase keeps increasing over time, whereas in the validation it first rises 
and then remains constant or slightly decreases before stabilizing. The 
loss metric exhibits the opposite trend: the training loss steadily declines, 
while the validation loss reaches its lowest point at an early epoch before 

rising. The accuracy and loss values in the validation phase are subject to 
wide oscillations compared to in the training. 

For the Massachusetts dataset (Figs. 2 & 3), all models achieve high 
accuracy, with the best validation accuracy over epoch exceeding 0.96 
except for the BalanCE loss function, in which the maximum accuracy is 
only slightly lower than 0.96. In addition, it can be observed that large 
oscillations of validation accuracy occur for the model with the BalanCE 
loss. However, such oscillations slightly diminish with regard to its 
validation loss values. On the other hand, the performances in terms of 
the loss metric vary greatly from model to model. The D-LinkNet trained 

Fig. 4. Training vs. validation accuracy over epoch for D-LinkNet trained with different loss functions on the DeepGlobe road extraction dataset.  
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with the Focal loss obtains the lowest validation loss value, which is 
smaller than 0.01. In contrast, the lowest points on the validation loss 
curves of the other loss functions are much higher than that. Moreover, 
the region-based loss functions, except for the lcDice loss, tend to result 
in higher loss values than the other two types, with the Jaccard loss being 
the worst, whose loss values level off around 0.40. The models trained on 
the DeepGlobe dataset yield similar results (Figs. 4 & 5), with the ac
curacy for all models surpassing 0.98 and the Focal loss function 
obtaining the lowest loss value. It is worth noting that there are fewer 
oscillations in validation loss for the model trained with the BalanCE loss 

on the DeepGlobe dataset than on the Massachusetts dataset. 
After the training, for each loss function, only the model with trained 

weights from the epoch when the lowest loss is achieved is saved for use 
in the test phase. In consequence, a total of 24 trained D-LinkNet models 
are obtained, i.e., one for each loss function for each road dataset. 

Table 2 and Table 3 summarize the values of the five evaluation 
metrics obtained by applying the best trained D-LinkNet models with 
different loss functions to the test set of the two road datasets, respec
tively. Overall, the distribution-based loss functions achieve better pre
cision than the region-based ones, but an opposite trend can be seen in 

Fig. 5. Training vs. validation loss over epoch for D-LinkNet trained with different loss functions on the DeepGlobe road extraction dataset.  
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terms of recall, with the exception of the BalanCE loss, which results in 
much better recall and worse precision than its counterparts. As for the 
region-based loss functions, the Jaccard, the Dice, the sDice, and the 
lcDice losses, which resemble each other in mathematical expressions, 
bring about comparable results, with lcDice being slightly better. The 
two compound loss functions (i.e., the BCE-Dice and the Combo) 
accomplish equal or slightly worse model performances to the region- 
based ones in terms of precision, recall, and F1. All the loss functions 
realize a satisfying and comparable pixel accuracy of around 97 % to 98 
%, except for the BalanCE loss, whose precision is about 3 % to 4 % less. 
This result of high accuracy is reasonable given that the background (i.e., 
non-road pixels) in the image predominantly outnumber the foreground 
(i.e., road pixels), especially in rural areas with a scarcity of roads. The 
order of IoU is identical to that of F1, with its value being smaller than 
the latter. 

For the Massachusetts roads dataset, the highest precision and recall 
are achieved by the D-LinkNet models trained with the Focal and the 
BalanCE loss functions, respectively. The lcDice loss results in the best 
model performance on the test set in respect to F1 and IoU. As for the 
DeepGlobe dataset, the Focal and the BalanCE losses still top the preci
sion and the recall, respectively. The sDice loss realizes the highest score 
of F1, accuracy, and IoU, while the lcDice loss function ties for the first 
place in terms of accuracy. It is important to note that the models with 
the BalanCE and the Focal losses do not perform well on the test set in 
terms of F1 and IoU, though they ranked in the top two in terms of 
validation loss during training, indicating the models overfit the training 
data. However, it is worthwhile to note that the overfitting problem in 
the BalanCE loss is alleviated in the Combo loss, which is a combination 
of the BalanCE and the Dice losses. We also find that the two forms of 
Dice losses (i.e., the Dice and the sDice) lead to similar model 

performances, with each win over the other in terms of F1 and IoU across 
the two road datasets. In addition, the improvement of the fTversky loss 
over the Tversky is very limited. 

Another notable result is that different loss functions differ in their 
focus on either precision or recall. For example, the WCE and the Focal 
loss functions weigh in favor of precision, while the BalanCE and the 
Tversky losses pay more attention to recall. This phenomenon is closely 
related to the values of their functions’ parameters used in this study, as 
noted in Table 1. To start with, the value of the β coefficient in the WCE 
(c.f., Eq. (2–2)) is defined as 1

N
∑N

i=1
(
1 − yi

)〈
1, which downweighs FPs, 

thus increasing the precision. On the other hand, the BalanCE loss, which 
is an improved WCE loss function by adding the (1 − β) coefficient to the 
negative samples (c.f., Eq. (2–3)), suppresses the obtained precision 
while encouraging the recall. This is because given the non-road pixels 
greatly outnumber the road ones in the datasets used in this study, 
β > 0.5 > 1 − β would mean more emphasis on cutting FNs and conse
quently increase recall. Similarly, setting α = 0.25 < 1 − α in the Focal 
loss would promote precision. Moreover, as the Tversky coefficient is a 
generalization of the Jaccard and Dice coefficients (c.f., Section 2.8), 
setting a larger α (i.e., 0.7 in this study) in the Tversky loss reduces FPs, 
thus increasing the precision values. 

4.2.2. Road segmentation results 
The best trained D-LinkNet models with the 12 loss functions are 

further evaluated by generating road segmentation maps with white 
pixels (value of 255) representing the foreground (i.e., roads) and black 
ones (value of 0) representing the background. Fig. 6 and Fig. 7 display 
several segmentation results from the Massachusetts and DeepGlobe 
road datasets, respectively, along with the original input images and the 
ground truths. These selected examples cover urban, suburban, and 
rural areas. 

In general, the distribution-based loss function type appears to 
generate inferior road segmentation maps to the other two types. As can 
be seen, the region-based and the compound loss functions seem to 
reconstruct more complete road network structures than the 
distribution-based ones, with the exception of the BalanCE loss. The D- 
LinkNet model trained with the BalanCE loss, however, appears to 
overestimate the road pixels from the input test images, showing that 
there are many misidentifications (i.e., FPs) in the maps. On the con
trary, the model with the Focal loss tends to make underestimates, 
producing discontinuous road paths compared to the other models. 

Another notable result is that the densely interconnected road 
structure in urban regions is exceedingly difficult to restore from the 
images for all the three loss function types, as can be seen from the red 
rectangles drawn in the first column of the segmentation maps in Fig. 6. 
On the other hand, better results are from images with fewer roads, such 
as in sub-urban and rural areas. This can be well demonstrated by the 
example from the fourth column in Fig. 7, in which there is only one line 
of road in the input image, leading to similar road segmentation maps by 

Table 2 
Comparison of different loss functions for the evaluation of D-LinkNet trained on the Massachusetts roads dataset.  

Dataset Loss  

function 

Precision (%) Recall (%) F1(%)   Accuracy (%) IoU (%) 

Massachusetts  

roads dataset 

BCE  81.70  71.07  76.01  97.89  61.31 
WCE  85.08  64.36  73.28  97.80  57.83 
BalanCE  45.94  93.41  61.59  94.53  44.50 
Focal  91.35  51.46  65.83  97.49  49.07 
Jaccard  77.36  77.34  77.35  97.87  63.06 
Dice  76.69  78.60  77.63  97.87  63.44 
sDice  78.43  75.49  76.93  97.87  62.51 
lcDice  76.35  79.52  77.90  97.88  63.80 
Tversky  69.10  84.42  76.00  97.49  61.29 
fTversky  69.87  84.32  76.42  97.55  61.83 
BCE-Dice  74.14  79.51  76.73  97.73  62.25 
Combo  75.21  79.88  77.48  97.82  62.51  

Table 3 
Comparison of different loss functions for the evaluation of D-LinkNet trained on 
the DeepGlobe road extraction dataset.  

Dataset Loss  

function 

Precision 
(%) 

Recall 
(%) 

F1(%)   Accuracy 
(%) 

IoU 
(%) 

DeepGlobe 
road 
extraction 
dataset 

BCE  78.42  71.38  74.73  97.94  59.66 
WCE  78.55  71.11  74.64  97.94  59.54 
BalanCE  40.73  95.27  57.07  93.89  39.93 
Focal  87.05  60.28  71.23  97.92  55.32 
Jaccard  79.81  76.55  78.15  98.18  64.13 
Dice  78.70  77.82  78.26  98.16  64.28 
sDice  79.25  77.80  78.52  98.19  64.64 
lcDice  80.80  75.44  78.03  98.19  63.98 
Tversky  74.61  81.40  77.86  98.03  63.74 
fTversky  72.78  83.08  77.59  97.95  63.38 
BCE- 
Dice  

77.97  77.78  77.87  98.12  63.76 

Combo  75.37  79.69  77.47  98.02  63.22  
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nearly all the models to the ground truth. It is also worthwhile to note 
that the models with different loss functions can correctly distinguish 
roads from streams (see the bottom right of maps in the last column in 
Fig. 6). This finding could reveal that road networks in aerial and sat
ellite RGB images share common characteristics regardless of the image 
background (vegetated or non-vegetated areas, rural or urban regions). 

5. Conclusion 

The paper conducted a comparative study on the effects of 12 general 
loss functions on road segmentation in high-resolution aerial and sat
ellite remote sensing imagery. The D-LinkNet network was chosen to 
extract roads from two public remotely sensed road datasets, the Mas
sachusetts roads dataset and the DeepGlobe road extraction dataset. For 
each dataset, D-LinkNet models with different loss functions were 
trained for 500 epochs using the same experiment settings, and then the 
best trained models for each loss function were evaluated by comparing 
their predictive performances between different models using common 
quantitative evaluation metrics and assessing their generated road 

Fig. 6. Four examples of road segmentation results for the Massachusetts roads 
dataset using D-LinkNet trained with different loss functions. 

Fig. 7. Five examples of road segmentation results for the DeepGlobe road 
extraction dataset using D-LinkNet trained with different loss functions. 
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segmentation maps on the test set. 
The results showed that different loss functions could result in 

different model performances with regard to road segmentation in 
remote sensing imagery. The region-based loss functions (i.e., the Jac
card, the Dice, the sDice, the lcDice, the Tversky, and the fTversky los
ses) led to generally better model performances than the distribution- 
based ones (i.e., the BCE, the WCE, the BalanCE, and the Focal losses) 
in terms of F1, IoU, and the generated road segmentation maps, with the 
compound loss functions (i.e., the BCE-Dice and the Combo losses) being 
comparable to the region-based ones. The best F1 scores of 77.90 % and 
78.52 % are realized by the D-LinkNet model trained with the lcDice loss 
for the Massachusetts dataset and the one trained with the sDice loss for 
the DeepGlobe dataset, respectively. As for precision and recall, however, 
the distribution-based losses took the first place, with the Focal loss and 
the Balance loss topping precision and recall, respectively, for both 
datasets. 

Based on the above, some suggestions could be made as to the choice 
of loss functions with respect to road extraction from remotely sensed 
imagery. First, the region-based loss functions, more specifically the 
Dice, the sDice, and the lcDice, are the best option for obtaining overall 
satisfactory model performances in reference to F1 and IoU, thereby 
generating road segmentation maps with well re-constructed details. 
Second, the focus on either precision or recall could be shifted by 
adjusting the parameter values in the loss functions such as the BalanCE, 
the Focal, and the Tversky losses. Third, the compound loss functions 
offer the flexibility of altering parameter values while producing sub- 
optimal results. Such results could also achieve stability; for example, 
the overfitting problem in the BalanCE loss was alleviated in the Combo 
loss, which is a weighted sum of the BalanCE loss and the Dice loss. In 
addition, because the differences in model performances across the two 
road datasets are nearly consistent, our suggestions could hold true 
regardless of image source types (aerial or satellite RGB imagery), image 
size, and image resolutions. 

To conclude, loss functions are crucial in determining the perfor
mance of supervised DL models in respect to road segmentation in 
remotely sensed road datasets. No one single loss function works 
perfectly in terms of all evaluation criteria across every dataset. As a 
result, it is critical to select the loss function that best suits the study’s 
objectives, such as obtaining optimal results or focusing on either pre
cision or recall. Our future research will concentrate on the use of 
ensemble learning strategies to combine different road segmentation 
results based on different loss functions. Other powerful DL networks 
such as the Transformer, could also be taken into account to improve the 
aggregated results. 
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